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Abstract: With the advent of medical endoscopes, earth observation satellites and personal phones,
content-based image retrieval (CBIR) has attracted considerable attention, triggered by its wide
applications, e.g., medical image analytics, remote sensing, and person re-identification. However,
constructing effective feature extraction is still recognized as a challenging problem. To tackle this
problem, we first propose the five-level color quantizer (FLCQ) to acquire a color quantization
map (CQM). Secondly, according to the anatomical structure of the human visual system, the color
quantization map (CQM) is amalgamated with a local binary pattern (LBP) map to construct a local
ternary cross structure pattern (LTCSP). Third, the LTCSP is further converted into the uniform local
ternary cross structure pattern (LTCSPuni) and the rotation-invariant local ternary cross structure
pattern (LTCSPri) in order to cut down the computational cost and improve the robustness, respectively.
Finally, through quantitative and qualitative evaluations on face, objects, landmark, textural and
natural scene datasets, the experimental results illustrate that the proposed descriptors are effective,
robust and practical in terms of CBIR application. In addition, the computational complexity is
further evaluated to produce an in-depth analysis.

Keywords: content-based image retrieval; feature extraction; five-level color quantizer; local ternary
cross structure pattern

1. Introduction

Along with the development of imaging equipment, a larger number of images have been
extensively collected from various fields [1–3]. Meanwhile, CBIR technology has gradually become
a hot research field, due to its applications in place recognition [4], image classification [5], and remote
sensing [6]. Therefore, the problem of extracting effective, robust and practical features has attracted
an increasing number of researchers. Thanks to these pioneers’ breakthroughs, many approaches [7–26]
have been continuously proposed and extended for the task of feature extraction.

In the early days, a family of local binary pattern (LBP)-based methods [7–17] have been
sequentially reported for the grayscale-based feature extraction. As a milestone, the LBP definition
was initially authored by Ojala et al. [7], in which the referenced pixel and its nearest pixels were
encoded as a binary string. Hereafter, Zhang et al. [8] extended the LBP to the local derivative
pattern (LDP) descriptor for refining the magnitude difference. Subsequently, Guo et al. [9] designed
a variant of the LBP named the completed LBP, and it is used for improving the robustness to rotation.
After that, the LBP variance was developed by Guo et al. [10] for addressing the drawback of the
global information loss. Further, Tan et al. [11] introduced an improvement of the LBP named the
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local ternary pattern (LTP), and it was integrated with the kernel principal component analysis to
improve the robustness to illumination. After, Murala et al. [12] modified the LTP to the local tetra
pattern (LTrP), in which the referenced pixel and its surrounding pixels were computed by comparing
the vertical and horizontal direction differences. Afterwards, Subrahmanyam et al. [13] converted
the LTP to the local maximum edge binary patterns (LMEBP), and the LMEBP was combined with
the Gabor transform for CBIR and object tracking applications. In order to extend the LBP to the
dynamic-texture application, Zhao et al. [14] studied the LBP histogram Fourier (LBP-HF) for video
sequence recognition. Further, in order to improve the robustness to noise, Ren et al. [15] proposed the
noise-resistant local binary pattern (NRLBP) to extract the local structure information. In order to retrieve
the magnetic and resonance and computer tomography images, Subrahmanyam et al. [16] studied
the local ternary co-occurrence patterns (LTCoP) encoding. Motivated by the concatenation strategy,
Verma et al. [17] used the LBP feature map and the local neighborhood difference pattern (LNDP) to
integrate the binary information into the local intensity difference for the natural scene and texture
retrieval applications. Nevertheless, since all the above approaches are limited to the grayscale-based
feature extraction, the color information unavoidably is lost.

In recent years, a family of color LBP descriptors [18–28] have been continuously explored for
the color-based feature extraction. Among them, inspired by inter- and intra- channel encoding
mechanisms, Mäenpää et al. [18] constructed the opponent color local binary patterns (OCLBP)
for color textural classification. After that, Bianconi et al. [19] proposed an extension of OCLBP
named the improved opponent color local binary patterns (IOCLBP), in which point-to-average
thresholding replaced point-to-point thresholding. Further, the grayscale-based LTrP was extended
to the local oppugnant color texture pattern (LOCTP) by Jeena Jacob et al. [20], and the LOCTP was
extracted from the RGB, YCbCr, and HSV color models respectively. Inspired by the pair-based
strategy, Qi et al. [21] presented the pairwise rotation-invariant co-occurrence LBP (PRICoLBP) by
incorporating the R, G and B components. Similarly, Hao et al. [22] proposed the pairwise cross pattern
(PCP), in which the color and LBP information were combined in pairwise and cross manners. With the
help of the encoding-decoding technology, Dubey et al. [23] designed the multi-channel adder LBP
(maLBP) and the multi-channel decoder LBP (mdLBP) to extract the LBP feature maps from the R, G,
and B channels. In 2017, inspired by the vector quantization (VQ) strategy, Guo et al. [24] proposed the
max and min color quantizer in order to extract the color information feature (CIF) in the RGB color
model, and the CIF feature was combined with the LBP-based feature for the image classification and
retrieval applications. In 2018, Somasekar et al. [25] integrated the Fuzzy C-Mean color clustering in
the RGB color model with the LBP feature for the side-scan-sonar image enhancement. In the same
year, the CIELAB color model was quantized by Singh et al. [26] to extract the color histogram (CH),
and the CH feature was linearly combined with the orthogonal combination of LBP (OC-LBP) for the
color image retrieval applications. More recently, Feng et al. [27] introduced the local parallel cross
pattern (LPCP) which integrated the color and LBP information in parallel and cross manners. In order
to capture the cross-channel information, Agarwal et al. [28] studied the multi-channel local ternary
pattern (MCLTP) to extract the correlation from the H-V, S-V and V-V channels in a cross manner.

In this paper, we present the main following contributions:

1. We construct a five-level color quantizer, and it is applied to quantize the a* and b* components
for the color quantization map extraction.

2. We integrate the color quantization map into the LBP feature map to extract a local ternary cross
structure pattern (LTCSP).

3. We further extend the local ternary cross structure pattern to the uniform local ternary cross
structure pattern and the rotation-invariant local ternary cross structure pattern for reducing the
computational cost and improving the robustness.

4. We benchmark a series of experiments on face, landmark, object and textural datasets,
and extensive experimental results demonstrate the effectiveness, robustness, and practicability
of the proposed descriptor.
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The rest of this paper is organized as follows. In Section 2, the local binary pattern definition
and the color prior knowledge are briefly reviewed. Section 3 concretely details the feature extraction.
Similarity measure and retrieval system are introduced in Section 4. Section 5 presents the experiments
and discussion. Section 6 concludes this paper, and points out the possible future directions.

2. Related Work

2.1. Local Binary Pattern Definition

Firstly, the local binary pattern (LBP) definition was initially authored by Ojala et al. [7] for the
gray-scale feature extraction. Given a referenced pixel P(s, t) and its surrounding pixels Pk(s, t), the LBP
encoding at P(s, t) is formulated as follows:

LBPr,n(s, t) =
n−1∑
k=0

µ(P(s, t) − Pk(s, t)) × 2k, (1)

µ(m) =

1, m ≥ 0

0, m < 0
, (2)

where r is the radius of a circle, and n is the number of surrounding pixels in the circle with radius r.
Then, depending on the realistic application, over 90% of image micro-structures are encoded

by only 23% of the LBP patterns. To cut down the computational cost, the LBP is simplified to the
“uniform local binary pattern”, which is formulated as follows:

LBPuni
r,n (s, t) = U{

n∑
k=1

∣∣∣µ(P(s, t) − Pk(s, t)) − µ(P(s, t) − Pk−1(s, t))
∣∣∣}, (3)

where U{·} represents a measure operator, and U{·} ≤ 2. P0 (s, t) is equivalent to Pn(s, t).
Finally, to improve robustness, the LBP further is converted into the rotation invariant local binary

pattern LBPri
r,n(s, t), which is expressed as follows [21]:

LBPri
r,n(s, t) = min

{
ROR(LBPr,n(s, t), k) | k ∈ 0, 1, . . . , n− 1

}
, (4)

where ROR(LBPr,n(s, t), k) is a circular bit-wise right shift for x times on n-bit number LBPr,n(s, t).
Referring to [21,29], r and n are defined as 1 and 8 respectively. In the following, the LBP feature

map, the uniform LBP feature map, and the rotation invariant LBP feature map are abbreviated as LBP,
LBPuni, and LBPri respectively.

2.2. Color Quantization Scheme

Currently, the equal-interval color quantizer (EICQ) is considered as the most common used
quantizer [26,30,31]. Among them, Singh et al. [26] proposed the color histogram (CH)-based scheme
in which the number of quantization blocks for L*, a* and b* components was fixed at 3, 2 and 2.
Similarly, Reta et al. [30] proposed the Lab color coherence vector (Lab-CVV) to quantize the L*, a*
and b* components to 5, 4 and 4 respectively. Considering the HSV color model, Wan and Kuo [31]
developed the multiresolution histogram representation (MHR)-based quantizer in which a variety
of combinations of 2, 4, 8 and 16 blocks were designed for the H, S and V components quantization.
Motive by the flexible stragegy, Liu et al. [32] proposed the flexible micro structure descriptor histogram
(MSD)-based quantizer to quantize the L*, a* and b* component to 20, 3 and 3 blocks respectively.
Similarly to the MSD-based quantizer, Liu et al. [33] presented the adaptable color difference histogram
(CDH)-based quantizer in which the optimal number of quantization in the L* component was set to 10,
and the number of quantization in the a* and b* components was fixed as 3. With help of the analysis of
color distribution, Wan et al. [34] proposed standard vector quantization, a method of partitioning the
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vector space by minimizing the mean squared error. Motivated by unsupervised clustering techniques,
Duda and Hart [35] designed the criterion-based schemes and the heuristic schemes. Inspired by
the color clusters distribution, Xia and Kuo [36] proposed the octree with pruning color quantization
which calculated the color information of each image respectively.

2.3. Color Prior Knowledge in the CIELAB Color Model

The CIELAB color model consists of three components, namely the white-black component of L*
(ranging from 0 to 100), the yellow-blue component of a* (ranging from−128 to +127), and the red-green
component of b* (ranging from −128 to +127) [37]. The CIELAB color model is not only an excellent
splitter between color (represented by the a* and b* components) and intensity (represented by the L*
component), but also is a perceptually uniform color space; that is to say there are the same amount of
numerical changes between the CIELAB model and the visual perception in human color vision [38].
On the basis of the CIELAB color model, a color prior knowledge was originally introduced by Feng et
al. [5], in which the frequency of pixels in the a* and b* components were explored and analyzed. Firstly,
in Figure 1a,b the frequency of pixels is mostly distributed in the center of the a* and b* components
on the Caltech-256 [39] dataset. Secondly, to verify the consistency, thousands of image datasets are
calculated, and extensive experimental results demonstrate the consistency of this prior. Obviously,
it can be summarized that most pixels focus on the middle third of the range. Thirdly, to verify the
stability, a series of additional experiments are performed, which illustrate that the prior knowledge is
stable even if the image dataset is changed. For instance, the probability distribution of the Caltech-256
dataset (see Figure 1a,b) is extremely approximate to 10% of the Caltech-256 dataset (see Figure 1c,d).
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3. Feature Extraction

3.1. Five-Level Color Quantizer

Inspired by the color prior knowledge in the CIELAB color model, a novel five-level color quantizer
is designed for the color quantization map (CQM) extraction. For convenience, the original [−128,
+127] is mapped as 28. In our scheme, 28 is first subdivided into four blocks at Level 1, in which two
blocks 28/3 are on both sides, and two refined blocks 27/3 are in the middle because most pixels focus
on the middle third of the range. The corresponding indices are sequentially flagged as 0, 1, 2, and 3 at
Level 1. Then, two refined blocks 27/3 are subdivided into to two refined 27/32 in the middle and two
28/32 on both sides from Level 1 to 2. In this manner, the pixels in the middle range can be further
refined. The remaining blocks are duplicated from Level 1 to 2. Finally, two operators of “Duplicate”
and “Subdivide” are sequentially repeated until the two middle blocks 27/35 at Level 5. We combine
Level 1 to 5 to construct the five-level color quantizer. For clarity, the process is displayed in Figure 2,
in which each level contains a group of blocks and indices. Mathematically, the quantization levels
in the a* and b* components are flagged as Aa* and Ab*, where Aa* ∈ {1, 2, . . . , 5} and Ab* ∈ {1, 2, . . . ,
5}. Meanwhile, the corresponding indices in the a* and b* components are flagged as Âa* and Âb*,
where Âa* ∈ {0, 1, . . . , 2(Aa* + 1) − 1} and Âb* ∈ {0, 1, . . . , 2(Ab* + 1) − 1} respectively.
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Moreover, in terms of the humans’ eye intensity perception mechanism [40], the original scope
[0, +100] in the L* component is quantized into 3 blocks, e.g., [0, +25], [+26, +75] and [+76, +100].
Similarly, the quantization level in the L* component is flagged as AL*, where AL* = 1 and the index is
defined as ÂL* ∈ {0, 1, 2}.

An example of the proposed color quantization scheme is shown in Figure 3. From Figure 3a,
the values in the CIELAB color model are set to L* = +87 in the L* component, a* = +84 in the a*
component, and b* = −28 in the b* component. Correspondingly, the quantization levels are set to
AL* = 1, Aa* = 2 and Ab* = 2 respectively. From Figure 3b, according to AL* = 1, the L* component is
firstly quantized to 3 blocks, e.g., [0, +25], [+26, +75] and [+76, +100], and then the index of L* = +87
can be encoded as ÂL* = 2. From Figure 3c,d, considering Aa* = 2 and Ab* = 2 in the FLCQ quantizer,
the a* and b* components are firstly quantized to six blocks, e.g., 28/3, 28/32, 27/32, 27/32, 28/32 and
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28/3, and then the indices of a* = +84 and b* = −82 is encoded as Âa* = 5 and Âb* = 1 respectively.
We combine the indices of ÂL*, Âa*, and Âb* to acquire the color quantization map (CQM), and the
index of CQM is flagged as E, E ∈ {0, 1, . . . , 3 × 2(Aa* + 1) × 2(Ab* + 1) − 1}.
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3.2. Human Visual System

As documented in Gray’s Anatomy, the anatomical structure of the human visual system consists
of the eyeball, optic nerve, lateral geniculate nucleus of thalamus, optic radiation and visual cortex [41].
Remarkably, it should be noted that the optic chiasm is a critical anatomical structure, in which a part of
the visual cues between the left and right cerebral hemispheres are exchanged. According to the human
visual system, the left and right eye balls first extract the low-level visual cues. Second, the extracted
low-level visual cues are encoded and transmitted to the left and right optic nerves. Third, a part of the
encoding visual information is crossed at the optic chiasm. Fourth, the crossed visual information is
reconstructed at the left and right lateral geniculate nucleus of thalamus. Fifth, the reconstructed visual
information is radiated at the left and right optic radiations. Finally, the radiated visual information is
re-aggregated at the left and right visual cortices to form the high-level semantics perception. For more
details, please refer to [41].
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3.3. Local Ternary Cross Structure Pattern

According to the anatomical structure of the human visual system, a novel local ternary cross
structure pattern (LTCSP) is proposed to integrate the color information into the LBP information as
a whole. For an original map M(i, j), the reference point is flagged as M(i0, j0) and the eight nearest
points are flagged as M(ip, jp), where p ∈ {1, 2, . . . , 8}.

Firstly, the LBP feature map is computed as LBP(i, j) in Section 2.1, and the color quantization
map is computed as CQM(i, j) in Section 3.1. Secondly, with the help of a thresholded polynomial
selectivity indicator sign (·), the color quantization map and the LBP feature map are encoded into the
color ternary map and the LBP ternary map respectively. Mathematically, the thresholded polynomial
selectivity indicator sign (·) is defined as follows:

sign(Υ(i0, j0), Υ(ip, jp)) =


1 if Υ(i0 , j0) > Υ(ip, jp)

0 if Υ(i0 , j0) = Υ(ip, jp)

−1 if Υ(i0 , j0) < Υ(ip, jp)

, (5)

where p ∈ {1, 2, . . . , 8}, and Υ(i, j) represents a feature map. For the LBP feature map, Υ(i, j) is considered
as LBP(i, j); for the color quantization map, Υ(i, j) is considered as CQM(i, j). Thirdly, motivated by the
optic chiasm, in which a part of the visual cues between the left and right cerebral hemispheres are
exchanged, the eight nearest points in the color and LBP ternary maps are correspondingly crossed
to extract the color and LBP cross maps. Fourthly, with the help of a counter ϑ{·} that computes the
occurring numbers of ternary in the eight nearest points of the color and LBP cross maps, the maximum
numbers are retained to construct the color and LBP structure maps respectively. Inspired by the
max-pooling strategy, when there exist two maximum occurring numbers, the structure with the larger
value is retained. Finally, the retained points in the color and LBP structure maps are computed as the
feature vectors, and the values of the reference points are correspondingly calculated as the indices of
the feature vectors. Mathematically, we define the LTCSP as follows:

LTCSPLBP(LBP(i0, j0)) = max
p∈{1,2,...8}

ϑ
{
sign(CQM(i0, j0), CQM(ip, jp))

}
, (6)

LTCSPCQM(CQM(i0, j0)) = max
p∈{1,2,...8}

ϑ
{
sign(LBP(i0, j0), LBP(ip, jp))

}
, (7)

For clarity, the schematic diagram of the LTCSP is illustrated in Figure 4, where the LTCSP is
computed as [LTCSPCQM(250) = 6, LTCSPLBP(235) = 4]. Experimentally, the feature dimensionality of
LTCSPCQM and LTCSPLBP are 3 × 2(Aa* + 1) × 2(Ab* + 1) and 256 respectively.
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In order to select the optimal color quantization levels (Aa*, Ab*), we need to compare the average
precision rates (APR) of 25 possible combinations according to different image datasets in the offline
stage. Mathematically, given an image dataset D, the maximization APR is defined as follows:

argmax
Aa∗,Ab∗

APR(D|Aa∗, Ab∗), (8)

where APR(D|Aa*, Ab*) represents the APR score, where Aa* ∈ {1, 2, . . . , 5} and Ab* ∈ {1, 2, . . . , 5}.
In Section 5.4., we provide the optimal color quantization levels (Aa*, Ab*).

Moreover, in order to reduce the computational cost, the LBP feature map LBP(i, j) in LTCSP can
be replaced by the LBPuni feature map LBPuni(i, j) to construct the uniform local ternary cross structure
pattern (LTCSPuni). Similarly, in order to improve the robustness to rotation, the LBP feature map
LBP(i, j) in LTCSP can be replaced by the LBPri feature map LBPri(i, j) to construct the rotation-invariant
local ternary cross structure pattern (LTCSPri).

4. Similarity Measure and Retrieval System

4.1. Similarity Measure

Given a query image provided by a user, the query and dataset images are first encoded as the
query and dataset feature vectors respectively. Then, the similarity measure between the query and
dataset feature vectors is performed. Finally, based on the sorting results of the similarity measure,
the top similar images are returned to the user. Referring to [6,22,33,42], extended Canberra distance
(ECD) is utilized in this paper, and the ECD is defined as follows:

ECD( f d, f q) =
δ∑
τ=1

∣∣∣ f d
τ − f q

τ

∣∣∣∣∣∣ f d
τ + υd

∣∣∣+ ∣∣∣ f q
τ + υq

∣∣∣ , (9)

where ECD(·) denotes the result of extended Canberra distance. f d
τ and f q

τ are the feature vectors of the
query and database images, and τ represents the dimensionality of the feature vector. υd and υq are
defined as

∑δ
τ=1 f d

τ /δ and
∑δ
τ=1 f q

τ/δ respectively.

4.2. Retrieval System

User, query image, dataset images, feature extraction, query and dataset feature vectors, similarity
measure, and returned images are totally combined to construct the proposed retrieval system. The schematic
diagram of the proposed retrieval system is shown in Figure 5. From Figure 5, the proposed retrieval
system can be divided into the offline stage and the online stage. In the offline stage, based on the optimal
quantization levels (Aa*, Ab*) in Equation (8), all dataset images are sent to the feature extraction block to
extract the dataset feature vectors only once. In the online stage, the user firstly inputs the query image.
Secondly, the query image is sent to the feature extraction block to extract the query feature vector. Thirdly,
the similarity measure block is performed between the query and dataset feature vectors. Finally, according to
the similarity measure scores, the top-n similar images are considered as returned images to the user. If there
exist several datasets, the query image would be adaptively encoded into different query feature vectors.
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5. Experiments and Discussion

5.1. Evaluation Criteria

The precision rate, recall rate, average precision rate, and average recall rate are commonly
adopted as the most used evaluation criteria. Among them, the precision and recall rates are used to
evaluate the retrieval performance of a single query image, and they are defined as follows [3,5]:

Precision =
Number of similar images returned

Total number of images returned
, (10)

Recall =
Number of similar images returned

Number of all relevant images
, (11)

Further, the average precision rate (APR) and average recall rate (ARR) are applied to evaluate
the retrieval performance of the total number of query images, and they are computed as follows:

APR =

∑T
t=1 Precision(t)

T
, (12)

ARR =

∑T
t=1 Recall(t)

T
, (13)

where t represents the t-th query image, and T is the total number of query images.

5.2. Image Datasets

Six benchmark datasets, consisting of one face image dataset (Face-95 [43]), one object image
dataset (ETHZ [44]), one landmark image dataset (ZuBuD [45]), two color textural image datasets
(KTH-2a [46] and VisTex [47]), and one natural scene image dataset (Corel-100 [48]), are summarized
in Table 1 to evaluate the effectiveness, robustness, and practicability of the proposed descriptors.
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Table 1. Summary of six image datasets.

Number Name Image Size Class Images in Each Class Images Total Format

1 Face-95 180 × 200 72 20 1440 JPG
2 ETHZ 320 × 240 53 5 265 BNG
3 ZuBuD 640 × 480 201 5 1005 JPG
4 VisTex 128 × 128 40 16 640 PPM
5 KTH-2a 200 × 200 11 396/432 4608 BNG

6 Corel-1000
384 × 256

or
256 × 384

10 100 1000 JPG

The Face-95 (No. 1) is a face image dataset, and it was captured by a S-VHS camcorder.
The Face-95 consists of 1440 images in 72 persons. Each person contains 20 images in JPG format with
size of 180 × 200. Note that all images are with face expressions, illumination changes, head scales and
head turns. In Figure 6a, there are some samples from Face-95.
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The ETHZ (No. 2) is an object image dataset, and it was taken with a Sony XC-77P camera.
The ETHZ has 265 images in 53 natural objects. For each object, there are 72 images in BNG format
with size of 320 × 240. Specially, each object is rotated by an arbitrary degree, so the ETHZ also can be
used to evaluate the robustness of rotation. In Figure 6b, some samples from ETHZ are displayed.

The ZuBuD (No. 3) is a landmark image dataset, and it was produced by the Panasonic-NV-MX300
and Pentax-Opti430 cameras. The ZuBuD has 1005 images in 201 landmarks. Each landmark contains
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five images in JPG format with size of 640 × 480. Note that not only some occlusions (e.g., tree and
car) are purposely included in images, but also all images are captured under different views points,
weather conditions and seasons. Thus, the ZuBuD can be used for evaluating the effectiveness under
the complex environment. In Figure 6c, some samples from ZuBuD are showned.

The VisTex (No. 4) and KTH-2a (No. 5) are two color textural image datasets. On one hand,
the VisTex (No. 4) was acquired by collecting images from videos and photographs. The VisTex is
having 640 images in 40 categories (e.g., fabric, flower, matel, terrain, bark, sand, leave, stone, and so on).
Each category includes 16 images in PPM format with size of 128 × 128. In Figure 6d, there are some
samples from VisTex. On the other hand, the KTH-2a (No. 5) was taken with an Olympus C-3030ZOOM
camera, and it consists of 4608 images in 11 categories (e.g., cotton, brown bread, wood, wool, white
bread, corduroy, linen, cracker, cork, aluminium foil and lettuce leaf). Each category contains 396/432
images in BNG format with size of 200 × 200. Specially, the KTH-2a also can be applied to evaluate
whether the proposed descriptors are robust against rotation, scaling and illumination. In Figure 6e,
there are some samples from KTH-2a.

The Corel-1000 (No. 6) is a natural scene image dataset, and it was collected by the SIMPLIcity
system. The Corel-1000 has 1000 images in 10 natural scenes. Each natural scene contains 100 images
in JPG format with size of 384 × 256 or 256 × 384. In Figure 6f, some samples from Corel-1000
are presented.

5.3. Experimental Details

All experiments were performed on a personal computer with an Intel Core i7-7700k CPU@4.20
Ghz, a 16 GB DDR4 RAM@2400 MHz, and a 6 GB NVIDIA GTX1070ti. All six benchmark datasets in
our experiments can be freely downloaded from [43–48]. Note that all images need to be transformed
from the RGB to the grayscale space and the CIELAB color model for extracting the LBP feature
map and the color quantization map respectively. For details, these transformations are referred
to [38]. In addition, the open source implementation of the LBP feature map [9,10] can be downloaded
from http://www.ee.oulu.fi/~{}gyzhao/. Referring to [6,22,23,27,40,49,50], all images in the dataset
are considered as the query images to guarantee the accurateness and reproducibility. Referring
to [6,22,23,27,40,49,50], the number of returned images on VisTex, KTH-2a, Face-95 and Corel-1000 is
defined as 10, and the number of returned images on ETHZ and ZuBuD is defined as five because
there are only five images in each class.

5.4. Evaluation of Color Quantization Levels

Table 2 reports the APR rates of LTCSP, LTCSPuni and LTCSPri with the optimal levels (Aa*, Ab*)
over six datasets. For clarity, the best APR values with the optimal level (Aa*, Ab*) are documented
in bold. Firstly, in Table 2, it can easily draw the conclusions that a single quantization level cannot
satisfy the need of all image datasets. For example, LTCSP yields the highest APR rate on Face-95 when
(Aa* = 5, Ab* = 5); (2) LTCSP acquires the top APR rate on ETHZ when (Aa* = 3, Ab* = 4); and (3) LTCSP
products the highest APR rate on Corel-1000 when (Aa* = 3, Ab* = 3). Secondly, it can be noted that
a relatively simple level also products the highest APR rate. For instance, when (Aa* = 3, Ab* = 2),
LTCSPuni acquires the top APR rate on VisTex, and LTCSPuni and LTCSPri product the highest APR
rate on Corel-1000. Depending upon all proven observations, it is necessary to optimally choose (Aa*,
Ab*) from the five-level color quantizer. Additionally, we provide the APR values of about 25 possible
combinations on six datasets in the supplementary file. In the following experiments, the optimal
levels of Aa* and Ab* are adaptively adopted in the proposed descriptors according to different datasets.

http://www.ee.oulu.fi/~{}gyzhao/
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Table 2. The best APR (%) values of LTCSP, LTCSPuni and LTCSPri with the optimal levels (Aa*, Ab*)
over six datasets.

Method Performance
Data Set

Face-95 ETHZ ZuBuD VisTex KTH-2a Corel-1000

LTCSP
(Aa*, Ab*) (5, 5) (3, 4) (5, 5) (4, 2) (5, 3) (3, 3)
APR (%) 94.31 90.57 85.63 98.56 98.96 83.94

LTCSPuni
(Aa*, Ab*) (5, 5) (5, 3) (5, 4) (3, 2) (4, 3) (3, 2)
APR (%) 97.19 94.04 85.97 97.81 99.15 82.83

LTCSPri
(Aa*, Ab*) (5, 5) (5, 3) (5, 5) (3, 3) (4, 5) (3, 2)
APR (%) 97.39 94.72 86.11 97.53 99.19 82.33

5.5. Comparison with Other Hierarchical Quantization Schemes

Referring to [51–53], the mean square error (MSE) values obtained by the hierarchical quantization
schemes of CH [26], Lab-CVV [30], CDH [32], MSD [33], LTCSP, LTCSPuni, and LTCSPri on six
datasets are reported in Table 3. First, it can be clearly observed that the MSE values by the proposed
LTCSP, LTCSPuni, and LTCSPri methods are obviously lower than all other descriptors on six datasets.
These phenomena illustrate the hierarchical quantization schemes of the proposed LTCSP, LTCSPuni,
and LTCSPri are superior to all other descriptors. Secondly, it can be concluded that the mean square
errors by the proposed LTCSP, LTCSPuni, and LTCSPri methods are extremely close to each other on
six datasets. These results demonstrate that the hierarchical quantization schemes of the proposed
descriptors are stable and consistent between six datasets. Thirdly, it can be summarized that there
exist obvious differences among different datasets. These phenomena demonstrate it is necessary
to adaptively select different color quantization levels according to different datasets. In addition,
we provide the MSE values of 25 color quantization levels (Aa*, Ab*) between the FLCQ and EICQ
quantizers in the CIELAB color model on all six datasets in Appendix A.

Table 3. The mean square errors obtained by the hierarchical quantization schemes of different
descriptors on six datasets.

Method
Data Set

Face-95 ETHZ ZuBuD VisTex KTH-2a Corel-1000

CH 6085.91 6714.11 7483.35 6716.29 5858.41 6386.27
Lab-CVV 1024.93 1430.97 1622.65 1358.55 1090.41 1276.06

CDH 391.83 205.99 90.02 255.97 487.37 370.97
MSD 385.29 200.00 83.31 249.44 481.69 365.06

LTCSP 48.28 64.15 17.75 57.97 95.03 92.12
LTCSPuni 48.28 64.22 17.78 58.77 95.07 102.21
LTCSPri 48.28 64.22 17.75 58.77 94.88 102.21

5.6. Comparison with LBP-Based Methods

Table 4 details the evaluations of the APR and ARR rates resulting from the LBP, LBPuni, and LBPri
methods and the proposed LTCSP, LTCSPuni, and LTCSPri methods. The best {APR, ARR} values are
highlighted in bold. First, it can be clearly observed that the proposed LTCSP, LTCSPuni, and LTCSPri
methods achieve remarkable enhancements as compared to the LBP, LBPuni, and LBPri methods on all
six datasets. The foremost reason is that the proposed methods are beneficial to integrate the color
information and the LBP information. Secondly, it is noted that LTCSP achieves the highest APR rate
on VisTex and Corel-1000, LTCSPri generates the top APR rates on Face-95, ETHZ, ZuBuD, and KTH-2a
datasets respectively. The possible reasons are summarized as follows: (1) there is no difference VisTex
and Corel-1000; and there exist rotation differences on Face-95, ETHZ, ZuBuD, and KTH-2a. According
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to these encouraging results, it can be deduced that the proposed LTCSP, LTCSPuni, and LTCSPri
methods are superior to the LBP-based methods on all six datasets.

Table 4. The evaluations the APR and ARR rates resulting from the proposed methods and the
LBP-based methods on six datasets.

Method Performance
Date Set

Face-95 ETHZ ZuBuD VisTex KTH-2a Corel-1000

LBP
APR (%) 63.45 49.28 61.45 93.37 91.56 71.86
ARR (%) 31.73 49.28 61.45 58.36 2.19 7.19

LBPuni
APR (%) 58.25 44.38 54.63 90.83 88.56 68.94
ARR (%) 29.12 44.38 54.63 56.77 2.11 6.89

LBPri
APR (%) 59.78 45.96 53.07 89.75 85.52 66.73
ARR (%) 29.89 45.96 53.07 56.09 2.04 6.67

LTCSP
APR (%) 94.31 90.57 85.63 98.56 98.96 83.94
ARR (%) 47.15 90.57 85.63 61.60 2.36 8.39

LTCSPnui
APR (%) 97.19 94.04 85.97 97.81 99.15 82.83
ARR (%) 48.60 94.04 85.97 61.13 2.37 8.28

LTCSPri
APR (%) 97.39 94.72 86.11 97.53 99.19 82.33
ARR (%) 48.69 94.72 86.11 60.96 2.37 8.23

5.7. Comparison with Other Color LBP Descriptor

Table 5 reports the evaluations of the APR and ARR rates obtained by the proposed descriptors
and a series of state-of-the-art color LBP descriptors including OCLBP [18], IOCLBP [19], maLBP [23]
mdLBP [23], OC-LBP + CH [26], LPCP [27] on all six datasets. The best values are highlighted in
bold. For LTCSP, it not only reaches the higher results than all other previous color LBP descriptors on
Face-95, ETHZ, ZuBuD and KTH-2a datasets, but also yields the highest {APR = 98.56%, ARR = 61.60%}
on VisTex and {APR = 83.94%, ARR = 8.39%} on Corel-1000. In the case of “LTCSPuni”, it achieves
a better performance than OCLBP, IOCLBP, mdLBP, maLBP, and OC-LBP + CH on all six datasets.
For LTCSPri, it acquires the highest {APR = 98.39%, ARR = 48.69%} on Face-95, {APR = 94.72%,
ARR = 94.72%} on ETHZ, {APR = 86.11%, ARR = 86.11%} on ZuBuD, and {APR = 99.19%, ARR = 2.37%}
on KTH-2a respectively. But we also note that the {APR, ARR} rates of LTCSPuni and LTCSPri are slightly
inferior to the LPCP on VisTex and Corel-1000. The main reason is that LPCP has a higher feature
dimension. However, the issue can be addressed by adding more useful feature vectors. Based on these
considerable results, the effectiveness of the proposed descriptors is demonstrated by comparing with
six state-of-the-art color LBP descriptors. Furthermore, there exists illumination differences, head scale
and head turn on Face-95, rotation differences on ETHZ, point view differences on ZuBuD, rotation,
scaling and illumination differences on KTH-2a. Therefore, the proposed descriptors are also robust
against rotation, scaling and illumination to some extent.



Appl. Sci. 2019, 9, 2211 14 of 23

Table 5. The evaluations of APR and ARR rates obtained by the proposed descriptors and six
state-of-the-art color LBP descriptors on six datasets.

Method Performance
Date Set

Face-95 ETHZ ZuBuD VisTex KTH-2a Corel-1000

OCLBP
APR (%) 64.40 42.57 56.42 92.42 90.62 68.86
ARR (%) 32.20 42.57 56.42 57.76 2.16 6.89

IOCLBP
APR (%) 66.47 45.51 61.05 95.59 94.26 73.01
ARR (%) 33.24 45.51 61.05 59.75 2.25 7.30

maLBP
APR (%) 67.94 55.17 59.46 95.80 92.25 74.45
ARR (%) 33.97 55.17 59.46 59.87 2.20 7.45

mdLBP
APR (%) 72.97 61.43 61.85 97.05 94.88 76.02
ARR (%) 36.49 61.43 61.85 60.65 2.26 7.60

OC-LBP + CH
APR (%) 80.50 78.04 63.98 92.20 95.31 74.94
ARR (%) 40.25 78.04 63.98 57.63 2.27 7.49

LPCP
APR (%) 92.33 88.15 84.82 98.33 98.77 82.85
ARR (%) 46.16 88.15 84.82 61.46 2.36 8.29

LTCSP
APR (%) 94.31 90.57 85.63 98.56 98.96 83.94
ARR (%) 47.15 90.57 85.63 61.60 2.36 8.39

LTCSPnui
APR (%) 97.19 94.04 85.97 97.81 99.15 82.83
ARR (%) 48.60 94.04 85.97 61.13 2.37 8.28

LTCSPri
APR (%) 97.39 94.72 86.11 97.53 99.19 82.33
ARR (%) 48.69 94.72 86.11 60.96 2.37 8.23

Figure 7 depicts the comparisons of the top-10 returned images acquired by the proposed methods
and six previous color LBP methods on six benchmark datasets. Based on the similarity measure
score, the top-10 returned images are sorted in descending order. Among them, the leftmost image in
each row not only is the most similar image, but also is the query image. Clearly, when a returned
image is the relational image, it is tagged in a green box; else it is tagged in a red box. In Figure 7a,
the APR rate is 10% using OCLBP, 10% using IOCLBP, 10% using maLBP, 20% using mdLBP, 40%
using mdLBP, 60% using OC-LBP + CH, 100% using LTCSP, 100% using LTCSPuni and 100% using
LTCSPri respectively. From this figure, we can deduce that the proposed LTCSP, LTCSPuni and LTCSPri
descriptors not only are efficient for face-based image retrial applications, but also are insensitive to
head scales and head turns. In Figure 7b, the {APR, ARR} rate of relational images using OCLBP,
IOCLBP, maLBP, mdLBP, OC-LBP + CH, LPCP, LTCSP, LTCSPuni and LTCSPri are {60%, 60%}, {60%,
60%}, {60%, 60%}, {60%, 60%}, {60%, 60%}, {80%, 80%}, {100%, 100%}, {100%, 100%} and {100%, 100%}
respectively. From this comparison, it can be observed that LTCSP, LTCSPuni and LTCSPri are robust for
object-based image retrial applications when the object of “toy plane” is rotated arbitrarily. In Figure 7c,
the number of relational images using OCLBP, IOCLBP, maLBP, mdLBP, OC-LBP + CH, LPCP, LTCSP,
LTCSPuni and LTCSPri are 6, 6, 6, 8, 7, 6, 6, 6, 10, 10 and 10. From Figure 7c, we summarize that the
proposed descriptors are effective and robust for landmark-based image retrial applications even if
some occlusions (e.g., tree and car) are purposefully included in images. As expected, from Figure 7d–f,
LTCSP, LTCSPuni and LTCSPri still bring about higher APR rates than existing color LBP descriptors,
apart from LPCP in Figure 7d. However, by comparing with the 10th returned images using LPCP,
LTCSP, LTCSPuni and LTCSPri, it can be clearly seen that the proposed descriptors are more semantically
similar with the leftmost query image. From these observations and analyses, the practicability and
usability of LTCSP, LTCSPuni and LTCSPri are illustrated.
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Figure 7. The top-10 returned images using nine methods (the 1st row using OCLBP, the 2nd row using
IOCLBP, the 3rd row using maLBP, the 4th row using mdLBP, the 5th row using OC-LBP + CH, the 6th
row using LPCP, the 7th row using LTCSP, the 8th row using LTCSPuni, and the 9th row using LTCSPri)
on: (a) Face-95; (b) ETHZ; (c) ZuBuD; (d) VisTex; (e) KTH-2a; and (f) Corel-1000 respectively.

Table 6 reports the comparison of the feature dimensionality (d) and the memory cost (kB)
comparison among the proposed descriptors and six former color LBP methods. Similar to LPCP,
the items of 688/496/688/436/544/448 (d) and 5.38/3.88/5.38/3.41/4.25/3.50 (kB) represent LTCSP with
688 d and 5.38 kB conducts experiments on Face-95, 496 d and 3.88 kB on ETHZ, 688 d and 5.38 kB
on ZuBuD, 436 d and 3.41 kB on VisTex, 544 d and 4.25 kB on KTH-2a, as well as 448 d and 3.50 kB
on Corel-1000 respectively. As documented in Table 6, the feature dimension and memory cost of
the proposed descriptors are obviously lower than OCLBP, IOCLBP, maLBP, mdLBP and LPCP on
all six datasets (apart from LPCP on Corel-1000), yet LTCSP, LTCSPuni, and LTCSPri are also higher
than OC-LBP + CH respectively. However, the superiorities of LTCSP, LTCSPuni, and LTCSPri are still
summarized as follows:

1. The additional feature dimensionality and memory cost effectively improve the accuracy by
a large marginal.

2. The LTCSP, LTCSPuni, and LTCSPri achieve the highest score on all six datasets.
3. The proposed methods achieve a trade-off compromise: adaptive feature dimensionality and

acceptable memory cost, and competitive candidate in the real-world CBIR applications.
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Table 6. Feature dimensionality (d) and memory cost (kB) among the proposed descriptors and six
former descriptors.

Method Feature Dimensionality (d) Memory Cost (kB)

OCLBP 1535 11.99
IOCLBP 3072 24.00
maLBP 1024 8.00
mdLBP 2048 16.00

OC-LBP + CH 108 0.84
LPCP 844/760/844/616/592/424 6.59/5.94/6.59/4.81/4.63/3.31
LTCSP 688/496/688/436/544/448 5.38/3.88/5.38/3.41/4.25/3.50

LTCSPnui 491/347/419/203/299/203 3.84/2.71/3.27/1.59/2.34/1.56
LTCSPri 468/324/468/288/396/180 3.66/2.53/3.66/2.25/3.09/1.41

5.8. Comparison with Deep Learning (DL)-Based Models

Additionally, the proposed LTCSP, LTCSPuni, and LTCSPri descriptors are further compared with
the emerging deep learning (DL)-based models including ALEX [54], GoogleNet [55], VGGm128 [56],
VGGm1024 [56], VGGm2048 [56], and VGGm4096 [56]. Referring to [57,58], firstly, the last full-connected
layers in the pre-trained models are converted into the corresponding feature vector. Secondly, the converted
feature vectors are sent to perform the L2 normalization. Thirdly, the normalized feature vectors are used
for computing the similarity measure score.

Figure 8 presents the comparisons among the proposed descriptors and the DL-based models.
For LTCSP, LTCSPuni, and LTCSPri, it can be observed that the proposed descriptors product higher
APRs rates than all DL-based models on VisTex, KTH-2a, Face-95, ETHZ and ZuBuD datasets.
For Corel-1000, LTCSP, LTCSPuni, and LTCSPri product lower APR rates than all DL-based models.
There are two main reasons for this phenomenon: (1) Corel-1000 is a natural scene image dataset that
include more complex scene semantic information; and (2) all DL-based models are pre-trained on the
ImageNet that is the natural scene dataset. Comparing with the DL-based models, the superiorities of
LTCSP, LTCSPuni, and LTCSPri are summarized as follows:

1. The DL-based models rely heavily on expensive hardware configurations (e.g., RAM and GPU),
yet the proposed descriptors can be easily embedded into cheap hardware devices (e.g., chip
and microcontroller).

2. The DL-based models are sensitive to rotation, scaling and illumination differences, while the
proposed descriptors are robust against rotation, scaling, and illumination differences to
some extent.

3. The DL-based models need to be pre-trained on large-scale and annotated datasets (e.g., ImageNet),
which seriously limits its applications.

4. LTCSP, LTCSPuni, and LTCSPri are superior to the DL-based models on five datasets out of six.
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6. Conclusions

In this study, a series of color LBP descriptors namely local ternary cross structure pattern (LTCSP),
uniform local ternary cross structure pattern (LTCSPuni) and rotation-invariant local ternary cross
structure pattern (LTCSPri) is proposed for the CBIR applications. According to the experimental
results, the effectiveness, robustness, and practicability of the proposed descriptors are evaluated
and compared on face, landmark, object, natural scene and textural image datasets. Based on these
considerable results, it can be concluded that the proposed methods achieve a trade-off/compromise
among notable retrieval accuracy, adaptive feature dimensionality and acceptable memory cost,
and they can be considered as a competitive candidate for real-world CBIR applications.

In the future, unsupervised feature selection [59] will be implemented to tackle the issue of the
feature dimensionality and memory cost. In order to improve the robustness against illumination,
the image normalization [60] will be exploited in the image pre-processing. In addition, manifold
learning (ML) [61,62] and query expansion (QE) [63] will also be considered to further enhance the
retrieval performance.
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Appendix A

Table A1. The mean square error of the EICQ and FLCQ quantizers on Face-95.

Quantization
Level Aa*

Quantizer
Quantization Level Ab*

Ab* = 1 Ab* = 2 Ab* = 3 Ab* = 4 Ab* = 5

Aa* = 1 EICQ 1150.65 877.69 825.03 812.65 792.54
FLCQ 355.51 260.54 254.78 254.46 254.45

Aa* = 2 EICQ 737.79 464.83 412.17 399.79 379.69
FLCQ 156.92 61.95 56.20 55.88 55.86

Aa* = 3 EICQ 615.66 342.70 290.04 277.66 257.56
FLCQ 149.70 54.73 48.97 48.65 48.64

Aa* = 4 EICQ 569.25 296.29 243.63 231.25 211.15
FLCQ 149.35 54.38 48.63 48.31 48.29

Aa* = 5 EICQ 549.35 276.39 223.73 211.35 191.25
FLCQ 149.34 54.37 48.62 48.30 48.28

Table A2. The mean square error of the EICQ and FLCQ quantizers on ETHZ.

Quantization
Level Aa*

Quantizer
Quantization Level Ab*

Ab* = 1 Ab* = 2 Ab* = 3 Ab* = 4 Ab* = 5

Aa* = 1 EICQ 1458.63 1018.17 874.3 811.39 778.25
FLCQ 568.67 301.03 286.28 285.81 285.78

Aa* = 2 EICQ 1033.79 593.33 449.46 386.55 353.41
FLCQ 344.29 76.66 61.90 61.43 61.41

Aa* = 3 EICQ 905.31 464.86 320.98 258.07 224.94
FLCQ 347.00 79.37 64.61 64.15 64.12

Aa* = 4 EICQ 851.94 411.49 267.61 204.70 171.56
FLCQ 346.61 78.98 64.22 63.75 63.73

Aa* = 5 EICQ 827.35 386.90 243.02 180.11 146.98
FLCQ 346.61 78.97 64.22 63.75 63.72

Table A3. The mean square error of the EICQ and FLCQ quantizers on ZuBuD.

Quantization
Level Aa*

Quantizer
Quantization Level Ab*

Ab* = 1 Ab* = 2 Ab* = 3 Ab* = 4 Ab* = 5

Aa* = 1 EICQ 1698.31 1247.15 1106.26 1048.22 1020.12
FLCQ 609.53 359.00 344.97 344.27 344.24

Aa* = 2 EICQ 1203.92 752.76 611.87 553.82 525.72
FLCQ 302.63 52.11 38.07 37.37 37.34

Aa* = 3 EICQ 1041.70 590.54 449.65 391.60 363.50
FLCQ 283.95 33.42 19.38 18.68 18.66

Aa* = 4 EICQ 971.45 520.28 379.40 321.35 293.25
FLCQ 283.09 32.56 18.52 17.82 17.80

Aa* = 5 EICQ 935.66 484.50 343.61 285.56 257.46
FLCQ 283.04 32.52 18.48 17.78 17.75



Appl. Sci. 2019, 9, 2211 20 of 23

Table A4. The mean square error of the EICQ and FLCQ quantizers on VisTex.

Quantization
Level Aa*

Quantizer
Quantization Level Ab*

Ab* = 1 Ab* = 2 Ab* = 3 Ab* = 4 Ab* = 5

Aa* = 1 EICQ 1530.69 1167.55 1057.57 1011.01 987.40
FLCQ 556.59 367.10 358.62 358.18 358.17

Aa* = 2 EICQ 1053.23 690.09 580.11 533.55 509.94
FLCQ 267.31 77.81 69.33 68.90 68.88

Aa* = 3 EICQ 898.62 535.48 425.50 378.94 355.33
FLCQ 248.27 58.77 50.29 49.85 49.84

Aa* = 4 EICQ 832.16 469.02 359.04 312.48 288.87
FLCQ 247.46 57.97 49.49 49.05 49.04

Aa* = 5 EICQ 798.37 435.23 325.25 278.69 255.08
FLCQ 247.42 57.92 49.44 49.01 48.99

Table A5. The mean square error of the EICQ and FLCQ quantizers on KTH-2a.

Quantization
Level Aa*

Quantizer
Quantization Level Ab*

Ab* = 1 Ab* = 2 Ab* = 3 Ab* = 4 Ab* = 5

Aa* = 1 EICQ 1299.41 1090.02 1049.36 1031.49 1016.96
FLCQ 438.11 379.63 373.66 373.47 373.47

Aa* = 2 EICQ 838.96 629.56 588.91 571.04 556.51
FLCQ 176.84 118.36 112.39 112.20 112.20

Aa* = 3 EICQ 693.71 484.32 443.66 425.79 411.26
FLCQ 160.37 101.89 95.92 95.74 95.73

Aa* = 4 EICQ 633.55 424.16 383.50 365.64 351.10
FLCQ 159.52 101.04 95.07 94.89 94.88

Aa* = 5 EICQ 604.17 394.77 354.12 336.25 321.71
FLCQ 159.49 101.01 95.03 94.85 94.84

Table A6. The mean square error of the EICQ and FLCQ quantizers on Corel-1000.

Quantization
Level Aa*

Quantizer
Quantization Level Ab*

Ab* = 1 Ab* = 2 Ab* = 3 Ab* = 4 Ab* = 5

Aa* = 1 EICQ 1363.97 1026.78 928.64 887.69 865.82
FLCQ 509.07 342.97 332.88 332.43 332.41

Aa* = 2 EICQ 946.85 609.65 511.52 470.57 448.70
FLCQ 283.30 117.20 107.12 106.67 106.65

Aa* = 3 EICQ 822.90 485.70 387.57 346.62 324.75
FLCQ 268.31 102.21 92.12 91.67 91.65

Aa* = 4 EICQ 768.42 431.23 333.09 292.14 270.27
FLCQ 267.57 101.47 91.39 90.94 90.92

Aa* = 5 EICQ 741.21 404.02 305.88 264.93 243.06
FLCQ 267.54 101.44 91.35 90.91 90.88

In order to illustrate the advantage of the proposed five-level color quantizer (FLCQ), the mean
square error (MSE) values of the EICQ and FLCQ in the CIELAB color model are compared on all six
datasets. To guarantee the experimental fairness, the same settings are set to the EICQ and FLCQ
quantizers, apart from the number of quantization intervals. The lowest MSE values of the FLCQ and
EICQ quantizers are highlighted in bold. Firstly, from Tables A1–A6, it can be summarized that the MSE
values of the FLCQ quantizer are lower than EICQ on all six datasets. Secondly, it can be concluded
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that along with the refinement of levels (Aa*, Ab*), where Aa*, Ab* ∈ {1, 2, . . . , 5}, the MSE values of
the EICQ quantizers drops much more obviously, yet the MSE values of the FLCQ quantizers from
Aa* = 4 to 5 are decrease slightly. The results not only illustrate the stability of the FLCQ quantizers,
but also demonstrate that it is suitable to stop the quantization level at Aa* = 5. Thirdly, under the same
quantization interval and level in both quantizers, the MSE values are different from one another among
six datasets. These results show that there exist obvious color probability distribution differences
among different datasets. So, it is reasonable to adopt the FLCQ quantizer. As a consequence, we can
observe that the FLCQ quantizer produces the lower MSE than the EICQ quantizer.
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