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Abstract: This paper proposes a novel method of training and applying a neural network to act as 
an adaptive decoder for a modulation scheme used in optical camera communication (OCC). We 
present a brief discussion on trending artificial intelligence applications, the contemporary ways of 
applying them in a wireless communication field, such as visible light communication (VLC), optical 
wireless communication (OWC) and OCC, and its potential contribution in the development of this 
research area. Furthermore, we proposed an OCC vehicular system architecture with artificial 
intelligence (AI) functionalities, where dimmable spatial 8-phase shift keying (DS8-PSK) is 
employed as one out of two modulation schemes to form a hybrid waveform. Further 
demonstration of simulating the blurring process on a transmitter image, as well as our proposed 
method of using a neural network as a decoder for DS8-PSK, is provided in detail. Finally, 
experimental results are given to prove the effectiveness and efficiency of the proposed method over 
an investigating channel condition. 

Keywords: artificial intelligence (AI); neural network-based decoder; optical wireless 
communication (OWC); optical camera communication (OCC); dimmable spatial 8-phase shift 
keying (DS8-PSK); blur image processing; vehicular communication  

 

1. Introduction 

Nowadays, light-emitting diodes (LEDs) are widely used as common lighting sources because 
of their numerous advantages, such as excellent visibility, durability, and low power consumption. 
Moreover, the ability to switch the light intensity fast [1,2] gives LEDs the abilities to transmit high-
speed data, provided that the switching rate, or frequency, is higher than 200Hz for human eyes’ 
safety [3]. On the receiver side, two types of light receivers can be used, which classifies the LED-
based communication into two research directions [4]. OWC/OCC utilized cameras to receive 
modulated light, and photodiodes have been widely employed in the VLC system. Although OCC 
has a lower data rate compared to VLC since it receives data via an image sensor [4,5], OCC is still 
preferable in applications where mobility is crucial because of the wider field of view (FoV) of a 
camera compared to a photodiode, for example, indoor localization using a personal smartphone 
[6,7] or vehicular OCC system [8–10]. 

On the basis of the point of view of OCC technologies, internet of vehicles (IoV) is one of the 
most promising areas where these technologies could be deployed. Compared to using the traditional 
radio frequency (RF) communication, OWC/OCC and VLC are considered as reliable, safe for human 
health, and low-cost communication technologies [4,11]. Regarding classification into sub-areas, IoV 
can be divided into two communication fields: Vehicles-to-vehicles (V2V) and vehicle-to-
infrastructure (V2X). In either sub-area, the vehicles can either act as transmitters or receivers in the 
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OCC system. For transmitting optical data, there are light sources that are designed at both the front 
and back sides of vehicles. For receiving data, there are also various kinds of cameras that could be 
attached to vehicles.  

Despite the enormous potential of the OWC/OCC vehicular system for a lucrative industrial 
market, the development of these new technologies still suffers several challenges, as has been 
pointed out in [12]. However, sources of white, noise such as ambient light radiation from the sun 
and streetlight, are one of the main factors causing the degradation of OWC/OCC vehicular systems. 
Many studies have been carried out to demonstrate the feasibility of OWC/OCC technology in 
V2V/V2X systems (see, for example, [8–10]), and mostly, the performance is investigated with respect 
to Gaussian white noise with different signal-to-noise ratio (SNR) values. Another type of distortion 
that can reduce the performance of a vehicular OWC/OCC system is blurred phenomenon, which 
generally occurs in any system related to camera and image processing. In an OWC/OCC vehicular 
scenario, vehicle vibration and mobility, weather conditions (rainy, foggy, and snowy, to mention a 
few), and camera focusing are the dominant candidates that can cause the blurring of received 
images. However, there are various coding techniques for decoding and error correction. Eventually, 
these techniques are developed to perform well in RF communication systems. Hence, to deal with 
white noise caused by ambient light in OCC vehicular systems, these techniques could also yield 
similar performance. However, the decoding accuracy of an OCC vehicular system can be extremely 
low when the blur effect occurs because the blurring process can sum up and fairly redistribute all 
intensity values using a point-spread function [13], which decreases the gap between logic state ON 
and OFF of an LED, and increases the bit error probability while decoding data from an image. 

Fortunately, recent developments in deep learning technologies provide us with a new way to 
approach and deal with this issue. Instead of deriving a complex mathematical algorithm from a pre-
defined system model, deep learning, or AI technologies allow the system to learn and approximate 
an optimizing model directly from training data. Deep learning has proved itself as an efficient tool 
to deal with various types of problems, including computer vision [14], speech recognition [15], 
autonomous vehicles [16], and many others. Inspired by these developments, recently many efforts 
have been made to apply deep learning/AI technologies in communication field (including channel 
decoding) [17–22]. In a vehicular OCC system, the function of the receiver (Rx) mainly includes two 
tasks: The first is decoding data from the transmitter (Tx), however, to achieve this, it should be able 
to detect and set up a communication link with the transmitter LED array among thousands of 
possible artificial lights within an acceptable duration. The second is decoding data from the LED 
image. The performances of these two tasks could be enhanced significantly by deep learning/AI 
technologies. 

The remainder of this paper is structured as follows. In Section 2, we will briefly introduce the 
fundamental concept of AI and neural networks, as well as a method of applying them to a channel 
decoding problem. In Section 3, we point out the contributions of this paper to vehicular OCC 
systems. Section 4 provides the vehicular OCC system architecture with AI functionalities proposed 
in this paper after discussing the hybrid scheme that we developed in [4]. The principle and method 
of analyzing the effect of a blurred LED image on the performance of an OCC decoder are also 
provided in this section. On the basis of those effects, we propose extra features extracting as an input 
of a neural network (NN)-based decoder. Furthermore, we also provide in Section 4 the experimental 
results to compare the accuracy of an NN-based decoder and an original over noisy blurred 
transmitting image, which is evaluated using symbol error rate (SER) value. Finally, Section 5 
concludes the paper. 

2. Related Work 

2.1. Fundamental AI 

In recent times, the concept of AI is more clearly understood and widely applied in research 
related to many practical areas, such as optical wireless communication. The idea of using AI is 
mostly due to the increasing demand for an automatic, self-learning, and adaptive ability embedded 
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in every system in real life. AI takes advantage of reducing human brain heavy workload in big data 
analysis to figure out which model is the most suitable and optimized to reflect the relationship 
between the input data and the desired system output. The input data of a real system can be varied 
depending on the area of AI employed. 

By taking a more in-depth look into the architecture of a neural network, which is one of the 
simplest forms of AI, it can be observed as a multi-layer model which has parameter matrices 
between layers that are adjustable and adaptable through training to approximately reflect the 
correlation between the input and output labels. Figure 1 illustrates the architecture of an NN that is 
used in a regression problem as well as an illustration of how each neuron processes the input data. 

 
Figure 1. (a) A regression neural network and (b) the processing role of each neuron. (Adapted from 
[23]). 

The training process is a process in which the weight and bias matrices of every neuron are 
updated through every epoch in order to make the predicting value of an output closer to the actual 
output value based on the training dataset. Moreover, [ ]i1 i2 inw ,w ,...,w  and ib  are, respectively, 

the weight matrix and bias value of the thi  neuron. To accomplish the training process, AI attempts 
to minimize the value of a loss function which is unique for each kind of task using a particular 
optimization algorithm. 

2.1.1. Loss Function 

The loss function is a critical component of artificial NNs which is utilized to measure the 
inconsistency between a predicted value ( py ) and an actual label ( ). It is a non-negative real-

valued function, and the robustness of the model increases as the loss function values decrease. The 
loss function is at the core of empirical risk function as well as a significant component of the 
structural risk function. Generally, the structural risk function of a model is composed of an empirical 
risk term and a regularization term and is represented as follows: 
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where  is the regularization term of a penalty term, θ  denotes the parameters of the model to 

be learned,  represents the activation function, and denotes the 

training sample. 
 Here, we only concentrate on the empirical risk term (loss function): 

 ( )( )
n

(i) (i)

i=1

1L(θ) = L y ,f x ,θ
n  (2) 

There are several frequently used loss functions, as has been pointed out in [24]. Regarding the 
model proposed in this paper, we will utilize categorical cross-entropy loss or softmax loss since our 
NN is designed for a multi-class classification problem. 

2.1.2. Optimization Algorithm 

Currently, in machine learning, there are various optimization algorithms for supervised 
learning. In [25], a theoretical explanation and the implementation of the results of optimization 
algorithms for comparing several models are presented for reference and development. A conclusion 
is also reached that there is no such universal optimization algorithm for all problems. However, for 
the problem of building a decoder for the DS8-PSK scheme using an NN, which could be assumed to 
be a softmax classifier, AdaGrad [26] is the most suitable solution method for such a straightforward 
problem. The reason is that Adagrad performs much larger updates for infrequent parameters than 
frequent parameters. Moreover, the need to manually tune the learning rate of stochastic gradient 
descent methods is eliminated in AdaGrad [27], and the robustness of the stochastic gradient descent 
method is greatly improved by this method [28]. 

From [26] and [27], the AdaGrad algorithm could be expressed as the following pseudo-code. 
The Adagrad algorithm 
1. Require: Global learning rate , initial parameter  
2. Require: Small constant δ , perhaps 710− , for numerical stability 
3. Initialize gradient accumulation variable   
4. while stopping criterion not met do 
5. Sample a minibatch of m examples from a training set 

6.  with corresponding targets : 

7. Compute gradient:   

8. Accumulate squared gradient:   

9. Compute update: . (Division and  

10. square root applied element-wise) 
11. Apply update: . 
12. end while 
 

From [29], the update rule of the Adagrad algorithm could also be simplified by (3) and (4): 
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where  is the smoothing term that avoids division by zero (usually on the order of 1e−8). One can 
see that the parameter  is modified based on a ratio that involves its current gradient and the 

sum over its past gradients. 

2.2. Reference Architecture of a Vehicular OCC System 

Figure 2 illustrates the architecture of region-of-interest (RoI) signaling. The transmission of RoI 
is beneficial when the camera Rx has the ability to capture the area in which the communication link 
should be set up. The light source Tx continuously notifies the camera Rx via a known signal for 
differentiating it from other unwanted light sources and other bright objects. The transmission of the 
known signal is a type of light source identification, where the high-speed data stream is embedded 
into the low-speed RoI stream [8]. Moreover, dual streaming of light source identification signaling 
and high-speed data link is performed as a hybrid modulation. 

 
Figure 2. Reference architecture of the region-of-interest (RoI) signaling system employing DS8-

PSK. 

For the Rx, Tx light source identification and high-speed data demodulation can be time-slotted 
using a single camera. Therefore, the camera Rx first detects the RoI from the identification signal and 
then selects the RoI to accelerate the frame rate and achieve a high-speed data link. However, the 
movement between Tx and Rx is considered, and the RoI may also change. An alternative solution is 
the use of a dual-camera system in which one camera simultaneously detects the RoI, while another 
camera demodulates data at a high speed based on the constantly updated RoI from a low-speed 
(e.g., 30fps) camera. 

A vehicular OWC/OCC system using a hybrid waveform that consists of low-rate and high-rate 
data streams can mitigate the computational load on the receiver and thus reduce the processing 
time. The hybrid spatial phase-shift keying (HS-PSK) single carrier is such a hybrid waveform (see 
[4] and [30]). HS-PSK is a dedicated combination of spatial 2-phase shift keying (S2-PSK) and 
dimmable spatial multiple-PSK (DSM-PSK). The S2-PSK data stream is generated based on the 
changes between the low and high dimming levels of the DS8-PSK waveform, as illustrated in 
Appendix 2 of [30]. S2-PSK had been fully demonstrated with implementation results in [8]. In 
Section 4, we will illustrate DSM-PSK with M = 8 for eight LEDs in each LED array before proceeding 
further on our proposed decoding method based on an NN for decoding the high-rate data stream. 

3. Our contributions 

In this section, we will present our contributions to the development of vehicular OCC systems. 
Precisely, this paper provides and investigates the principle of the blurring phenomenon on an image 
and the impact of this phenomenon on the quality of a camera-based communication system. 
Currently, many studies have been carried out on blurring images, and possible solutions based on 
many advanced computer vision (CV) algorithms have been provided to process and recover blurry 
images. However, these deblurring and denoizing algorithms are mostly based on convolutional 
NNs and have already been studied extensively (see, for example, [31–37]). Moreover, to be carried 
out in such a communication system, these algorithms are computationally expensive, highly 
complex, and time-consuming. The reason being that most of these algorithms are specifically 
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developed for reconstructing a latent image from a degraded image that has been contaminated by 
the blurring process, noise, and other factors. To do that, most of the existing techniques need to pass 
through many post-processing steps, such as object recognition and feature extraction, which heavily 
rely on the input of a clear image. The number of images required for image reconstruction could be 
one [31–33] or multiple [34–37]. 

In the OCC system, the data being transmitted using LED light and an image frame are captured 
using a camera. Often, the LED states can be extracted from a small partition of an image frame, 
which occasionally are points intensity values [8,30]. Provided that the RoI information is made 
available and updated from other sources, such as low exposure camera [4,8,30,38.39], to decode 
high-rate data, the receiver does not need to process the whole image or recover it when the blurring 
process appears. 

Consequently, in this paper, we propose and design an NN-based decoder for decoding data 
from the received image frame in the OCC receiver. Further, we shall provide a brief discussion on 
critical factors to be considered when designing any NN model. From that point of view, we also 
highlight our novel contributions on data preprocessing and input features extraction which enable 
the enhancement of decoder performance. 

Moreover, to the best of our knowledge, little or none has been done to analyze the performance 
and measure the bit or SER of a decoder of an OCC system, including implementation and simulation, 
over a hybrid channel of blur and noise. 

In summary, our contributions in this paper are as follows: 
• We define a novel channel model which can give the nearest approximation of the channel 

model in vehicular OCC system, considering the blur effect caused by a different type of 
environment condition, such as rainy, foggy, snowy, etc. The defined channel model is also 
designed to be able to simulate. 

• We provide the principle of the blurred phenomenon on the image: How it affects the quality of 
the communication channel and the performance of the traditional decoder in an image sensor-
based communication system. 

• We propose a new method of using deep learning and NN to decode the high-rate OCC 
waveform (DS8-PSK): The model architecture and dataset preparation for training and 
performance testing. 

• We prove the robustness of a new AI-based decoder on a novel channel model by analyzing the 
SER performance of each decoding method. Thus, making a performance comparison between 
using the traditional decoder and our proposed AI-based decoder. 

4. System Architecture and Performance Analysis 

4.1. Reference High-rate Modulation Scheme 

4.1.1. DS8-PSK Encoder 

Figure 3 shows the reference architecture of the DS8-PSK transmitter. The DS8-PSK waveform 
is transmitted using a pair of light sources, which comprise a reference LED group and a data LED 
group. Clusters of three bits from the input high-rate data stream are modulated based on the phase-
shift value between two transmitted waveforms, which are driven by a pair of light sources. In order 
to enable the mapping of the clusters of three bits of an input bit string to a phase-shift value, the 
DS8-PSK duty cycle must be separated into eight time-slots. Additionally, the number of LEDs in 
each light source should be eight. The waveform generated by each LED in a light source is a square 
wave. Within a light source, the  waveform is delayed by 1/8 of a duty cycle compared to the 

 waveform. 
( )thi + 1

thi
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Figure 3. Reference architecture of the dimmable spatial 8-phase shift keying (DS8-PSK) transmitter. 

When transmitting Tx data, all phases of the waveforms which are generated by the reference 
LED group are maintained from 0, T/8, to 7T/8, and all phases of the waveforms generated by the 
data LED group are shifted in comparison with the waveforms in the first LED group based on the 
phase-shift value. The phase-shift value of a pair of light sources is called S_Phase_Shift. It is 
calculated using (5) by considering the value of i, where T is the duty cycle of a LED waveform. 
Moreover, Table 1 shows the mapping of three bits onto the S_Phase_Shift value by considering the 
value of i. 

=
8
TS_Phase_Shift i  (5) 

Table 1. Mapping table from bits to S_Phase_Shift value (Adapted from [30]). 

3 bits 
input 

S_Phase_Shift/(T/8) 
output 

000 
001 
010 
011 
100 
101 
110 
111 

0 
1 
2 
3 
4 
5 
6 
7 

DS8-PSK supports dimming in steps of 1/8 (12.5%) of a duty cycle T. The dimming level can be 
calculated by the sum of ”1” states among eight time slots in a duty cycle T as expressed by (6). Thus, 
the DS8-PSK waveform can support seven dimming levels from 1/8 (12.5%) and 2/8 (25%) to 7/8 
(87.5%). The data rate of each data LED group is calculated by (7). For example, with an optical clock 
rate and a symbol rate of 10 kHz and 10 symbols/s, respectively, the transmission data rate that can 
be achieved by a data LED group is 30 bps. 

"1"
=

8
Dimming_level  (6) 

×Data_rate(bps) = (bit / symbol) (symbol_rate)  (7) 

4.1.2. DS8-PSK Decoder 

At a given sampling time, the Rx camera simultaneously captures two groups of light sources in 
an image. Each LED group in an image will form a discrete waveform, comprising eight “1” or ”0” 
states. Each set of states is called S_Phase. On the basis of the dimming levels enabled by DS8-PSK, 
seven tables can be formed for decoding at seven corresponding dimming levels. In the first step of 
the process of decoding a DS8-PSK waveform, the S_Phase value should be selected from the proper 
S_Phase decoding table, as presented in Table 2. In the next step, the spatial phase value 
(S_Phase_Shift) can be calculated based on the S_Phase value of the reference LED group and the 
S_Phase value of the data LED group. Equation (8) shows how to calculate the S_Phase_Shift value, 
and Figure 4 shows an example of how to determine S_Phase_Shift. When the S_Phase_Shift value is 
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detected, the data bits can be decoded inversely using the mapping table, which is presented in Table 
1. 

data referenceS_Phase_Shift = S_Phase - S_Phase .  (8) 

 

Figure 4. An illustration of sampling DS8-PSK waveform and calculate S_Phase_Shift with dimming 
level = 4/8 (50%). 

Table 2. S_Phase value definition for the captured set of binary LED group states under dimming 
condition (Adapted from [30]). 

8 states input S_Phase 
output Dimming 

1/8 
Dimming 

2/8 
Dimming 

3/8 
Dimming 

4/8 
Dimming 

5/8 
Dimming 

6/8 
Dimming 

7/8 
10000000 
01000000 
00100000 
00010000 
00001000 
00000100 
00000010 
00000001 

10000001 
11000000 
01100000 
00110000 
00011000 
00001100 
00000110 
00000011 

10000011 
11000001 
11100000 
01110000 
00111000 
00011100 
00001110 
00000111 

10000111 
11000011 
11100001 
11110000 
01111000 
00111100 
00011110 
00001111 

10001111 
11000111 
11100011 
11110001 
11111000 
01111100 
00111110 
00011111 

10011111 
11001111 
11100111 
11110011 
11111001 
11111100 
01111110 
00111111 

10111111 
11011111 
11101111 
11110111 
11111011 
11111101 
11111110 
01111111 

1 
2 
3 
4 
5 
6 
7 
8 

However, there is still a probability that the Rx camera may capture an unclear state of an LED 
waveform, which is called bad sampling. Figure 5 illustrates the bad sampling issue which occurs 
when the Rx camera captures at a transition time of an LED. In [27], we denote these unclear states 
as “x” states, which will take a value between zero and one. From that, we can also re-define the 
S_Phase value for all bad-sampling cases corresponding to each dimming level, as described in Table 
3. 
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Figure 5. An illustration of bad-sampling issues on the receiver (Rx) camera and the set of LED group 
states including unclear LED states (dimming level = 4/8). 

Table 3. S_Phase value definition for the captured set of unclear LED group states under dimming 
condition (Adapted from [30]). 

8 states input S_Phase 

output Dimming 

1/8 

Dimming 

2/8 

Dimming 

3/8 

Dimming 

4/8 

Dimming 

5/8 

Dimming 

6/8 

Dimming 

7/8 

xx000000 

0xx00000 

00xx0000 

000xx000 

0000xx00 

00000xx0 

000000xx 

x000000x  

1x00000x 

x1x00000 

0x1x0000 

00x1x000 

000x1x00 

0000x1x0 

00000x1x 

x00000x1 

1x0000x1 

11x0000x 

x11x0000 

0x11x000 

00x11x00 

000x11x0 

0000x11x 

x0000x11 

1x000x11 

11x000x1 

111x000x 

x111x000 

0x111x00 

00x111x0 

000x111x 

x000x111 

1x00x111 

11x00x11 

111x00x1 

1111x00x 

x1111x00 

0x1111x0 

00x1111x 

x00x1111 

1x0x1111 

11x0x111 

111x0x11 

1111x0x1 

11111x0x 

x11111x0 

0x11111x 

x0x11111 

1xx11111 

11xx1111 

111xx111 

1111xx11 

11111xx1 

111111xx 

x111111x 

xx111111 

1 

2 

3 

4 

5 

6 

7 

8 

 

4.2. Proposed System Architecture 

In this subsection, we discuss the technical issues associated with the high-rate OCC system 
proposed in this paper and the role of AI techniques in our analyzed system. Figure 6 shows the 
overall architecture of the proposed system. At first, the Tx diagram should remain the same as in 
the architecture of the vehicular RoI signaling system in [4]. The innovation in our work here mostly 
relies on the channel condition after Tx, where we considered the blurring process on LED images 
before the noise addition process. This consideration makes it more challenging for Rx to detect RoI 
and decode a high-rate data stream, notably when using the traditional method based on a linear 
mathematical model with fixed parameters. 

These technical issues lead to the design of an adaptive Rx that could be trained to self-modify 
its parameters and better reflect the correlation between real-world input data and our desired system 
output. To be more detailed, AI algorithms could be applied in Rx to enable the following two tasks: 
Multiple RoIs detection and tracking based on You Only Look Once (YOLO) framework [40] and the 
RoI information from S2-PSK scheme [8], enhancing the reliability of decoding data by using NN-
based decoder for decoding the bit stream, and AI-based error correction (AIEC) for mitigating the 
error caused by channel condition [41]. In this paper, we focus on designing and analyzing the 
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performance of an NN-based decoder to decode data which are contaminated by the blur process 
and noise. 

 

 

Figure 6. Proposed optical camera communication (OCC) system architecture using AI algorithms for 
RoI detection and decoding the DS8-PSK scheme from LED arrays. 

Furthermore, Figure 7 illustrates a process where an NN decoder learning from real-world input 
data can adjust its parameters to minimize the bias between a predicted value and the actual S_Phase 
value of a LED group based on the optimization algorithm. 

 

Figure 7. The principle of training a neural network (NN)-based decoder for blurry and noisy data. 

In our experiments, we utilized LabVIEW to generate datasets for training an NN-based decoder 
and SER evaluation for several cases. Each dataset had  to  label samples of a pair of LED 
groups. We trained our model with 80% of datasets with the lowest SNR at each dimming level. The 
theoretical principle of our simulation is discussed in the following subsection.  

4.3. Performance Analysis 

4.3.1. Blurred Image—Principle and Simulation Method 
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On the basis of the findings in [30–36], the received image of LEDs which is contaminated by the 
blur process and noise can be obtained by a convolutional process of the blur kernel with a clear 
image of LEDs, followed by the addition of noise, as follows: 

y = h * x + n  (9) 

where y is the captured image matrix, h is the blur kernel matrix, x is the original image matrix, and 
n is the noise matrix. Note that all of the matrices here are two-dimensional, as the LEDs image will 
be converted to a grayscale format. 

In our experiment, each LED occupies a 50 × 50 area on the image. Thus, the clear image of LEDs 
group is a 2D matrix with size = 100 x 200 pixels (rows x columns). The blur kernel is also a 2D square 
matrix, with a matrix size is 20 x 20, 40 x 40, 60 x 60 and 80 x 80 pixels. All cells in a blur kernel will 
take equal values and add to one, so each cell of the blur kernel will take value of 

2

1
blur _ size

. The 

output matrix of the convolution between a blur kernel and a LEDs image will have a full size of: 
( ) ( )blur _ size 100 1 blur _ size 200 1+ − × + − . To have the final blur image in our experiments with 

the same size as an original image, we make a crop on a product matrix C at the row and column 
index equal to blur_size/2. 

For clarity purposes, in our data simulation for training and performance testing on SER value, 
firstly we collected a basic set of clean data. These basic sets should be sufficient to represent all 
S_Phase values corresponding to each dimming level, which are mapped in Table 2 or Table 3. 
Observe that, to use Table 3 as the basic clean set of images, the values of the two x variables need to 
be from zero to one, and the sum value of the two x has to be one (to guarantee that the sum of all 
LED states is equal to the dimming level). Figure 8 illustrates the whole process of contaminating the 
clean image set with blur and noise using (7) in order to create a dataset for training the neural-
network-based decoder as well as the test set for SER evaluation. 

 

 

Figure 8. Illustration of data augmentation with the blur process and noisy channel for neural 
network-based decoder training and performance evaluation. 

4.3.2. Performance Analysis 

a) Blur kernel size 

To analyze the effect of blur kernel size on data decoding quality, we performed a simulation 
analysis on several sets of images which are blurred by different blur kernel sizes. Figure 9 shows the 
testing performance of decoding data from images which are non-blurry, blurred by a 40 × 40 kernel, 
and blurred by an 80 × 80 kernel using two different methods: A general PSK scheme decoding 
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technique using a matched filter and our proposed technique using an NN. The dimming level is set 
to 4/8 or 50% throughout this simulation. 

  
Figure 9. The decoding performance analysis of the matched filter and neural network-based decoder 
on blurred and noisy images (difference blur kernel, AWGN channel). 

The results of this experiment reveal that our NN-based decoder improves the decoding SER 
more significantly than the general decoding technique using a matched filter. Generally, our target 
SER value for the feasibility of a vehicular OCC system is 410− . We analyzed the required SNR and 
achieved this target value. 

In the non-blur case, to achieve an SER below 410− , the required SNR of our NN decoding must 
be improved by 2 dB, in contrast to using a matched filter. With a blur kernel size of 40 × 40, the 
improvement on the SNR of the NN-based decoding is approximately 2.2 dB. However, with a blur 
kernel size of 80 × 80, our decoder achieved the target SER value at an SNR of 40 dB, and the matched 
filter achieved an SER of 310−  at the same SNR value. Notably, the improvement of the required 
SNR increases when the blur kernel size is increased (see Figure 9).  

The difference in our data preprocessing technique is attributed to the key factor. From each 
image of the transmitter LED group, we extracted central point intensities of eight LEDs in each group 
and translated them to fuzzy logic states of 16 LEDs (two groups) for input features of the NN-based 
decoder. For the AWGN channel feature, we used the standard deviation value δ , which can be 
measured and calculated from the SNR value utilized in [8].  

From Figure 7, besides the LED states and the standard deviation of Gaussian noise, we propose 
new features which reflect the dimming cases and blur kernel property, calculated as follows: 

bl
kernel_areaf = dimming
image_area

 (10) 

Here, the dimming value is from 1 to 7, kernel_area is the number of pixels that the blur kernel 
occupied on the LED image, and image_area is the total number of pixels on the LED image (200 × 
100 pixels). It is worthy of note that the kernel area in this equation is calculated on the central point 
of each LED in the LED group, which is clearly illustrated in Figure 10 and Figure 11. 
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Figure 10. The calculation of the ratio of the blur kernel area in the image with kernel size = 40 × 40. 

In Figure 10, we considered the case where the blur kernel size does not exceed the size of one 
LED area on the image (50 × 50 in this case). Therefore, when calculating the after-blurred intensity 
of the LED central point, the whole area of a blur kernel will be inside the cropped image of the LED 
group. 

 

Figure 11. The calculation of the ratio of the blur kernel area in the image with kernel size = 60 × 60. 

In Figure 11, the size of a blur kernel (60 × 60) exceeds the size of one LED area on the image (50 
× 50), so the exact area of the blur kernel inside a cropped image for calculating the after-blurred 
intensity of the LED central point will be part of the blur kernel. 

b) Dimming 

Dimming level is also one of the essential features that directly affect the decoding performance 
of a communication system, especially when the blur effect is occurring. This impact could be 
significant or trivial depending on the blur kernel size. More precisely, the dimming level is the ratio 
of the blur kernel size and the LED area on the image. From Figure 10, when the blur kernel area is 
within the LED area of an image, the blur effect for the central points of LEDs will occur in each LED 
illumination area. Thus, in this case, the impact of dimming level on the decoding performance is 
trivial, as illustrated in Figure 12 with a blur kernel size of 40 × 40. 
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Figure 12. The comparison of symbol error rate (SER) performance between an NN-based decoder 
and a matched filter on different dimming cases with a blur kernel size of 40 × 40. 

On the other hand, when the blur kernel size exceeds the area of one LED on the image, the blur 
effect to the central point of each LED is also mixed with a part of other nearby LED illumination 
area. Thus, the impact of the dimming level could be significant. Figure 13 shows the decoding 
performance of our NN-based decoder for DS8-PSK, which are evaluated based on the SER value 
with a blur kernel size of 60 × 60. 

 

Figure 13. The comparison of SER performance between an NN-based decoder and a matched filter 
on different dimming cases with a blur kernel size of 60 × 60. 
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The similarity feature that can be realized from both cases is that there always the significant 
separation of the dimming 1 and dimming 7 lines from other dimming lines. To be more detailed, 
these two dimming cases always yield the worst SER performance. The reason is that the two cases 
have one LED ON (or OFF in dimming 7/8) and seven other LEDs have the opposite state. 
Consequently, the probability of wrongly decoding in these cases happens when the unique LED and 
one among other seven similar LEDs are detected with false states. This error probability can be 
expressed as follows: 

2
e,decoding ON OFF edetected=OFF detected=ON

p = 7p(s ,s ) = 7p  (11) 

With the dimming from 2/8 to 6/8, the performance lines are approximately similar. Moreover, 
the theoretical error decoding probability of each dimming case could be easily calculated as follows: 

Dimming 2/8 or 6/8: 2 4
e,decoding e ep = 2p + 5p ; (12) 

Dimming 3/8 or 5/8: 2 4 6
e,decoding e e ep = 2p + 2p + 3p ; (13) 

Dimming 4/8:  2 4 6 8
e,decoding e e e ep = 2p + 2p + 2p + p .; (14) 

Notably, it can also be assumed that the portions of error probability with an exponent equal or 
greater than four could be insignificant, in which case the error probability of all dimming cases from 
2/8 to 6/8 could be approximately the same ( ≈ 2

e2p ), provided that the bit error probability ( ep ) is 
equal for all LEDs.  

With the blur kernel size within the LED area as in Figure 10, ep  could be the same for all eight 
LEDs within that group. However, when the blur kernel size exceeds an LED area as in Figure 11, the 

 in each LED will now be different, also depending on the LED array arrangement. 
Figure 12 and Figure 13 also show that compared with the decoding technique using a matched 

filter, our proposed decoding method of using the neural network-based decoder for the DS8-PSK 
scheme performed excellently well and enhanced the SER performance of all of the dimming cases 
considered. 

5. Conclusions 

In this paper, we discussed the technical challenges in vehicular OCC systems. Owing to these 
challenges, many studies has been carried out to enhance the performance of the OCC to be feasible 
with the vehicular communication scenario. The blurring process on an image is also a critical issue 
that needs to be considered in this context. This paper focuses on analyzing the blurring phenomenon 
on an image and its effects on vehicular OCC systems. In this regard, we provided a mathematical 
model and a simulation method of a blurred image.  

We also introduced a vehicular OCC system using a hybrid waveform of RoI signaling and a 
high-rate waveform for data streaming. HS-PSK, which is a combination of the low-rate scheme S2-
PSK and the high-rate scheme DS8-PSK, was introduced in IEEE 802.15.7-2019 standard [29] as a 
solution for vehicular OCC systems, and S2-PSK was already presented in [8]. As an update, we 
contribute a novel decoding method using AI concept for the existing DS8-PSK single-carrier 
modulation scheme. A simulation was performed on grayscale images of the LED array which were 
captured and rescaled to be all 100 × 200 in size. Our SER versus SNR simulation has not only 
considered the blurring level but also concerned the AWGN effect on all images in both training and 
testing dataset. Also, the performance of our proposed decoder for DS8-PSK has been compared to a 
previous DS8-PSK decoder using a traditional matched filter. Finally, we provided experimental 
results to validate the robustness of the proposed NN-based decoder over simulating channel 
conditions.  
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