
Article

A YOLOv2 Convolutional Neural Network-Based
Human–Machine Interface for the Control of
Assistive Robotic Manipulators

Gianluca Giuffrida * , Gabriele Meoni * and Luca Fanucci

Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; luca.fanucci@unipi.it
* Correspondence: gianluca.giuffrida@phd.unipi.it (G.G.); gabriele.meoni@ing.unipi.it (G.M.);

Tel.: +39-050-2217625 (G.G. & G.M.)

Received: 26 April 2019; Accepted: 28 May 2019; Published: 31 May 2019

Abstract: During the last years, the mobility of people with upper limb disabilities and constrained
on power wheelchairs is empowered by robotic arms. Nowadays, even though modern manipulators
offer a high number of functionalities, some users cannot exploit all those potentialities due to their
reduced manual skills, even if capable of driving the wheelchair by means of proper Human–Machine
Interface (HMI). Owing to that, this work proposes a low-cost manipulator realizing only simple
tasks and controllable by three different graphical HMI. The latter are empowered using a You Only
Look Once (YOLO) v2 Convolutional Neural Network that analyzes the video stream generated by a
camera placed on the robotic arm end-effector and recognizes the objects with which the user can
interact. Such objects are shown to the user in the HMI surrounded by a bounding box. When the
user selects one of the recognized objects, the target position information is exploited by an automatic
close-feedback algorithm which leads the manipulator to automatically perform the desired task.
A test procedure showed that the accuracy in reaching the desired target is 78%. The produced HMIs
were appreciated by different user categories, obtaining a mean score of 8.13/10.

Keywords: YOLOv2; robotic arm; disability; human machine interface; deep learning; artificial
intelligence; Kernelized Correlation Filter (KCF); Image Based Visual Servoing (IBVS)

1. Introduction

During the last years, modern electronic power wheelchairs have been equipped by manipulators
to compensate the deficit in the manuals skill of users due to accidents or disabling diseases [1].
Such robotic arms are designed to perform simple operations, such as knocking on a door or pressing
buttons in a lift panel, turning on the light in a room, etc. Owing to the benefits introduced by such
manipulators in terms of increment of mobility and autonomy, the research has been focusing on the
realization of robotic arms able to perform very complex tasks such as interaction with small objects [2].
However, for highly impaired users exploiting all the potentialities offered by such manipulators
is often hard, especially if the the only device to control the robot is the power wheelchair joystick.
Thus, various Human–Machine Interfaces (HMIs) have been developed for people with different
disabilities. There are several typologies of HMIs, which are optimized for specific classes of disease.
In the case of severe upper-link deficits, brain–computer interfaces can be used. This approach is very
promising thanks to its usability by those users with no possibility of moving their arms. However,
such HMI requires the presence of numerous electrodes placed on the body of the users [3] or dedicated
helmets [4] resulting more invasive than other interfaces.Instead, for less severe disabilities different
HMIs are convenient. Ka, Chung, Ding, James, and Cooper [5] propose a semi-autonomous robotic
arm with a HMI based on 3D vision to assist users to control the robot. Even if the handling is
manual, users are supported in the objects interaction by some predetermined manipulations options

Appl. Sci. 2019, 9, 2243; doi:10.3390/app9112243 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3306-5698
https://orcid.org/0000-0001-9311-6392
https://orcid.org/0000-0001-5426-4974
http://dx.doi.org/10.3390/app9112243
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 2243 2 of 17

that can be addressed by voice commands. Although such interface is really promising, the voice
interaction with the HMIs might be really arduous for users with severe dysarthria, which is typical
in the case of degenerative diseases or strokes [6]. Indeed, in the presence of severe dysarthric,
a speaker dependent voice commanded interface might be necessary in order to make the recognition
performances acceptable [7]; it would require much effort by the user to train the interface to increase
its usability. Previous versions of this work [8–10] implement an autonomous eye-in-hand manipulator
which exploits the image features extracted by means of a camera and other sensors data to realize a
close-feedback loop for the control of robot kinematics. The offered HMI is based on a touch screen
in which the user can visualize the camera frames and press the target area where he wants to lead
the manipulator. A Computer Vision algorithm is used to perform the image features extraction and
their tracking over different images. The main drawback of this approach is the lack of robustness
to the errors of the users. In fact, to lead the robotic arm to a predetermined area, it is necessary that
the users press exactly the correspondent area on the HMI. Such task can be hard due to spasms or in
the case of limited hands control. Rabhi, Mrabet, Fnaiech [11] used a machine learning approach to
adapt the HMI to the manual skills of the users. Such method makes the system user dependent and
requires a preliminary HMI training phase to be adapted on the user, which might be frustrating. In
this work, we propose a user independent five-Degrees of Freedom (DOFs) manipulator equipped
by a monocular camera proximity and force sensors. In [8–10], the robotic arm autonomy is reached
by a closed-feedback loop that exploits image features extracted by the camera images. The main
advantages of this work is due to an Artificial Intelligence (AI) algorithm that recognizes and locates
the objects with respect to the camera frames. In fact, thanks to the AI, objects, such as the buttons of a
lift panel, are shown to the users surrounded by bounding boxes.This increases the HMI robustness,
since it accepts clicks only inside the bounding box shown, avoiding starting the approach in the case
of user errors. For more severe impairments, a Manual raster scanning and a Time raster scanning HMIs
were also implemented. In all cases, the HMIs are pretty intuitive, requiring very short training periods
(in the order of ten minutes). The system software was implemented inside Robotic Operative System
(ROS) environment. ROS is an open-source and multi-platform framework that manages the multiple
tasks as nodes of a network that exchange messages in form of topics or services. The entire software
runs on a Raspberry PI 3 board, with the only exception of the AI which runs on a hardware accelerator.
The remainder of the paper is organized as follows. Section 2 shows the conceptual architecture of
the proposed prototype, illustrating its working principle and explaining the offered advantages in
terms of accessibility, easiness of use, etc. Section 3.1 describes the structure of the manipulator and the
used platform and sensors. Section 3.2 reports the prototype software structure and illustrates how it
reflects the conceptual system architecture. The performances demonstrated by the prototype to reach
the final target in simulation and during the tests are detailed in Section 4. It also describes the results
of the surveys composed by the students, relative to their experience with the prototype. Finally, in
Section 5, conclusions are drawn.

2. Concept

As described in Section 1, one of the main challenges is reducing the effort to control the
manipulator in order to make it accessible even to severely impaired people. In the already mentioned
work [5], the user is assisted in the manual control of the manipulator by several audio commands,
which are associated to predefined movements of the manipulators. In this way, the capacity of
controlling the manipulator to perform these movements is not required to the user. A similar idea
is used in our previous works [8–10], where, limiting the manipulator functionalities to the pressure
of a button or knocking on a door, the only task assigned to the user is communicating, through the
HMI, where he wants to lead the manipulator end-effector. In these cases, the entire control of the
manipulator is delegated to the system software, further reducing the user effort. To do that, the
authors of [8–10] exploited the information contained in the images by a monocular camera to control
the manipulator through a Visual Servoing algorithm.

Appl. Sci. 2019, 9, 2243 3 of 17

This work exploits a similar approach, as shown in Figure 1, but it empowers the system through
an Object Recognizer. The latter has the task of recognizing the objects to interact with inside the camera
frames and to provide their coordinates expressed in pixels with respect to a reference point in the
image, e.g., the camera center or a corner. Even in this case, camera frames are shown to the user
on a dedicated HMI, in which the recognized objects are surrounded by a bounding box. After the
user chooses one of the recognized objects through the HMI, the object camera plane coordinates
are processed by the Target Stabilizer block. It increases the robustness on the desired object position
estimation against mechanical shaking, vibrations and frame losses. To do that, the Target Stabilizer
tracks the object area independently from the Object Recognizer, providing a better estimation of the 2-D
coordinates. The latter are sent to the Robot Logic. Exploiting the coordinates of the selected object and
the distance from it, obtained by the depth sensor, the Robot Logic subsystem calculates the movements
that each joint of the robot should carry out to approach the target. Such information is used by the
Robot Actuators to drive the Robotic Arm motors. The use of Object Recognizer introduces numerous
advantages at the expense of increasing the computational complexity. First, as explained in Section 1,
it increases the safety of the HMI toward the user. In fact, an incorrect pressure outside the bounding
boxes is ignored by the system. In addition, as explained, the Object Recognizer limits the user actions
to the selection of the desired target. Such task can be easily performed through many standard HMIs,
including manual raster, raster time, a keyboard, etc. Using these interfaces is much more tricky with
systems such as those in [8–10], which require the user to select the area of the objects rather than
the object itself. Thus, the introduction of a system for the target recognition increases the number of
usable interfaces, for a higher system accessibility.

Figure 1. The Conceptual architecture. HMI, Human–Machine Interface.

3. Methods and Materials

3.1. Hardware Setup

The conceptual architecture described in Section 2 was validated through a proof of concept
prototype, whose hardware setup is described in this section. Indeed, some of the subsystems shown

Appl. Sci. 2019, 9, 2243 4 of 17

in Figure 1 are realized through hardware components, which are interfaced by the system software
over dedicated structures of software.

As shown in Figure 2, the Robotic Arm was realized through a five-DOFs manipulator. The arm
links are connected to each other only by means of rotary joints, whose position is established through
HS-785HB DC Servo Motors.

Figure 2. The prototype.

The end-effector of the arm is realized to perform only simple tasks, i.e., pressing a panel lift
button or touching an object. Nevertheless, thanks to the modularity of the system software, it is
possible to increase the functionalities by substituting the existent modules.

In addition to the manipulator, the other hardware components used are:

• Raspberry PI 3B board: This is the platform that runs the system software with the sole exception
of the AI algorithm, as explained in Section 3.2. It interfaces all the other hardware components
directly or through dedicated boards (e.g., the Phydget board, as successively explained).

• Phydget v1.1 board: It is a commercial motors driver board. Its use is necessary since the Raspberry
PI 3B board is not able to provide the sufficient power to the five motors. A dedicated driver motor
board allows choosing a platform for the sub-system independently by its ability to drive the
motors.

• 5MP Raspberry Camera module: The hardware part of the conceptual subsystem Camera is a low
cost monocular camera that provides images from which some information is extracted for the
control of motion in the space. The acquired images are 640× 480 with 8 bits for each color (RGB).

• HCSR04 proximity sensor: The hardware component of Depth Sensor was realized through a
low cost ultra-sound proximity sensor. As described in Section 2, it is necessary to estimate the
distance along the axis of the camera frame between the camera and the interest object (depth). Due
to the low cost nature of the sensor, the accuracy of the measurement is low, but it is compensated
by the IBVS approach, as explained in Section 3.4.3.

• Force sensor: The force sensor is used to avoid breaking the end-effector or damaging the object
while the manipulator grabs them.

Appl. Sci. 2019, 9, 2243 5 of 17

• Raspberry 7” touch screen display: As described in Section 2, the HMI is necessary to show the
user the selectable objects to interact with. In addition, it might also be exploited by users with a
limited level of manual skills. Thus, a touch screen display has been used.

It is clear by knowing the used hardware the low cost nature of the manipulator. This prototype,
in fact, costs less than e 1500 to demonstrate that it is also possible to build a low-cost robotic arm for
assistive technologies.

3.2. Software Architecture

The system software is the core of the entire system, as shown in Figure 3. In fact, it allows
interfacing the user and driving the manipulator according to the conceptual architecture shown in
Figure 1 by using the information provided by the sensors described in Section 3.1.

Figure 3. Layered structure of the system software.

To increase the modularity of the system, the software architecture has been divided into three
different levels of abstraction:

• Hardware layer
• Application Logic Unit Layer
• Human–Machine Interface Layer

The different sections of the code have been implemented in order to be modular and independent
from the others. In particular, each section can be substituted without changing the remaining code.
Each layer communicates only with its neighbor; the HMI Layer is the only one that interacts with
the user.

To maintain a good scalability and efficiency, ROS [12] is used. It is a collection of software to
develop robotic systems. The main features of ROS are the independence from platform, the support
of several programming languages and the possibility of exchanging data independently from the

Appl. Sci. 2019, 9, 2243 6 of 17

physical nodes distribution. The standard topology of a ROS system is star-topology where the central
node is the ROSCORE and all other nodes are the leaves attached to it. ROS offers two different
communication paradigms: topics and services. Topics are a continuous stream of data that are received
by the ROSCORE and exposed to all the interested nodes. Instead, services are offered by a node, and
they are on-demand functions, even if the connection is handled by the ROSCORE.

To keep the desired modularity, it is necessary that every layer produces its outputs as requested
by the adjacent layer, as shown in Figure 4. Details on each layer are provided in Sections 3.3–3.5 and
shown in Figure 3.

Figure 4. The topics (rectangles) and the nodes (ellipses) of the Robotic Operating System (ROS).

3.3. Hardware Layer

The Hardware layer is responsible for the sensors/board communications and to drive the actuators
(described in Section 3.1). Each sensor is interfaced by a ROS node that collects the raw data and
elaborates them to transmit more meaningful data to the upper layer. The nodes inside the Hardware
layer section are:

• Camera node: The camera node handles all the frames taken by the Raspberry Camera Module
and it represents the software part of the Camera conceptual block. In addition to the data
acquisition, the Camera Node modifies the resolution and the brightness of the images to provide
better frame quality. To do that, a topic is exposed. To reduce the latency and increase the fluidity
of the stream of frame, the camera node performs an image compression by reducing the quality
of the original image through an 8-bit truncation of the colors, i.e. the images stream are converted
to JPEG and encapsulated inside a ROS standard message to be exposed in a topic.

• Proximity node: The Proximity node collects the data provided by the proximity sensor and by
data processing to evaluate the distance from the desired object. Since the data provided represent
the time to go and return of the ultrasound signal, the measured distance can be calculated simply
multiplying then times the sound speed divided by 2. The distance measurements are then
transmitted as a message on a dedicated exposed topic. The Proximity node together with the
hardware proximity sensor realize the Depth Sensor conceptual subsystem.

• Controller Motor Node: The Raspberry board is not able to provide the power for five motors;
thus, the Phydget board is used. However, the latter cannot interpret the data provided by The
Application Processor, which sends the position of joints as angles. In this layer, every position is
converted into the format required by the Phidget API without changing the upper layer output
data. The Controller Motor Node, together with the Phydget board, implement the Robotic Actuators
conceptual subsystem.

3.4. Application Logic Unit Layer

The Application Logic Unit Layer controls the whole system by interfacing the user through the
Human–Machine Interface Layer and by using the data provided by the Hardware layer. Indeed, it exploits
the image data collected by the Camera Node, contained in the Hardware layer, to feed an Artificial
Intelligence (AI) algorithm based on You Only Look Once (YOLO) v2 convolutional neural network.
The latter realizes the conceptual Object Recognizer, as better explained in Section 3.4.1. In fact, the
YOLOv2 network recognizes multiple different objects in the image and estimates their positions over
different frames.

Appl. Sci. 2019, 9, 2243 7 of 17

The acquired images and the relevant bounding boxes are shown to the user through the
Human–Machine Interface Layer, which also collects the user commands. When one of the recognized
objects is selected, the Human–Machine Interface Layer sends the correspondent bounding box corner
coordinates to the Target Stabilizer. It is realized through the Kernelized Correlation Filter (KCF) algorithm,
described in Section 3.4.2. The KCF algorithm is used to improve the object position estimation over
consecutive frames. The low quality camera produces a lot of noise which is bad interpreted by the
network or the KCF. To keep the cost of the entire system low, a combination of the two algorithms is
used. In fact, when the user selects a target, the two algorithms start communicating each other to
improve the location of the target during the movement of the manipulator.

The improved object coordinates are exploited by the Robot Movement Control System, which
implements the conceptual Robot Logic unit. The Robot Movement Control algorithm uses the information
obtained by the KCF algorithm as target point for the arm end-effector. To do that, it implements
a Finite State Machine (FSM), described in Section 3.4.3, which drives the manipulator to the target
position by performing an established sequence of movements. To guarantee the arrival to the right
position at every step, the Robot Movement Control block exploits a close feedback loop algorithm called
Image Based Visual Servoing (IBVS), which permits to drive a manipulator exploiting a 2D algorithm.
It is better described in Section 3.4.2.

The following sections report detailed descriptions of the YOLO Deep Neural Network
(Section 3.4.1), the Kernelized Correlation Filter (Section 3.4.2) and the Robot Movement Control System
(Section 3.4.3).

3.4.1. YOLO Deep Neural Network

In this paper, we use the YOLOv2 convolutional neural network to realize the conceptual Object
Recognizer, which permits identifying multiple objects and tracking them over different frames.
YOLOv2 belongs to a broader class of algorithms note in literature as Artificial Intelligence algorithms.
The latter are used to extract particular features from images to trace an area of interest on different
frames [13].

Generally, the most common AI approach for image recognition are based on the use
of Convolutional Neural Networks (CNNs) followed by a Fully-Connected Feed-forward Neural
Network (FCFNN).

CNNs are networks used to extract features from images by performing the convolution among
some trainable filter kernels, with fixed geometric sizes, and the given image. The outputs of a CNN
layer are K features maps, where K is the number of the filters in that layer. The dimension of the
output depends on the image size, the stride value and the size of the filter.

The FCFNN is another topology of neural network composed by several layers, containing
neurons. Each neuron of a layer is connected with all those that belong to the next one. A FCFNN
is mainly used to take the final decisions or to assign a specific label to the output. Furthermore, the
neurons execute an activation function over the sum of the linear combination of the inputs. For
multi-class classification problems, the activation function of FCFNN layers is generally a ReLU [14].
The Softmax layer is generally used to obtain the probability for each class of the output of the network.
This probability is estimated as described by Equation (1):

p(j) =
eo(j)

N−1
∑

i=0
eo(i)

(1)

where p(j) is the probability for the input to contain the class j and o(j) is the jth element of the
output layer.

Each layer needs a training phase to tune its weights in order to classify the input features. This is
made by a supervised approach, which uses a set of ordinate input/output couples, called training
set. The network training is performed by executing some algorithms as Descendent Gradient [15] or

Appl. Sci. 2019, 9, 2243 8 of 17

Back Propagation [16]. Such algorithms compare the training set outputs with the one generated by
the network with the correspondent inputs. The comparison produces an error calculated by using a
particular loss function. The error value is used to update the weights at each step.

For our aims, the AI algorithm shall provide the coordinates of the recognized objects in the
camera frame. To do that, different approaches exist. R-CNNs [17] offer the best accuracy on the
positioning and the recognition of the objects. The major problem of R-CNN is the necessary depth
of the network. In fact, to reach high accuracy, deep networks are necessary with reduction of the
frame rate [18]. To overcome the problem of the low number of frame rates, there are some solutions:
the fast R-CNNs [19] and faster R-CNNs [20]. Despite the improvement offered by the networks, the
performances provided are not sufficient for our purposes, because the neural network shall act as
objects recognizer and tracker. Indeed, the faster R-CNNs, which reach 17 Frames Per Second (FPS),
also do not allow controlling the manipulator in a smooth way, introducing some non-predictable
movements that affect the functionality of the IBVS and the Kalman filter. We also considered the
possibility of a machine learning approach, as described in our previous papers [8,9]. Nevertheless,
the execution time required by algorithms such as SIFT [21] on Raspberry PI 3 is higher than a CNN
approach. For the same reason, some other approaches based on CNNs, such as key-points network [22],
are not feasible. Indeed, they require more computational power owing to the complexity of the
network. Furthermore, the difficulties to reconstruct some objects shape, such as a lift button, starting
from their key-points are higher than using a simpler bounding box approach.

In view of that, we decide to choose the YOLOv2 instead to introduce some latency in the
movements that would annoy the users. YOLOv2 network [23] is a CNN made up by 24 convolutional
layers, followed by two fully connected layers.

This network is inspired by GoogLeNet but has some differences that make it lighter and more
efficient. The architecture of YOLOv2 is shown in Figure 5 [24].

Input Layer
 [640 x 480] x 3

Feature Extraction Layers
24 Convolutional Layers

MaxPool Layers

Decision Layers
2 Fully Connected Layers

Bounding
Boxes

[X,Y,H,W,C]

Input Layer
 [640 x 480] x 3

Feature Extraction Layers
24 Convolutional Layers

MaxPool Layers

Decision Layers
2 Fully Connected Layers

Bounding
Boxes

[X,Y,H,W,C]

Figure 5. The YOLO network architecture.

The first convolutional layer performs a downsampling of the input images; the other
convolutional layers are used to perform features extraction. The fully connected layers, instead,
make the real decision about the bounding boxes and the found objects.

Each frame is divided into a grid of Sx·Sy; in each grid cell, a maximum number of B bounding
boxes are searched; for every bounding box, a certain confidence score is assigned. The confidence
score is the probability that inside a bounding box an object is contained and how accurate the decision
is. This confidence is expressed as p(Object).

Thus, each bounding box consists in five values: X, Y, W, H and, Con f idence. Furthermore, for
each grid cell, the probability of the C conditional class is computed. In this way, it is possible to obtain
for the entire image N bounding boxes, divided into grids. This leads to:

p(Classi|Object)·p(Object)·IOUtruth
pred = p(Classi)·IOUtruth

pred (2)

for a total of Sx·Sy·(B·5 + C) numbers of tensors for iteration, where:

• p(Classi|Object): Given a grid cell with at least one object, it represents the conditional probability
for one of them to belong to the ith class.

Appl. Sci. 2019, 9, 2243 9 of 17

• p(Object)·IOUtruth
pred : It represents the confidence of each bounding box inside a cell grid.

In each cell, only the classes with the highest Con f idence are taken.
For the training phase, the network exploits a multi part loss function (see Equation (3)).

Loss = λcoord·
Sx ·Sy

∑
i=0

B

∑
j=0

1
obj
ij (xi − x̂i)

2 + (yi − ŷi)
2

+λcoord·
Sx ·Sy

∑
i=0

B

∑
j=0

1
obj
ij (
√

wi −
√

ŵi)
2 + (

√
hi −

√
ĥi)

2

+
Sx ·Sy

∑
i=0

B

∑
j=0

1
obj
ij (Ci − Ĉi)

2 + λnoobj

Sx ·Sy

∑
i=0

B

∑
j=0

1
obj
ij (Ci − Ĉi)

2

+
Sx ·Sy

∑
i=0

1
obj
i ∑

c∈classes
(pi(c)− p̂i(c))2

(3)

where 1obj
ij denotes the jth bounding box responsible of the prediction of the object in the ith cell, 1obj

i
indicates if an object appears in the ith cell, λcoord is a constant used for the cell with some objects in it,
and λnoobj is a constant used for the cell without objects in it.

For our project, the network was retrained to allow the recognition of buttons of the lifts panels.
To reduce the training time, we started with the weights of the Darknet and we executed a fine-tuning
on the YOLOv2, by changing the weights of the last two layers. This procedure allows maintaining the
same feature extraction layers, retraining only the decision part. In addition, the time required for a
fine-tuning is less than the one for a full training. The training-set was composed by 23,000 images;
the training was represented by 70% of the images, while the validation and test were represented by
15% each. The dataset was created using, respectively, 57% and 43% of doors and lift buttons images.
Such pictures were taken from the ImageNet dataset [25]. Owing to the low number of lift buttons
present on the dataset, some additional images were used, which were labeled by using the COCO
annotation [26]. In view of the reduced number of training data and of the noise introduced by the low
cost camera, the mAP was 45% during the working conditions.

The YOLOv2 network used in this project is written in Keras [27], a wrapper of TensorFlow. The
latter one, which acts as a back-end, is an open source software framework for high performance
numerical computation. The combination of Keras and TensorFlow permits an easy implementation
and a simple management of complex neural network architectures. Thus, Keras is a good abstraction
from the back-end, though using the native TensorFlow functions is possible.

3.4.2. Kernelized Correlation Filter Algorithm

KCF is one of the faster tracking algorithm present in the literature [28]. Its power derives by
the combination of the motion model with the appearance model. This combination permits identifying
the object among different frames without losing the high performance given by the YOLOv2 neural
network. Indeed, in this work, a combination of the two algorithms is used r to obtain a single tracking
algorithm that exploits the information taken from the YOLOv2 and KCF. The YOLOv2 recognizes
objects, as already explained in Section 3.4.1, and sends the position of the selected bounding box
corner coordinates to KCF. This information is exploited to calculate the (X,Y) coordinates in the camera
plane with respect to object center of gravity. After that, a 10px× 10px square is created around this
point, and its area is tracked by the KCF.

To this aim, it extracts data about the shape and color of the object, and it reuses them to track the
object in the next frames.

Appl. Sci. 2019, 9, 2243 10 of 17

Nevertheless, KCF suffers from the occlusion problem: if a part of the tracked area is covered
during the motion, KCF loses it, and it is not able to recognize it even after it becomes visible again.
This leads to a total loss of the interested area after several frames.

Thus, the AI re-sends the position of the object after a predefined quantity of frames, in order to
calibrate the KCF algorithm. This technique permits to increase the frames rate and to improve the
target tracking to avoid its loss during the movement.

KCF was implemented by using the same approach used in the version of OpenCV.

3.4.3. Robot Movement Control System

The Robot Movement Control System is responsible for controlling the movement of the robotic arm
end-effector to reach the desired object position. The information on the latter is inherited by the KCF,
which tracks it frame by frame.

The arm movement is managed through the FSM shown in Figure 6. The FSM states are:

• IDLE: Before receiving a user command, the system remains in the IDLE state. It corresponds
to the initial position of the robotic arm. When a new command is received—i.e., a new target
position—the system transits to the XY Kalman state.

• XY Kalman: In this state, the robotic arm is forced to align the target position (X,Y) with respect
a predefined point (Kx, Ky), called Camera Features. A square of side of 25× 25 pixels is defined
around the target position. When the difference between the (X,Y) coordinates of the object and
(Kx, Ky) coordinates of the fixed point is enclosed in the square, the end-effector is considered
aligned. Thus, the system transits to the APPROACHING Kalman state.

• APPROACHING Kalman: In this state, the robotic arm approaches the object by moving along a
direction orthogonal to the camera plane axis. If the movement leads to a significant misalignment
on the (X,Y) plane (greater than 35 pixels), the systems transits back to the XY Kalman state. The
information provided by the Proximity Node is used to monitor the distance between the object
and the end-effector. When the end-effector reaches a fixed distance, the system transits to the
STOP state.

• STOP: The STOP state is used by the system to perform simple movements that depend on the
task required. For instance, in the case of a pressure of a key, the manipulator touches the button.
After the completion of the task, the system comes back to the IDLE state.

Figure 6. Finite State Machine for the control of the robotic arm end-effector movement.

In the states APPROACHING Kalman and XY Kalman, a Kalman filter is used to make the object’s
position estimation more robust by disturbance such as vibrations induced by the arm movements.

Appl. Sci. 2019, 9, 2243 11 of 17

3.4.4. Image Base Visual Servoing

To control the end-effector movements, the IBVS algorithm is used. The latter is a technique to
realize a closed-loop feedback control by comparing the center of gravity of the chosen object with a
point (Camera features) in the camera frame [29], whose coordinates are called as Equation (4).

Kx, Ky (4)

IBVS approaches may use more reference points to avoid rotation around the axis passing trough
the camera plane. Depending on the number of camera features used, an Interaction Matrix (JIM) is
defined. For a single camera features, it is made as shown in Equation (5):

JIM =

− fx

depth 0 u
depth

u·v
fx

−(fx +
u·u
fx
) v

0 − fy
depth

v
depth (fy +

v·v
fy
) −u·v

fy
−u

 (5)

where fx is the focal length for x axis of the camera; fy is the focal length for y axis of the camera; u is
the coordinate of the center of gravity of the object on x axis; v is the coordinate of the center of gravity
of the object on y axis; and depth is the distance taken from the depth sensor.

Thus, the coordinates expressed as pixels and the distance from the target are taken by the IBVS to
calculate the difference between them and the camera features position, computing the error estimation
(εx,y). The last one is multiplied by a pseudo-inverse of the Interaction Matrix (J−1

IM) to calculate the
effective translational and rotational velocity. It is worth notiing how the algorithm also takes in to
account the depth between the end-effector and the target to compute the difference of prospective,
which permits to control a robot using a 2D camera.

The procedure to compute such error estimation, the pseudo-inverse of the Interaction Matrix and
the end-effector velocity are described in Equation (6).

εx,y =

[
u
v

]
−

[
Kx

Ky

]

J−1
IM = JT

IM·(JIM·JT
IM)−1

~V = J−1
IM·εx,y

(6)

Thanks to them, it is possible to use the standard kinematic equation to compute the next step as:

q̇ = JT ·(J·JT)−1 (7)

q̇ is proportional to the increment that the rotative joints shall perform to reach the new position.
Thus, once q̇ is calculated, it is used for deriving the value of the new joint position q[n+ 1], as expressed
in Equation (8). q[n + 1] is provided to the Phydget, included in the Hardware Layer, which directly
drives the motors.

q[n + 1] = q[n] + q̇ · ∆T (8)

∆T is the time necessary to the Application Logic Unit Layer to process the relevant image frame
from its acquisition to the end of the loop. This time is used to perform all the derivation needed to
compute the path.

The approaching phase is handled by the IBVS by moving the end-effector toward the target.
This phase is guided by the proximity sensor that avoid the collision of the end-effector with the

Appl. Sci. 2019, 9, 2243 12 of 17

target. Using the depth sensor within the above algorithm allows you to drive a real manipulator
that performs movements in three dimensions, using the algorithms KCF and AI working on two
dimensions. Obviously, it is necessary that the field of action of the robot is free of obstacles, otherwise
the robot enters in error mode, and waits until a hard restart.

3.5. Human–Machine Interface Layer

To provide an efficient support to people with disabilities, it is important to implement a HMI
that minimizes the effort required for its control. This is carried out through an essential HMI that
offers only the fundamental information and the main functionalities to reduce the possibility to make
mistakes.

In our work, three HMIs styles are implemented. Each of them is conceived to help people with
different severity of disability and so diverse manual skills:

• Touch Screen
• Manual Raster Scanning (Two Sensors)
• Time Raster Scanning (One Sensor)

The Touching interface, shown in Figure 7, is widely used in smart-phones and touch screen
computers. This HMI is addressed to the people that have good manuals skills.

Figure 7. Touching interface tested by a user.

Our idea is to use the bounding boxes offered by the AI to surround the objects, which are possible
targets for the end-user. In this way, the possibility of errors is limited to bounding boxes. Even in the
case of hand tremors, this approach improves the success rate.

The Scanning interface is targeted to people who cannot use the touch screen but are able to
control two sensors of any kind among the many available on the market for the different severity
of disability. Our system provides a 3.5 mm mini jack, which is compatible with most of the sensors
available on the market (buttons, grasp, pedal, etc.). The basic idea is to use two buttons, which are
used to select and confirm the target object, surrounded by a bounding box. The person chooses the
desired object by pressing the selection button in a scan mode, highlighting the next bounding box.
When the object has been selected, the user clicks on the confirmation button for sending the target
position to lower layer.

Appl. Sci. 2019, 9, 2243 13 of 17

The Time Clustering is the most minimal interface, because it is aimed at people with severely
disabilities who are able to control a sensor. The selection of the object, in this case, is performed by an
automatic process that scans all the bounding boxes after a programmable time. When the desired
bounding box is highlighted, the subject pushes the confirmation button to select the target.

4. Results

The prototype was characterized both for its accuracy in interacting with the required object (i.e.,
reaching the desired panel lift button and pressing it) and for the ability of the HMIs to provide good
user experiences. Section 4.1 provide details about the test procedure and the obtained results for the
accuracy investigation; Section 4.2 describes the outcome of the preliminary tests with the end-users.

4.1. System Accuracy Tests

The accuracy of the system was tested by calculating the ability of the manipulator to press the
lift button chosen by the user. At the same time, to verify the goodness of the whole algorithm to reach
the target regardless of the non-idealities introduced by the low cost nature of the prototype, the entire
system was simulated using RViz simulator, as shown in Figure 8.

Figure 8. The manipulator structure shown in RViz simulation environment.

The simulation ran on a personal computer concurrently with the real prototype tests, by using the
same algorithms. In the simulation environment, a virtualized camera was exploited: when an object was
recognized by the AI algorithm in the frames captured by the real camera prototype, the coordinates
of the found object were used in the simulation. Owing to that, only the camera non-idealities were
considered in the RViz simulation, which, instead, did not consider the mechanical shaking effects.
Moreover, the tests and the simulation were performed with and without the implementation of the
Target stabilizer to test its effectiveness.

Table 1 sums up the results of this investigation. The accuracy was calculated as the success rate
over 50 iterations of the experiment.

Simulations showed the manipulator can reach the target with an average distance between the
object center of gravity and the arrival point of 4.5 mm and an average time of 25 s. Such time was
also considered as the maximum time available in the real tests for the manipulator to reach the target
for that attempt to be considered successful. Fixing a limit was necessary because in some real cases
the manipulator was able to reach the desired button only after a huge quantity of time from the user
request, being stuck in the proximity of the target.

Appl. Sci. 2019, 9, 2243 14 of 17

Table 1. Percentage accuracy of the system over 50 experiment iterations.

Tracking Algorithms RViz sim. Accuracy Prototype Accuracy

Only YOLOv2 94% 43%
YOLOv2 + KCF 100% 78%

The results in Table 1 show a gap between the simulation and prototype tests result. It is due to
the presence of mechanical non-idealities that were not considered in the simulation, which reached
100% in accuracy when the KCF algorithm was used. The advantages offered by the latter were proved
by the sensible accuracy drop, which was verified in the prototype tests when KCF was not used,
increasing the manipulator sensitivity to mechanical vibrations and other effects.

4.2. Preliminary Tests with the End-Users

The prototype was tested by 20 students of the University of Pisa with motor skills disabilities,
who might be the target end-users of this system. The aim of the investigation was to determine the
effectiveness of the HMIs explained in Section 3.5. The tests were done by dividing the students into
three main groups. Each group was characterized by different motors skills and, consequently, by a
different HMI. The groups were:

• Touch (High motor-skills) (12 people)
• Double sensors (Medium motor-skills) (6 people)
• Single sensor (Low motor-skills) (2 people)

Each group had the same task to complete (pressing a predefined elevator button) in the same
amount of time. In this way, it was possible to estimate the performance of each HMI with respect to
the level of disability. The test was divided into training and validation phases. The first phase was to
explain how to control the robotic arm, showing them how the interface works and executing some
tests with the users. The second phase was the pressure of the elevator button from a lift panel of nine
buttons. This test showed how the users were able to control the entire system in only few minutes,
reducing the training phase and their frustration. Furthermore, the time for all the categories was
respected even if the disability level and manual skills were different. At the end of the tests, each
student completed a survey relative to the interface used. The survey was made by eight questions.
For each question, a value from 0 to 10 was given. The questions were on the usability (two questions),
prototype reaction/performance (two questions), propensity to use of the system (one question),
HMI usability (two questions), and satisfaction with the functions offered (one question).

The results were optimistic obtaining a mean of 8.13/10. Because of these good performances,
there will be the real possibility of embedding the prototype on a power-wheelchair. Furthermore,
the users suggested some nice to have functionalities, such as:

• Grabbing objects, such as bottles or glasses
• Picking up objects fallen on floor

5. Conclusions

This work proposes a low cost autonomous manipulator realizing simple tasks, such as pressing a
button lift, and implementing a low effort HMIs. The latter were empowered thanks to the use of an AI
algorithm based on YOLOv2 convolutional neural network, which recognizes and extracts coordinates
of a possible target objects. A custom closed feedback loop algorithm exploits the information on the
object coordinates to automatize the execution of the task and to control the robot. Such algorithm uses
the KCF as additional tracking algorithm in combination with the YOLOv2 network. This approach
minimizes the probability of losing the objects tracks and increases the immunity of the robot system

Appl. Sci. 2019, 9, 2243 15 of 17

to the non-idealities of the low cost camera and of the mechanics. A FSM establishes a procedure
composed by fixed steps of movements, each of them is realized through the IBVS algorithm that
allows exploiting 2D algorithm to drive a real manipulator. The usage of a Kalman filter further make
the system more robust against the mechanical vibrations.

Such approach, formalized through a conceptual architecture in Section 2, was used to implement
a low cost prototype featuring three versions of HMIs for people with different grade of disability. The
prototype hardware and software architectures are described in Sections 3.1 and 3.2.

Finally, a test procedure was realized aiming to characterize the prototype ability in performing
the required tasks. The evaluation was performed by measuring the success rate in touching the correct
panel lift button. The system was also simulated by excluding the mechanical non-idealities inside the
RViz environment. The accuracy on 50 iterations was 78% with the prototype and 100% in simulation.

The HMIs evaluation was performed through preliminary tests with the end-users, who tried to
control the robot by using the HMI dedicated to them. All interfaces were appreciated by the users,
who were able to execute the task in the given time, regardless their manual-skills. By limiting the
number of tasks executable, the proposed solution offers an example of automatic manipulator, which
succeeds in reducing the user effort through the complete automatism in the object interaction. Thanks
to the use of an AI algorithm, which tracks the objects in the image frames and limits the user task to
the only selection of the target. The system results to be less prone to the user error, increasing the
safety of the HMI itself. In addition, it also improves the modularity of the system, allowing the use of
the best HMI for the given user ability.

Author Contributions: Conceptualization, methodology, resources, data curation and software, G.G.; Validation,
writing—original draft preparation, writing—review and editing, G.G. and G.M.; Formal analysis, G.M.;
Visualization, G.M., G.G. and L.F.; Supervision, L.F. and G.M.; Project administration, G.G., G.M. and L.F.;
and Funding acquisition, L.F.

Funding: This work was realized in the contest of the RIMEDIO (Il braccio Robotico Intelligente per Migliorare
l’autonomia delle pErsone con DIsabilità mOtoria") project, supported by Fondazione Cassa di Risparmio di Lucca.

Acknowledgments: We also want to thank all the students of the University of Pisa who helped us to test and to
evaluate the manipulator.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
API Application Programming Interface
CNN Convolutional Neural Network
DoF Degrees of Freedom
FCFNN Fully Connected Feed-forward Neural Network
FSM Finite State Machine
FPS Frame Per Second
HMI Human–Machine Interface
IBVS Image Based Visual Servoing
KCF Kernelized Correlation Filter
mAP mean Average Precision
ML Machine Learning
R-CNN Region of Interest Convolutional Neural Network
ReLU Rectified Linear Units
ROS Robotic Operating System
YOLO You Only Look Once

Appl. Sci. 2019, 9, 2243 16 of 17

References

1. Campeau-Lecours, A.; Lamontagne, H.; Latour, S.; Fauteux, P.; Maheu, V.; Boucher, F.; Deguire, C.;
Caron L’Ecuyer, L.J.C. Kinova Modular Robot Arms for Service Robotics Applications. Int. J. Rob. Appl.
Technol. 2017, 5, 49–71. doi:10.4018/IJRAT.2017070104. [CrossRef]

2. Dynamics, E. iARM. 2018. Available online: http://www.exactdynamics.nl/site/?page=iarm (accessed on
30 May 2019).

3. Tang, J.; Zhou, Z.; Yu, Y. A Hybrid Computer Interface for Robot Arm Control. In Proceedings of
the 2016 8th International Conference on Information Technology in Medicine and Education (ITME),
Fuzhou, China, 23–25 December 2016; pp. 365–369.

4. Arrichiello, F.; Di Lillo, P.; Di Vito, D.; Antonelli, G.; Chiaverini, S. Assistive robot operated via P300-based
brain computer interface. In Proceedings of the 2017 IEEE International Conference on Robotics and
Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6032–6037.

5. Ka, H.W.; Chung, C.S.; Ding, D.; James, K.; Cooper, R. Performance evaluation of 3D vision-based
semi-autonomous control method for assistive robotic manipulator. Disabil. Rehabil. Assist. Technol.
2018, 13, 140–145. [CrossRef] [PubMed]

6. Tolba, H.; El_Torgoman, A.S. Towards the improvement of automatic recognition of dysarthric speech.
In Proceedings of the 2009 2nd IEEE International Conference on Computer Science and Information
Technology, Beijing, China, 8–11 August 2009; pp. 277–281.

7. Raghavendra, P.; Rosengren, E.; Hunnicutt, S. An investigation of different degrees of dysarthric speech as
input to speaker-adaptive and speaker-dependent recognition systems. Augmentative Altern. Commun.
2001, 17, 265–275. [CrossRef]

8. Palla, A.; Frigerio, A.; Meoni, G.; Fanucci, L. Object Detection and Spatial Coordinates Extraction Using
a Monocular Camera for a Wheelchair Mounted Robotic Arm. In Proceedings of the International
Conference on Smart Objects and Technologies for Social Good, Venice, Italy, 30 November–1 December,
2016; pp. 224–232.

9. Palla, A.; Meoni, G.; Fanucci, L.; Frigerio, A. Position Based Visual Servoing control of a Wheelchair
Mounter Robotic Arm using Parallel Tracking and Mapping of task objects. EAI Endorsed Trans. Ambient
Syst. 2017, 17, e1. doi:10.4108/eai.17-5-2017.152545. [CrossRef]

10. Palla, A.; Sarti, L.; Frigerio, A.; Fanucci, L. Embedded implementation of an eye-in-hand visual servoing
control for a wheelchair mounted robotic arm. In Proceedings of the 2016 IEEE Symposium on Computers
and Communication (ISCC), Messina, Italy, 27–30 June 2016; pp. 274–277.

11. Rabhi, Y.; Mrabet, M.; Fnaiech, F. Intelligent control wheelchair using a new visual joystick. J. Healthcare Eng.
2018, 2018. [CrossRef] [PubMed]

12. Quigley, M.; Conley, K.; Gerkey, B.P.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. ICRA Workshop on Open Source Software. 2009. Available online: https:
//www.ros.org/ (accessed on 30 May 2019).

13. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 2004, 60, 91–110.
[CrossRef]

14. Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving deep neural networks for LVCSR using rectified linear
units and dropout. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 8609–8613. [CrossRef]

15. Hager, W.W.; Zhang, H. A new conjugate gradient method with guaranteed descent and an efficient line
search. SIAM J. Optim. 2005, 16, 170–192. [CrossRef]

16. Sathyanarayana, S. A gentle introduction to backpropagation. ACM Digital Library 2014, 7, 1–15.
17. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 580–587.

18. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning. 2016. Available online: http://www.
deeplearningbook.org (accessed on 30 May 2019).

19. Girshick, R. Fast r-cnn. In Proceedings of the The IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 13–16 December 2015; pp. 1440–1448.

https://doi.org/10.4018/IJRAT.2017070104
http://dx.doi.org/10.4018/IJRAT.2017070104
http://www.exactdynamics.nl/site/?page=iarm
http://dx.doi.org/10.1080/17483107.2017.1299804
http://www.ncbi.nlm.nih.gov/pubmed/28326859
http://dx.doi.org/10.1080/aac.17.4.265.275
https://doi.org/10.4108/eai.17-5-2017.152545
http://dx.doi.org/10.4108/eai.17-5-2017.152545
http://dx.doi.org/10.1155/2018/6083565
http://www.ncbi.nlm.nih.gov/pubmed/29599953
https://www.ros.org/
https://www.ros.org/
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/ICASSP.2013.6639346
http://dx.doi.org/10.1137/030601880
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Appl. Sci. 2019, 9, 2243 17 of 17

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015),
Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

21. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the ICCV 1999,
Kerkyra, Corfu, Greece, 20–25 September 1999; pp. 1150–1157.

22. Peng, X.; Feris, R.S.; Wang, X.; Metaxas, D.N. A recurrent encoder-decoder network for sequential face
alignment. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
11–14 October 2016; pp. 38–56.

23. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

24. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 779–788.

25. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition,
Miami Beach, FL, USA, 22–24 June 2009; pp. 248–255.

26. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft
coco: Common objects in context. In Proceedings of the European Conference on Computer Vision,
Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

27. Chollet, F. Keras: The Python Deep Learning library. Available online: https://keras.io (accessed on
30 May 2019).

28. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters.
IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596 [CrossRef] [PubMed]

29. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Springer Science &
Business Media: Berlin, Germany, 2010.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://keras.io
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://www.ncbi.nlm.nih.gov/pubmed/26353263
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Concept
	Methods and Materials
	Hardware Setup
	Software Architecture
	Hardware Layer
	Application Logic Unit Layer
	YOLO Deep Neural Network
	Kernelized Correlation Filter Algorithm
	Robot Movement Control System
	Image Base Visual Servoing

	Human–Machine Interface Layer

	Results
	System Accuracy Tests
	Preliminary Tests with the End-Users

	Conclusions
	References

