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Abstract: An electrohydraulic elastic manipulator (EEM) is a kind of variable stiffness system (VSS).
The equilibrium position and stiffness controller are the two main problems which must be considered
in the VSS. When the system stiffness is changed for a specific application, the system dynamics are
significantly altered, which is a challenge in controlling equilibrium position. This paper presents
adaptive robust control for controlling the equilibrium position of the EEM under the presence of the
variable stiffness. The proposed control includes sliding mode controls (SMCs), radial basis function
neural network (RBFNN), and backstepping technique. The RBFNN is employed to compensate for
the uncertainties and the variant stiffness in mechanical dynamics and hydraulic dynamics. The
Lyapunov approach and projection algorithm are used to derive the adaptive laws of the RBFNN and
to prove the stability and robustness of the entire EEM. Finally, some experiments are implemented
and compared with other controllers to prove the effectiveness of the proposed method with the
variant stiffness.

Keywords: electrohydraulic system; sliding mode control; backstepping control; variable stiffness;
projection algorithm; RBF neural network

1. Introduction

Nowadays, many researchers have focused on developing high-performance machines with
capabilities comparable to humans, especially with respect to motion, safety, as well as energy efficiency.
From the analysis of human and animal behaviors, it was found that the adaptable compliance and
variable stiffness play important roles. Recently, actuators and systems have been developed with the
ability to adjust the stiffness, called a variable stiffness series elastic system (VSSES). It is a kind of
variable stiffness system, which consists of two actuators where one regulates the equilibrium position
of the VSSES, and the other adjusts its stiffness. On an aspect of safety of the robot manipulator, a series
elastic manipulator (SEM) contains a variable stiffness actuator (VSA) providing the ability to decouple
the inertia of the actuator proper from the inertia of the last link. That makes robots safe and improves
their adaptability in the human–robot cooperation field [1]. In literature, many applications of the
variable stiffness system (VSS) [2] such as shock absorbance [3–5], stiffness variability with a constant
load [6,7], and cyclic movement [8], the safety robot [9] proved the effectiveness of the variable stiffness
system although this research focused on tuning the system stiffness optimally. Normally, primary
torque or force of these VSSs is generated by electric motors [3–5,8,9], or pneumatic actuators [6,7,9].
Therefore, it is difficult to use these VSSs for applications which require high power and compact size.
To enhance the VSS working range with the above abilities at high stiffness states, an electrohydraulic
actuator is a good choice to develop a new VSS because of its advantages of small size-to-power ratios
and large force/torque output [10]. However, high nonlinearity and uncertainties in its dynamics
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can increase the complexity of the system dynamics, which are great challenges associated with the
control VSS.

To control a nonlinear system under the presence of uncertain environments and external
disturbances, sliding mode control (SMC), a nonlinear robust control, is utilized [11]. The SMC
strategies [12–14] have been effectively developed in many systems with matched uncertainties which
mean the uncertainties and the control input act on exactly the same channel [15]. However, its main
drawback is a chattering effect, which can affect the control performance [16]. In order to solve this
issue and enhance the control performance, the SMC has been combined with some adaptive strategies,
such as an integral adaptive switching gain, adaptive parametric uncertainties, and adaptive neural
network. The integral adaptive laws [17] did not require any knowledge of the uncertainties. The
robust gains increase until they bound the maximum uncertainties, then the robustness and stability
are guaranteed. However, when the magnitude of the uncertainties is significantly smaller than the
robust gain, the chattering issue can still occur. The adaptive laws [18,19] were derived to estimate the
parametric uncertainties in a hydraulic system. The quality of these adaptive laws depends on the
known dynamical model. Sliding mode controls [20–23] with radial basis function neural networks
(RBFNNs) were used to approximate the unknown nonlinearities and the upper bound of the estimated
disturbances of a three-phase shunt active power filter by simulations. Although these approximations
did not require any knowledge of the uncertainties, their adaptive laws are sensitive to external
disturbances and measurement noise [24].

Motivated by the previous works about the variable stiffness system and SMC, an electrohydraulic
elastic manipulator (EEM) which includes an adjustment based stiffness mechanism (ABSM) and an
electrohydraulic system (EHS) has been investigated as a VSSES. This paper proposes an adaptive
robust control for controlling the equilibrium position of the EEM with the presence of the variant
stiffness and the uncertainties. In order to improve the control performance, the actuator dynamics are
included in the system dynamics, which gives rise to the matched and unmatched uncertainties. The
backstepping approach is well-known as a strong method to handle these uncertainties which have
low dynamics [25]. Then, the proposed control is developed based on the SMCs and RBFNN with the
backstepping technique to use their advantages. The main contributions of this paper are presented
as follows:

(1) The RBFNN is provided to approximate the uncertainties in both the hydraulic and mechanical
dynamics of the EEM system. Especially, the learning laws of the weighting vector in the RBFNNs
are produced by the Lyapunov approach and the project algorithm to improve the robustness of
the learning laws.

(2) The Lyapunov approach and the backstepping technique are used to prove the stability of the
control system with the presence of matched and unmatched uncertainties.

(3) Some experiments are implemented on the real test rig, and the results are compared to the
Proportional integral derivative (PID) control and the conventional backstepping sliding mode
control (CBSMC) to verify the effectiveness of the proposed control with the variant stiffness.

The remainder of this paper is organized as follows: Section 2 presents the electrohydraulic
elastic manipulator dynamics. Next, conventional backstepping control and the proposed control are
provided in Section 3. In Section 4, the experimental results are presented. Conclusions are shown in
Section 5. The appendixes present the definitions of the matrices, vectors, and functions.

2. Electrohydraulic Elastic Manipulator Dynamics

The proposed EEM is presented in Figure 1. An ASBM system connects between the first and
second link of the EEM. The first link of the EEM is driven by an EHS which contains a hydraulic
power unit, a single-rod hydraulic cylinder, and two pressure sensors. The cylinder rod is connected to
the second rotary shaft and controls the equilibrium position of the manipulator. The ASBM includes
two springs, ball screws, and an electric motor. The stiffness is obtained by regulating the tension of
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the springs. Extending both springs makes the outer link stiffer while relaxing both springs makes the
outer link more compliant. The springs are mounted to the ball screw nut, and the ball screw is driven
by an electric motor, so the springs are either extended or relaxed by controlling the position of the
motor. The safety and minimized energy consumption of the EEM system will be obtained when the
positioning strategy of the motor is optimally generated.
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Figure 1. Electrohydraulic elastic manipulator.

2.1. Dynamics of the Electrohydraulic Servo System

The EHSs consists of a servo-valve and a linear hydraulic actuator, which is powered by a gear
pump as shown in Figure 1. The relationship between the input and the spool displacement is presented
as follows:

xs = ksu (1)

where xs is the spool displacement of the servo-valve (m); ks is the spool displacement gain (m/V); and
u is the input voltage of the servo-valve (V).

Remark 1. In many EHSs, valve dynamics are faster than the dynamics of the other parts of the system.
Additionally, the servo-valves are usually controlled by valve drivers. So, valve dynamics can be ignored without
significant sacrifice of control performance.

The actuator dynamics can be described as [26]

V1

β

.
P1 = −A1

.
xc −Cleak(P1 − P2) + Q1 (2)

V2

β

.
P2 = A2

.
xc + Cleak(P1 − P2) −Q2 (3)

where Vi = V0i + (−1)i−1Aixc, (i = 1, 2) is total control volume of the ith chamber; xc is displacement of
the cylinder; V0i(i = 1, 2) are initial volume of two chambers; A1 and A2 are the rod area of the cylinder
and the head-side area of the cylinder, respectively; β is effective bulk modulus; Cleak is coefficient of
the internal leakage; Q1 is supplied flow rate to the forward chamber; and Q2 is return flow rate to the
return chamber. Qi(i = 1, 2) are related to the spool displacement of the servo-valve xs [26].

Q1 = kqωxs
√

∆P1, ∆P1 =

{
(PS − P1), xs ≥ 0
(P1 − PT), xs < 0

(4)

Q2 = kqωxs
√

∆P2, ∆P2 =

{
(P2 − PT), xs ≥ 0
(PS − P2), xs < 0

(5)
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where kq is flow gain coefficient of the servo valve; ω is the servo valve area gradient; PS is supply
pressure of the EHSs; PT is the tank pressure; and P1 and P2 are the pressure in the forward and return
chambers, respectively.

In the cylinder actuator, the force can be calculated as follows:

Fc = A1P1 −A2P2 (6)

2.2. Mechanical Dynamics

The two-link manipulator of the EEM is shown in Figure 2 with two different coordinate systems
for the two degrees of freedom (DOF) of the manipulator. The parameters are also shown. l0 presents
the position of the 1st link along with the z-axis. li(I = 1, 2) are the lengths of the links, and θi(i = 1, 2)
are the angle of the ith from the coordinate system.
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Figure 2. The architecture of the two-link robot manipulator in the electrohydraulic elastic
manipulator (EEM).

The EEM dynamics without considering the adjustable stiffness mechanism are expressed based
on the dynamics of a 2-DOF manipulator [27]. The dynamic equations are as follows:

M(θ)
..
θ+ C

(
θ,

.
θ
)
+ G(θ) = τ+ τ f (7)

where
.
θ, and

..
θ ∈ R2×1 are the joint velocity and acceleration vectors, respectively; M(θ) ∈ R2×2 is the

inertia matrix; C
(
θ,

.
θ
)
∈ R2×2 presents the matrix of centripetal and Coriolis forces; G(θ) ∈ R2×1 is the

gravity vector; τ f is the friction vector; and τ is the torque vectors. Detailed descriptions are given in
Appendix A.

Figure 3 is a simple form of the EEM which is used to analyze the forces acting on the two-link
manipulator: the force of hydraulic cylinder and the spring forces of the ASBM system. Three black
lines represent the cylinder, the first, and the second link. From this figure, the excited torque produced
by the hydraulic actuator can be obtained as

τc = l1Fc sinγ (8)

where γ is the angle between the first link and the cylinder. During the system operation, the angle γ is
around 90 degrees. So Equation (8) can be rewritten as follows:

τc = l1Fc (9)
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Additionally, the relationship between the cylinder displacement xc and θ1 is expressed as:

cos(θ0 + θ1) =
l21 + l20 + d2

0 − d3
2

2l1
√(

l20 + d2
0

) (10)

where d3 = d30 + xc, and d30 is the length of the cylinder when xc = 0.
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The angular motion of the second link is caused by the spring forces. The ASBM system dynamics
are analyzed using the distance between the second rotary shaft and the spring position of a3, the
spring axes, and the geometric relationships of the VSA structure as shown in Figure 3.

The forces produced by the two springs are represented as follows:

F1 = ∆x1K1

F2 = ∆x2K2
(11)

where ∆xi(i = 1, 2) are the variations of the springs, and Ki(i = 1, 2) are the stiffnesses of the springs.
These forces excite the coupling torques in the two links. The torques are expressed as follows:

τ12 = (F1 sin β1 − F2 sin β2)a3

τ21 = −(F1 sin β1 − F2 sin β2)(l1 + a3)
(12)

where τ12 and τ21 present the coupling torques, which impact the two links and are caused by the
springs in the adjustable stiffness mechanism, and βi is an angle between the ball screws and the
ith spring.

The considered hydraulic friction torque in this model is a combination of the Coulomb friction
and the viscous friction [28] as

τ f c = l1F f = l1
(
FCoulsign

( .
xc

)
+ Fυ

.
xc

)
(13)

where FCoul derives a Coulomb coefficient, and Fυ depicts a viscous coefficient.
The dynamics of the EEM can be represented as follows:

..
θ2 + f2(θ2,

.
θ2) + g2(θ2,

.
θ2)(τext2 + τ12) = 0 (14)

..
θ1 + f1(θ1,

.
θ1) + g1(θ1,

.
θ1)

(
τ21 + τext1 + τ f c − τehs

)
= 0 (15)

where (14) is the outer link equation and f2(θ2,
.
θ2), and g2(θ2,

.
θ2) are known functions in the outer link

dynamics; τext2 is the external torques and the unknown function; and τ12 is coupling torque generated
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by the variable stiffness. The EEM dynamic equation is represented by (15). f1(θ1,
.
θ1) and g1(θ1,

.
θ1)

are the known functions of the manipulator dynamics; τext1 is the external torques and modeling error.
When the system stiffness is adjusted by ASBM online, the coupling torque impacting the EHSs

will alter with respect to the system stiffness. This issue and other uncertainties in the system are
challenges for the position control of the EHSs. This paper proposes an indirect adaptive controller to
guarantee the stability and robustness of the EHSs in the existence of uncertainties.

From (1), (4)–(6), and (15), the system dynamics are represented as follows:

.
x1 = x2
.
x2 = g1x3 + f1 + δ1(t)
.
x3 = g0u + f0 + δ2(t)

(16)

where x =
[

x1 x2 x3
]T

=
[
θ1

.
θ1 Fehs

]T
; δ1(t) is the uncertainties, such as fiction, external

torques, and modeling error, in the mechanical dynamics of the EEM; δ2(t) is the uncertainties, such as
leakages and modeling error, in the hydraulic dynamics; and fi(i = 0, 1) and gi(i = 0, 1) are defined in
Appendix B.

Assumption 1. The perturbation, δi(t), (i = 1, 2) changes with respect to time and is bounded by ‖δi(t)‖ ≤ ηi.

3. Control Design

In this section, two control design procedures are described. The first one is the robust CBSMC
design [25] which has two control loops. An integral SMC is used to assure that the torque of the
EHSs tracks a virtual torque. An SMC produces the virtual torque based on the feedback position and
the desired position. The second one is the proposed control which is designed via the CBSMC and
RBFNN approximation. The CBSMC is used to guarantee the robustness and stability of the controlled
system, and RBFNN approximation is used to improve the precision of the control performance with
the presence of the uncertainties. The proposed control structure is shown in Figure 4.
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3.1. Backstepping Sliding Mode Control

Step 1: The SMC is developed to make the tracking position error as small as possible. This step
produces the virtual reference x3d. The sliding surface is chosen as:

s1 = λ1e1 + e2 (17)

where λ1 is a non-zero positive constant, ei = xi − xid, (i = 1, 2);
The derivative of the sliding variable is calculated as follows:

.
s1 = λ1

.
e1 +

.
e2 = λ1

.
e1 + g1x3 + f1 + δ1(t) −

.
x2d (18)
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The virtual reference x3d is selected as:

x3d = g−1
1

(
−λ1

.
e1 +

.
x2d − f1 −k1s1 − η1sign(s1)) (19)

where k1 is an arbitrary positive constant, and η1 presents a robust gain of the SMC, s1.
The different torque error is defined as follows:

e3 = x3 − x3d (20)

Considering the Lyapunov function candidate

V1 =
1
2

s2
1 (21)

The derivative of the Lyapunov function (21) with (18) is shown as follows:

.
V1 = s1

.
s1 = s1

(
c1

.
e1 + g1x3 + f1 +δ1(t) −

.
x2d

)
(22)

Applying the virtual reference x3d and (20) to the derivative of the Lyapunov function is represented
as follows:

.
V1 = s1

(
λ1

.
e1 + g1(x3d + e3) + f1 +δ1(t) −

.
x2d

)
= −k1s2

1 + (δ1(t) − η1sign(s1))s1 + g1s1e3 (23)

Step 2: The controller is designed to guarantee that e3 approaches zero. The integral sliding
surface is chosen as follows:

s2 = e3 + λ2z3 (24)

where λ2 is a positive constant, and z3 =
∫ t

0 e3(τ)dτ.
Taking the derivative of the sliding variable (24), its result is shown as follows

.
s2 = g0u + f0 + δ2(t) −

.
x3d + λ2e3 (25)

Since the virtual reference in (19) includes a discontinuous term, the derivative of the sliding
variable in (25) cannot be expressed. In order to deal with this problem, a tan hyperbolic function
replaced the discontinuous term. The virtual control (19) is represented as follows:

x3d = g−1
1 (−λ1

.
e1 +

.
x2d − f1−k1s1 − η1tanh(

s1

φ1
)) (26)

The control is chosen as:

u = g0
−1(

.
x3d − f0 − k2s2−g1s1 − λ2e3 − η2 tanh(

s2

φ2
)) (27)

where φi(i=1,2) are arbitrary positive constants, k2 is arbitrary positive constants, and η2 is a robust gain
of the SMC, s2.

Considering the Lyapunov function candidate:

V2 = V1 +
1
2

s2
2 = ζTΩζ (28)

where ζ = [s1, e3, z3]
T, and Ω = 1

2


1 0 0
0 1 λ2

0 λ2 λ2
2

.
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The time derivative of the Lyapunov function (28) is computed as follows:

.
V2 =

.
V1 + s2

.
s2 (29)

When (25) and (27) are used in (29), the derivative can be rewritten as follows:

.
V2 = −k1s2

1 + s1
(
δ1(t) − η1 tanh

( s1
φ1

))
+ g1s1e3 + s2

(
g0u + f0 + δ2(t) −

.
x3d + λ2e3

)
= −k1s2

1 + s1
(
δ1(t) − η1 tanh

( s1
φ1

))
+ g1s1e3 − k2s2

2 + s2
(
δ2(t) − η2 tanh

( s2
φ2

))
− g1s1s2

= −
2∑

i=1

(
kis2

i + si
(
δi(t) − ηi sign

( si
φi

))
+ siηi

(
sign

( si
φi

)
− tanh

( s1
φ1

)))
− λ2g1s1z3

≤ −

2∑
i=1

(
kis2

i + (δi(t) − ηi)|si|
)
− λ2g1s1z3 + εd ≤ −ζ

TΞζ+ εd

≤ −λmin

(
ΞΩ−1

)
V2 + εd

(30)

where Ξ =


k1 0 λ2 g1

2
0 k2 k2λ2

λ2 g1
2 k2λ2 k2λ2

2

, ‖ 2∑
i=1

siηi
(
sign(si) − tanh

( si
φi

))
‖

∞

≤ εd is a positive constant, and

λmin((.)) is the minimum eigenvalue of matrix (.).
When Assumption 1 is satisfied, and the parameters k1, k2, and λ2 are chosen so the matrix Ξ is a

semi-positive definite matrix, the controlled system will be uniformly asymptotically stable [29].
In practice, the boundaries of the uncertainties, δi(i = 1, 2), are difficult to determine. If the robust

gains chosen are smaller than the boundaries of the uncertainties, then the stability and robustness are
not assured. In another way, if the robust gains selected are significantly larger than the boundaries,
then the stability and robustness are guaranteed, but the chattering effects can happen and affect the
control performance.

3.2. Adaptive Backstepping Control Based RBFNN

In order to handle this issue and improve the precision position, the adaptive backstepping control
based RBFNN is employed with the structure in Figure 4. The proposed control developed an adaptive
approximation via the radial basis function neural network [30]. These approximations are used to
compensate for the uncertainties in the mechanical and hydraulic dynamics.

3.2.1. Adaptive Approximation via RBFNN

As shown in Figure 5, the RBFNN with four layers, which are the input layer, selection layer,
hidden layer, and output layer, is employed to implement the approximations. The inputs and the
output of the RBFNN are the tracking errors and the control input, respectively. The functions of each
layer are presented as follows:

The input layer rescaled the input variables, ei(i = 1, . . . , p) to the next layers.
The selection layer chooses the input for each approximation, vi j ∈ Rp×1(i = 1, 2 ; j = 1 . . .m).

γi j = vT
ijE, (i = 1, 2; j = 1, . . . , m) (31)

with
p∑

k=1
vi jk = 1, ‖vi j‖2 = 1, and E =

[
e1, . . . , ep

]T
∈ Rp×1.
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The hidden layer derives the input values with the radius basis function, Gaussian function,
as follows:

µi j = exp

−
(
Gi −mei j

)T(
Gi −mei j

)
σ2

i j

, (i = 1, 2; j = 1, . . . , n) (32)

where Gi =
[
γi1 · · · γim

]T
∈ Rm×1 is the input vector, and mei j ∈ Rm×1 and σi j(i = 1, 2; j = 1, . . . , n),

respectively, are the mean vector and the standard derivation of the Gaussian functions of the node ij
in the hidden layer.

The output layer presents the compensation signals for the mechanical dynamics and the hydraulic
dynamics. Each node δi(i = 1, 2), which is calculated as follows:

δi =
m∑

j=1

wi jµi j(Gi) (33)

These equations can be represented in the vector form as follows:

D =
[
δ1 δ2

]T
= trace

(
WTµ

)
(34)

where W =

[
W1

W2

]
=

[
w11 . . . w1i . . . w1m
w21 . . . w2i . . . w2m

]T

, µ =

[
µ11, · · · ,µ1m
µ21, · · · ,µ2m

]T

.

Each adaptive approximation includes an RBFNN and its adaptive laws, and the online-tuning
RBFNN is deployed to eliminate the uncertainties in the mechanical dynamics or the hydraulic
dynamics. These approximations reduce the chattering effects and improve the precisions. The
adaptive laws are derived from the Lyapunov approach [29] and the projection algorithm [31]. The
approximation will compensate for the mechanical uncertainties and the hydraulic uncertainties
such that

D = D∗ + ε = trace
(
W∗Tµ

)
+ ε (35)

where ε =
[
ε1 ε2

]T
is the reconstructed vector, and W∗ is an optimal parameter of W, in the RBFNN.

The approximated vector is expressed as the following form:

D̂ = trace
(
ŴTµ

)
(36)

where Ŵ are the estimated parameters of the RBFNN. An approximation error vector D̃ is defined
as follows:

D̃ = D− D̂ = D∗ + ε− D̂
= trace

(
W∗Tµ

)
− trace

(
ŴTµ

)
+ ε = trace

(
W̃µ

)
+ ε

(37)

where W̃ = W∗ − Ŵ.



Appl. Sci. 2019, 9, 2237 10 of 18

3.2.2. Proposed Control

The virtual control (26) is represented as follows:

x3d = g−1
1 (−λ1

.
e1 +

.
x2d − f1−k1s1 − δ̂1 − η1 tanh(

s1

φ1
)) (38)

Additionally, the control input (27) is also rewritten as follows:

u = g0
−1(

.
x3d − f0 − k2s2−g1s1 − λ2e3 − δ̂2 − η2 tanh(

s2

φ2
)) (39)

The uncertainties are estimated by d̂i(i = 1, 2) in (36), and their weights are adjusted by

.
Ŵi =


λ1isiµi

i f
(
‖Ŵi‖ < bwi

)
or

(
‖Ŵi‖ = bwi and siŴi

Tµi ≥ 0
)

λ1isiµi +
λ1isiµiŴi

TŴi

‖Ŵi‖
2 otherwise

(40)

where ‖.‖ denotes the Euclidean norm; λi(i = 1, 2) are positive learning rates; and bW is given positive
parameter bounds.

In order to prove the stability of the proposed control, the Lyapunov function candidate is
redefined as

V2 =
1
2

2∑
i=1

(
s2

i +
1

2λi
W̃i

TW̃i

)
(41)

Assumption 2. The reconstructed error, ε1, in the mechanical dynamics and the uncertainties, ε2, in the
hydraulic dynamics are bounded by ‖εi‖1 < ηi(i = 1, 2).

The differential Lyapunov function candidate (41) is expressed as follows:

.
V =

2∑
i=1

(
si

.
si −

1
λi

.
Ŵi

TW̃i

)
= −ζTΞζ−

2∑
i=1

([
1
λi

.
Ŵi

T
− siµ

T
]
W̃i +

(
εi − ηi tanh

(
si
φi

))
si

)
(42)

Let’s define Vwi =
[

1
λi

.
Ŵi

T
− siµ̂

T
]
W̃i(i = 1, 2), then (42) can be rewritten as follows:

.
V == −ζTΞζ−

2∑
i=1

(
VWi +

(
εi − ηitanh

(
si
φi

))
si

)
(43)

By the first equation in (40)

Vwi =

[
1
λi

.
Ŵi

TW̃i − siW̃i
Tµ̂

]
= 0 (44)

By the second equation in (40):

Vwi = λisiµ̂
TŴiŴi

TW̃i/‖Ŵi‖
2 (45)

If the conditions (‖Ŵi‖ = bw and siŴi
Tµ̂ < 0) are met, then the condition ŴT

i

(
W∗i − Ŵi

)
=

0.5(‖W∗i ‖
2
−‖Ŵi‖

2
− ‖W∗i − Ŵi‖

2
) < 0 is obtained because of ‖W∗i ‖ < bW . From (44) and (45), the VWi

is positive.
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Based on the analysis as presented above, the derivative Lyapunov function can be represented
as follows:

.
V =

2∑
i=1

(
si

.
si −

1
λi

.
Ŵi

TW̃
)
≤ −ζTΞζ−

2∑
i=1

(
εi − ηi tanh

(
si
φi

)
si

)
≤ −µmin(Ξ)ζTζ (46)

where µmin(Ξ) is a minimum eigenvalue of the matrix Ξ. Because
.

V is a negative semi-definite
function, V

(
ζ(t), W̃

)
≤ V

(
ζ(0), W̃

)
. This means that s1, e3, z3 and W̃ are bounded. Let’s define

Av = −µmin(Ξ)ζTζ ≤ −
.

V and integrate function AV in respect to time∫ t

0
Av(t)dt ≤ V

(
ζ(0), W̃

)
−V

(
ζ(t), W̃

)
(47)

Since V
(
ζ(0), W̃

)
is a bounded function, and V

(
ζ(t), W̃

)
is a non-increasing and bounded function,

the following result can be concluded:

lim
t→∞

∫ t

0
Av(τ)dτ < ∞ (48)

In addition, as
.

AV(t) is bounded by Barbalat’s lemma [25], it can be presented that lim
t→∞

AV(t) = 0.

This means that the vectors s1, e3, and z3 will converge to zero as t→∞ . With this result, the proposed
control and adaptive laws guarantee the stability and robustness of the controlled system under
the uncertainties.

4. Experimental Results

4.1. Electrohydraulic System Description

An EEM as shown in Figure 6 is set up to verify the effectiveness of the proposed control scheme.
It is an elastic manipulator that contains an adjustable stiffness mechanism and is powered by an
electrohydraulic system. In the EHSs, a linear cylinder is used to control the inner link angle. A
servo-valve (D633-317B of MOOG company) is used to adjust the flow rate of the cylinder from a
hydraulic power unit (Kopack Engineering company). Additionally, an inverter (SINAMICS V20,
SIEMENS company) is used to control the flow rate and displacement of the electrohydraulic unit to
make differential working conditions. Furthermore, two pressure sensors with a pressure range of
0–160.105 (N/m2) (Kobold) are used to measure the pressures of the two chambers, and to estimate the
feedback torque. The system pressure is limited to 150.105 (N/m2) by a relief valve for safety. Two
high-resolution encoder sensors are used to measure the angle of the inner link and the outer link. The
adjustable stiffness mechanism includes two springs, a DC motor, and ball screws, which are used
to connect the inner link and the outer link. The stiffness of the system is influenced by the angular
displacement of the DC motor. So, the desired stiffness can be achieved by controlling the angular
displacement of the motor. Another encoder and a motor driver (MD03) are used to carry out this task.

The detailed system parameters of the EEM are given as follows: J1 = 0.45 Nm2, J2 = 0.1 Nm2,
m1 = 7 Kg, m2 = 3 Kg, l1 = 0.245 m, d1 = 0.215 m, d2 = 0.245 m, g = 9.81 ms−2, Po = 0

(
N/m2

)
, kt

= 6.83 × 10−11 m4/
(

sVN1/2
)
, Ps = 150.105

(
N/m2

)
, β = 1.25 × 109 Nm−2, A1 = 16.61 × 10−4 m2, A2 =

3.8× 10−4 m2.
In this paper, all experiments are carried out using MATLAB with the real-time target tool which

is supported to embed in two data acquisition (DAQ) cards, (PCI1711 and PCI-Quad04; Measurement
Computing and Advance-Tech companies, respectively). The sample time for the signal processing
and for implementing the control algorithms was 10−3 (s).
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4.2. Performance Indexes

In order to validate the quality of each control algorithm, the following performance indexes [32]
are used.

(1) L2(e) =
√(

1/T f
)∫ T f

0 |e|2dt is the scalar valued L2 norm and is used as an objective numerical
measure of average tracking performance for the entire error curve e (t), where T f expresses the total
running time.

(2) eF = maxT f−2≤t≤T f

{∣∣∣e(t)∣∣∣}, which is the maximum absolute value of the tracking error during
the last two seconds and is used as an index to verify the final tracking accuracy.

4.3. The Experimental Procedures

The equilibrium position of the EEM is considered. Two experiments are carried out to verify the
effectiveness of the proposed control, the adaptive backstepping sliding mode control (ABSMC). The
system carried a low load of 50N, and the stiffness was changed from low stiffness to high stiffness at
the 10th second in each experiment.

Firstly, the desired equilibrium position is defined as x1d = 12 + 10 cos(πt). The initial state of

the electrohydraulic elastic manipulator is x(0) =
[

0 0
]T

. To demonstrate the effectiveness of the
proposed controller, it is compared to the PID control and the CBSMC.

The parameters of controllers are selected as the PID control: Kp = 10, Ki = 5, Kd = 0.1;

CBSMC: k1 = 300, k2 = 7.2 × 1010, λ1 = 40, λ2 = 4.4; RBFNN approximations: E =
[
e1, e2

10 , e3
2

]T

v11 = [1, 0, 0]T, v12 = [0, 1, 0]T, v21 = [1, 0, 0]T,v22 = [0, 0, 1]T, mei =
[

0.1( j− 11) 0.1( j− 11)
]T

(i = 1, 2; j = 1, . . . , 20), σi j = 0.3162 (i = 1, 2; j = 1, . . . , 20), Wi = [0, . . . , 0]T ∈ R20, i = 1, 2.

Remark 2. The control parameters are chosen based on a trial and error method. Because the ABSMC were
developed based on the CBSMC, so all control gains of the CBSMC are kept in the ABSMC.

In this research, the experimental results, including the position, position error, torque, and the
control signal, are analyzed. They are presented in Figures 7–10, respectively. In each figure, the
responses of the PID control, the CBSMC, and the proposed ABSMC with the approximations in
mechanical dynamics and hydraulic dynamics are shown.
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The error responses of PID, CBSMC, and ABSMC are plotted in Figure 8 with the blue dash
line, the black dashed dot line, and the red line, respectively. The results exhibited that the ABSMC
with approximators improved the precision of the system more effectively than the PID and CBSMC.
Figure 9 shows the torque responses of the CBSMC and the ABSMC, with a virtual torque shown
as the black line and estimated torque shown as the dashed red line. The results also show that the
proposed control improved the tracking torque error by using the approximation to compensate for
the uncertainties in hydraulic dynamics. Figure 10 plots the control signals of the PID control, BSMC,
and ABSMC. Furthermore, the responses of weights in the approximators are presented in Figure 11.
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Remark 3. Because the friction was not considered in the CBSMC, the tracking error of the CBSMC
did not converge to zero as shown in Figure 8. It was stable at a nonzero value. The proposed control
with the approximation in mechanical dynamics compensated for the friction to improve the accuracy of the
controlled system.

Another experiment is executed to discuss the multi-step tracking ability of the proposed controller.
The three controllers are then run for the different positions shown in Figure 12, which has a large
distance and a maximum angular displacement; both are near their physical limits. The tracking errors
are shown in Figure 13. The results show that the PID control cannot handle such a large movement
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well, with the tracking error around 10. The proposed ABSMC has a better tracking performance than
the CBSMC with the steady state error quickly converging to zero.
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control, the CBSMC, and the proposed ABSMC.

Remark 4. Because the ABSMC is developed based on the CBSMC, the parameters of the ABSMC will preserve
the parameters of the CBSMC. The steady-state errors of the CBSMC still exist as shown in Figures 8 and 13 due
to the effect of the friction, gravity, and modeling error. In order to exhibit the effectiveness of the proposed control,
the friction, gravity, and modeling error are substantially considered in the CBSMC. The ABSMC with the
RBFNNs compensated for these uncertainties to improve the steady-state errors as exhibited in Figures 8 and 13.

Remark 5. The parameters of the PID control are chosen by a trial and error method to get optimal values. Its
performances are compared with the proposed control to show the effectiveness of the proposed control.

Remark 6. In Figures 8–10, the result showed that the chattering effect occurred due to the input constraints of
the actuator system. As shown in (46), the control gains will affect the time to convergence of the tracking errors.
When the control gains and the position errors are significant, the control signal will be significant and the input
constraint will happen. This issue caused the chattering phenomenon. The solution to this issue will be discussed
in future work.
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The calculated performance indexes [32] from the experimental results are shown in Table 1.
The results proved the effectiveness of the proposed control in improving the tracking error of the
controlled system.

Table 1. Performance Indexes.

Controller PID CBSMC ABSMC

Sin
Index 1 0.2162 0.5479 0.0614

Index 2 0.1811 0.5673 0.0548

Multistep Index 1 0.4083 0.1419 0.1083

Index 2 1.3697 0.3248 0.3145

5. Conclusions

In this paper, an adaptive backstepping control based RBFNN is proposed for equilibrium position
control of the EEM with the presence of the variant stiffness and the uncertainties. The uncertainties are
matched and unmatched uncertainties because the system dynamics considered the actuator dynamics.
By using the sliding mode control and RBFNN with the backstepping technique, the proposed control
compensated for both the unknown matched and unmatched uncertainties in the mechanical dynamics
and actuator dynamics to improve the control performance. Additionally, the stability of the controlled
system is theoretically proven by the Lyapunov approach and backstepping technique. Finally, some
experiments were conducted, and the results were compared to the PID and CBSMC to show the
effectiveness of the proposed control with the variant stiffness. In future work, the stiffness controller
and the equilibrium position control will be implemented at the same time to exhibit the ability of
the EEM.
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Appendix A

According to Figure 2 and (7), the dynamic equations of a two-link robotic manipulator can be
expressed as [27]

M(θ)
..
θ+ C

(
θ,

.
θ
)
+ G(θ) = τ+ τ f (A1)

with M(θ) =

[
J1 + J2 + m2l21 + 2m2l1d2 cosθ2 J2 + m2l1d2 cosθ2

J2 + m2l1d2 cosθ2 J2

]
, C

(
θ,

.
θ
)

= −m2l1d2 sinθ2
( .
θ2

2 + 2
.
θ1θ2

)
m2l1d2 sinθ2

.
θ1

2

, G(θ) =

[
g(m1d1 + m2l1) cosθ1 + gm2d2 cos(θ1 + θ2)

gm2d2 cos(θ1 + θ2)

]
,

θ =
[
θ1 θ2

]T
,

.
θ =

[ .
θ1

.
θ2

]T
,

..
θ =

[ ..
θ1

..
θ 2

]T
, τ =

[
τ1 τ2

]T
where Ji are inertia

moments about an axis through the mass center of the ith link; mi are the weights of the ith link; di are
the distance from the center of an ith joint to the mass center of the ith link;

..
θ and

.
θ are the acceleration

vector and the velocity vector; g is the acceleration of gravity; and τi are the torque inputs generated by
ith joint.
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Appendix B

From (16), the state space of the EHSs is shown as:

.
x1 = x2
.
x2 = g1x3 + f1 + δ1(t)
.
x3 = g0u + f0 + δ2(t)

(A2)

where g1 = J2l1
J1 J2+J2l21m2−(d2l1m2c2)

2 , f1 = −

 (J2+d2l1m2c2)
(
d2l1m2s2

.
θ

2
1+d2 gm2c12

)
J1 J2+J2l21m2−(d2l1m2c2)

2

+
J2
(
d2

.
θ2l1m2s2

( .
θ2+2

.
θ1

)
−gc2(d1m1+l1m2)−d2 gm2c12

)
J1 J2+J2l21m2−(d2l1m2c2)

2

)
, go = βCdωks

√
2
ρ

(
A1
√

∆1
V01+A1xc

+ A2
√

∆2
V02−A2xc

)
, f0 =

−βx2

(
A2

1
V10+A1xc

+
A2

2
V20−A2xc

)
, with ci = cos(θi), si = sin(θi)(i = 1, 2), and c12 = cos(θ1 + θ2).
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