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Abstract: The lower limb exoskeleton is a wearable human–robot interactive equipment, which is
tied to human legs and moves synchronously with the human gait. Gait tracking accuracy greatly
affects the performance and safety of the lower limb exoskeletons. As the human–robot coupling
systems are usually nonlinear and generate unpredictive errors, a conventional iterative controller
is regarded as not suitable for safe implementation. Therefore, this study proposed an adaptive
control mechanism based on the iterative learning model to track the single leg gait for lower limb
exoskeleton control. To assess the performance of the proposed method, this study implemented
the real lower limb gait trajectory that was acquired with an optical motion capturing system as the
control inputs and assessment benchmark. Then the impact of the human–robot interaction torque
on the tracking error was investigated. The results show that the interaction torque has an inevitable
impact on the tracking error and the proposed adaptive iterative learning control (AILC) method can
effectively reduce such error without sacrificing the iteration efficiency.

Keywords: lower limb exoskeleton; adaptive iterative learning control; gait trajectory tracking;
human gait capture

1. Introduction

Lower limb exoskeleton robot is a mechanical device to improve a human’s “physical strength” [1,2].
It can assist aged and disabled citizens, rehabilitate injured patients, and extend the capacity of military
and engineering forces [3–6]. As the lower limb exoskeleton should move synchronously with human
legs, accurate tracking of human gait is particularly important for its performance [7–9]. Human
gait is periodic and the gait trajectory tracking can be predicted within finite time intervals. The
iterative learning control (ILC) algorithm is such an iterative method to predict gait pattern with prior
knowledge [10,11]. ILC takes advantage of the invariant characteristics of a system and improves
control performance through historical iterations. Therefore, ILC is suitable for lower limb exoskeleton
control with proper gait trajectory tracking. Miao et al. proposed an ILC model to improve the
performance of upper limb rehabilitation robotics and concluded that the ILC can be more accurate
with repetitive rehabilitation passive training [12]. Wang et al. also designed an ILC algorithm with a
forgetting factor to improve the control system robustness at the cost of response speed [13].

Although ILC has been proven effective as a control method for repetitive motions, it is difficult
to be applied in practice due to unclear initial value and high tracking error [14,15]. Lin et al. proposed
an adaptive fuzzy decoupling control method to approximate the unknown system coefficients and
improved the existing ILC model through simplifying the learning process, reducing computing time,
and coupling multiple-input multiple output (MIMO) nonlinear systems in real-time operation [16].
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Anwar and Juamily implemented adaptive law to smooth exoskeleton interaction and ensure the
trajectory-based controller [17]. Other researchers also introduced electromyography (EMG) and other
data sources to improve the control accuracy [18,19]. Based on these studies, this study intends to
implement an adaptive control mechanism for ILC to minimize the tracking error so that the stability
and robustness can be improved in the future. The proposed adaptive iterative learning control (AILC)
can not only acquire the prior system knowledge based on multiple iterations but also reduce the
nonlinear uncertainty of the controller [20,21].

In summary, this paper contributes to the body of knowledge by introducing a novel adaptive
iterative learning control mechanism, which allows a more precise and flexible controller for the lower
limb exoskeleton robots. By aggregating and forming a time frame for the prior knowledge, this study
utilizes iterative prediction to reduce the gait tracking error so that the nonlinear uncertainty caused by
the human–machine coupling can be effectively reduced. The proposed method can further improve
the feasibility and safety of the lower limb exoskeleton robots with various functionalities.

The rest of paper is organized as follows: in Section 2, the trajectory tracking algorithm AILC
is introduced. Section 3 introduces the design and process of the target trajectory for learning and
a validation experiment. In Section 4, the gait tracking results are analyzed and the human–robot
interaction moments on gait tracking errors are discussed. In Section 5, the application and limitations
of the proposed method are discussed. Section 6 summarizes the conclusions and potential future work.

2. Adaptive Iterative Learning Control

2.1. Design of the AILC Controller

Figure 1 shows the block diagram of a typical iterative learning controller. In the controller,
θd(t) is the desired trajectory and xk(0) is the initial state. In a given time t ∈ [0, T], the control input
ϕk(t) should approach ϕd(t) and the system output θk(t) should approach the desired trajectory θd(t)
through iterative parameter updates and learning. ek(t) is the deviation between the expected output
θd(t) and the actual output θk(t). ϕk of the kth iteration is calibrated by the deviation ek(t) at the kth
closed-loop iteration.
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When the controlled system runs for the kth time:

.
xk(t) = f (xk(t), ϕk(t), t)
θk(t) = g(xk(t), ϕk(t), t)

(1)

where, x ∈ Rn, θ ∈ Rm, and τ ∈ Rr are the state, output, and input variables of the system, respectively.
The tracking error ek(t) is:

ek(t) = θd(t) − θk(t) (2)
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The control law of ILC (iterative learning control) in classical PID (proportion, integral, differential)
closed-loop controller can be expressed as:

ϕk = ϕk−1(t) + Γ
.
ek(t) + Φek(t) + Ψ

∫ t

0
ek(t)dt (3)

where, Γ, Φ and Ψ are learning gain matrices.
Figure 2 is the schematic diagram of the adaptive iterative learning control (AILC). The adaptive

controller corrects the conventional controller’s parameters according to the deviation ek(t) and a
modified value ϕk. The iterative learning control system takes the required control system parameters
as the function of the running state of the control objective.
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The control law and adaptive parameter learning the law of the kth iteration is:

τk(t) = KPek(t) + KD
.
ek(t) + ϕ̂k(t)sgn

( .
ek(t)

)
, k = 0, 1, . . . , N (4)

ϕ̂k(t) = ϕ̂k−1(t) + γ
.
eT

k (t)sgn
( .
ek(t)

)
(5)

In Equation (4), KP and KD are PID gain matrices, sgn is the sign function, which can enhance
the anti-interference ability of the system, and N is the total number of iterations. In Equation (5),
ϕ̂k−1(t) = 0; γ is the adaptive parameter;

.
eT

k (t) is the transpose of
.
ek(t), and:

ek(t) = θd(t) − θk(t) (6)

.
ek(t) =

.
θd(t) −

.
θk(t) (7)

In Equation (6), θd(t) =

[
θd1(t)
θd2(t)

]
, θd1(t) and θd2(t) are the target trajectories of the hip and

knee joint of the lower limb exoskeleton, respectively; θk(t) =
[
θk1(t)
θk2(t)

]
; θk1(t) and θk2(t) are the

trajectories of the hip and knee joint generated by the kth iteration.

2.2. Establishment of the Simulation Model

To construct a feasible AILC controller for gait trajectory tracking, a simulation model was built in
MATLAB/Simulink (The MathWorks Inc., Natick, MA, USA). The simulation block diagram is shown
in Figure 3. The block diagram contains four subroutines as s-function, namely “Input”, “Exoskeleton”,
“Controller”, and “Self-adaption”. The “Input” process is used to set the target trajectories of the
lower limb exoskeleton. In a validation experiment, the target trajectories were captured by the
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NDI Optotrak Certus (Northern Digital Inc., Canada), which is as a gait measurement system. The
“Exoskeleton” process is used to define the ontology model of lower limb exoskeletons. The “Controller”
process contains the control algorithm of the lower limb exoskeleton as shown in Equation (4). The
“Self-adaption” process is the adaptive parameter learning module, as shown in Equation (5). In the
block diagram, “Phi” is ϕ̂k obtained by the adaptive parameter learning process.
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3. Validation Experiment

To verify and validate the proposed method, this study conducted an experiment to capture
real human gait as the inputs for the simulation and controller. To capture the human subjects’ gaits,
a motion capturing system, NDI Optotrak Certus, was used. A motion capture system can be divided
into several types, including acoustic type, optical type, electromagnetic type, and inertial type [22,23].
This study used the NDI Optotrak Certus optical 3D motion measurement system. The optical 3D
motion capture system has several advantages: (1) it is easy to use and is able to capture a large
range of activities without cable and mechanical restrictions; (2) it has a high sampling rate, which
can meet the needs of animation, sports, and medical motion measurements; (3) its markers are cheap
and convenient to expand. The motion capture system is shown in Figure 4a and it has a precisely
calibrated coordinate system and measurement space, as shown in Figure 4b.
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The position sensor is composed of three CCD (charge coupled device) lenses, which can capture
the infrared light emitted by the markers and measure their precise positions. The system control unit
(SCU) is a processing device that controls the position sensor and the attached Strobers and streams
data to the host computer. Markers are infrared light emitting diodes that are tracked by the position
sensor when they are activated by the Strober. The Strober is a device controlled by, and connected to,
the SCU, responsible for activating and deactivating markers.

Before the experiment, the physiological data of the subjects, such as gender, quality, height, bone
length, and pelvic width were reported. Five markers were attached to the pelvic, hip, knee, ankle, and
toe, respectively. Markers were indexed with i(i = 1, 2, . . . , 5), as shown in Figure 5 (left). Then, the
subjects were allowed to walk around the room for a while to adapt to the test environment. During the
experiment, the gait on the flat ground was collected. The angles between the markers were recorded.
The scene during the experiment is shown in Figure 5 (right). The data collection time of each trial was
15 s.
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4. Results and Analysis

The ground truth for the gait prediction was captured by the experiment and the initial values
were assumed as the initial angles at time equal to zero. The tracking error was calculated through the

experiment process. The initial PID parameters KP and KD were set as
[

10 0
0 10

]
and the adaptive

law parameter γ was set as 10. After a preliminary test, as the results tend to converge after eight
iterations, the results were reported for the first ten iterations, in other words, N was set as 10. Each
iteration is composed of a supporting phase (approximately 1.2 s, 60% gait cycle) and a swinging phase
(approximately 0.8 s, 40% gait cycle). The tracked angle trajectories of the hip joint and knee joint are
shown in Figure 7. The tracked angular velocity of the hip joint and knee joint after 10 iterations is
shown in Figure 8. Figure 9 shows the tracking errors of both the angle and angular velocity through
all 10 iterations.
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Figure 9. Tracking errors of angle (left) and angular velocity (right) over 10 iterations.

With Figures 7 and 9 (left), it can be seen that with the proceeding of iterations, the predicated
trajectory approached the object trajectory. After 10 iterations, the maximum tracking error of the hip
joint was reduced to 0.20 degrees and that of the knee joint was reduced to 0.22 degrees. There was
about a 3% relative error of the hip joint angle within 80% of the gait period, while the relative error for
the knee joint was about 4.4% over 70% of the gait cycle. With Figures 8 and 9 (right), it can be seen that
the angular velocity tracking errors kept decreasing. After 10 iterations, the angular velocity tracking
error of the hip joint was 1.52 deg/s, and that of the knee joint was 2.78 deg/s. Both maximum errors
suggest that the lower extremity exoskeleton robots can be safely operated.

The tracking error inevitably leads to human–robot interaction force/torque, and at the same
time, it also is affected by human movement force/torque. To investigate the impact of human–robot
interaction torque (THR) on the trajectory tracking error, this study also investigated four forms of
human–robot interaction torque THR, including fixed value, sine change, random change, and sine
*random change, as shown in Equation (8). Among them, the function of rand(1) generates standard
normal probability.

THR =


A

Asin(t)
Arand(1)

Asin(t)·rand(1)

, A = 0, 5, 10, 15 (8)

Table 1 shows the trajectory tracking errors under different forms of human–robot forces. Figure 10
shows the trajectory tracking errors under four different forms of human–robot interaction torques at
the same amplitude. At the same time, the impact of different amplitudes on trajectory tracking under
each form of human–robot interaction torque is also demonstrated in Table 1.

From Figure 10, the majority of torques increases as the tracking error increases. Their amplitudes
show that A ≥ Asin(t) ≥ Asin(t)·rand(1) and A ≥ Arand(1) ≥ Asin(t)·rand(1). Therefore, in the case of
equal amplitude, the human–robot interaction torque with random change has a smaller error than
that with a sine change.



Appl. Sci. 2019, 9, 2251 8 of 10

Table 1. The tracking errors with different forms and amplitudes of THR.

THR/(Nm) A Error of Hip Joint (deg) Error of Knee Joint (deg)

THR = A

A = 0 0.20 0.22
A = 1 0.89 0.52
A = 5 0.49 1.32

A = 10 0.60 1.81
A = 15 0.77 2.27

THR = Asint

A = 0 0.20 0.22
A = 1 0.84 0.47
A = 5 0.44 1.19

A = 10 0.63 1.76
A = 15 0.75 2.09

THR = Arand(1)

A = 0 0.20 0.22
A = 1 0.60 0.37
A = 5 0.83 0.98

A = 10 0.78 1.51
A = 15 0.79 1.91

THR = Arand(1)·sin(t)

A = 0 0.20 0.22
A = 1 0.57 0.33
A = 5 0.81 0.83

A = 10 0.79 1.31
A = 15 0.76 1.68
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5. Discussion

The lower limb exoskeletons can be divided into three broad categories based on their
functionalities. The first category is human performance augmentation exoskeletons for increasing
strength, endurance, and other physical capabilities for able-bodied individuals. This type of
exoskeleton can be used for lifting heavy objects, carrying heavy loads over large distances, or working
with heavy tools. The likely settings for these devices are in warehouses, construction sites, emergency
relief operations, or military bases and excursions. The second broad category encompasses assistive
devices for individuals with disabilities. Stroke, spinal cord injury, muscle weakness, and other
neurological or musculature disorders can lead to difficulty walking or making arm movements.
Current estimates suggest that in the United States alone there are 11.7 million individuals who
experience difficulty walking and 8.8 million individuals who experience difficulty lifting objects [24].
Assistive robotic exoskeletons can allow users to complete movements they could not complete on
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their own. For example, many of these exoskeletons are intended to allow an individual with lower
limb paralysis to walk with the aid of crutches. The third broad category is therapeutic exoskeletons for
rehabilitation. These devices can assist, resist, or perturb the user’s movements to achieve therapeutic
exercise. They can train an individual’s muscles and/or nervous system to help them overcome the
limitations of a disability when they are not using the exoskeleton. With this proposed study, all types
of lower limb exoskeletons can benefit. In the practical application, lower limb exoskeletons have
to be applied in complex environmental disturbances and more complex and diversified gaits. It is
worthwhile to improve its feasibility by reducing tracking errors and adapting to different working
environments and human gaits.

In addition, the proposed method in this study is more suitable for the passive rehabilitation
assistance robot as it regards tracking error minimization and safety as a priority. When applied
to other purposes, this study is subject to several limitations. First, active lower limb exoskeletons
require coordinated movement of both legs. As both legs have complicated interactive movements in
non-plane 3D spaces, future work should focus on establishing their trajectory interrelationships. Also,
future research should consider the trajectory tracking of the coordinated movement of the legs of the
lower limb exoskeleton and optimize trajectory tracking on the basis of different physical environments.

6. Conclusions

This paper proposed an adaptive iterative learning control mechanism to track the gait trajectory
of the lower limb exoskeleton. The model was validated with an experimental gait acquisition and
results suggest that AILC has better robustness and higher converging speed in dealing with gait
trajectory tracking errors. In addition, the impacts of the human–robot interaction torque were studied,
and the results show that the human–robot interaction torque can be reduced through minimizing
tracking errors. The randomly generated human–robot interaction torque indicates that tracking errors
were minimized. The proposed method can broadly impact the industry and be applied for the control
of the passive rehabilitation robot and human lower limb assistance equipment.

To summarize the major contribution of this study, the proposed model developed a new control
mechanism to reduce the tracking error and nonlinear uncertainty for the human–machine coupling
system. It significantly promotes the control accuracy and reliability of the operation of the lower
limb exoskeletons. With the help of the proposed method, the safety and feasibility of the lower limb
exoskeletons can be improved for practical application.
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