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Featured Application: The prepared three-dimensional graphene with porous structure and high
electrical conductivity is an ideal electrode material for electrochemical energy storage devices,
including supercapacitors and lithium ion batteries, etc.

Abstract: Preparation of pure three-dimensional graphene (3DG) with high rate performance for
supercapacitors is critical for fast rate charge/discharge. Here, 3DG was prepared via thermal annealing
of freeze-dried reduced graphene oxide (RGO) hydrogel under inert gas protection. The formed
3DG as an electrode material for supercapacitors revealed a specific capacitance of 115 F·g−1 at a
current density of 1 A·g−1, and a high capacitance retention of 70% as current density increased to
40 A·g−1. The excellent rate capability was mainly attributed to the reserved porous structure and
higher electrical conductivity for 3DG after thermal reduction than its RGO hydrogel precursor.
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1. Introduction

Three-dimensional graphene (3DG) with a large surface area, high electrical conductivity,
and a tailorable porous structure is an ideal electrode material and conductive scaffold for
supercapacitors [1–3]. Various methods have been developed to prepare 3DG including self-assembly
of graphene oxide (GO) in solution after hydrothermal [4–6] or chemical reduction [7], and
template-assisted chemical vapor deposition [8,9], etc. [10,11]. Generally, the specific capacitance for
supercapacitors based on directly prepared 3DG was in the range of 100 to 300 F·g−1 [12], much lower
than the graphene theoretical capacitance of ca. 550 F·g−1 [13]. It was mainly due to aggregation
and stacking of graphene sheets, largely reducing the specific surface area, which was difficult to
avoid [14]. In consideration of this situation, one effective method was to prepare various composites
based on 3DG via loading active electrode materials onto the 3DG framework, including transition
metal compounds [15–19] and conducting polymers [20,21], etc. [22–25], for further improving the
performance. The specific capacitance has been enhanced up to several thousand F·g−1 [26]. In addition
to capacitive properties, rate performance is also important for supercapacitors, benefiting their fast
charge/discharge. However, the specific capacitance for pure 3DG decreased greatly with increasing
charge/discharge current density, especially for reduced graphene oxide (RGO) hydrogel [27]. The poor
rate performance was mainly attributed to low electrical conductivity, hindering the rapid electron
transport through electrode materials [28]. For improving electrical conductivity, RGO hydrogel has
usually been further reduced via various chemical reducing agents [28] or thermal annealing with H2

at high temperature [29] after freeze-drying. Here, a simple heat treatment method was used to reduce
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freeze-dried RGO hydrogel, without using chemical agents and flammable H2. The obtained 3DG was
applied as an electrode material for supercapacitors. It was found that the capacitance retention ratio
was up to 70% when current density changed from 1 to 40 A·g−1. The excellent rate performance was
mainly due to the intact porous structure and enhanced the electrical conductivityof3DG, compared
with its RGO hydrogel precursor.

2. Experimental

2.1. Preparation of 3DG

Firstly, RGO hydrogel was prepared via hydrothermal reduction of GO according to our previous
method [30]. The used GO aqueous solution of 2 mg·mL−1 with a sheet size larger 500 nm was
purchased from Nanjing XFNANO Materials Tech. Co., Ltd (Jiangsu, China). The formed hydrogel
after freeze-drying was thermally treated under argon protection at 400 ◦C for 2 h with a heating rate
of 10 ◦C·min−1. The obtained 3DG solid was collected for further utilization.

2.2. Characterization

The morphology and structure of 3DG were observed using a MERLIN Compact field emission
scanning electron microcopy (FESEM, ZEISS, Jena, Germany) and a Tecnai G2 F30 transmission electron
microscope (TEM, FEI, Hillsboro, OR, USA). Raman and X-ray photoelectron spectroscopy (XPS)
spectra were recorded on a LabRAM HR Evolution Raman spectrometer (HORIBA, Kyoto, Japan) with
a 514 nm laser beam andan ESCALAB 250 Xi XPS spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA) with Al Kα (1486.6 eV) as the X-ray source and a pass energy of 30 eV, respectively.

2.3. Electrochemical Measurement

Electrochemical measurement for 3DG was performed on a 660D electrochemical workstation (CHI,
Austin, TX, USA) in a three-electrode system with a saturated calomel (SCE) as the reference electrode.
The electrolyte was 6 M KOH aqueous solution. The work electrode was prepared by pressing the paste
on a platinum plate, formed via mixing 3DG, acetylene black and polytetrafluoroethylene (the mass ratio
is 8:1:1) using ethanol as a dispersing agent. KOH, acetylene black and polytetrafluoroethylene were
purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China), and used as received without
further purification. The mass loading for each electrode was ca. 1.77 mg·cm−2. The counter electrode
was an RGO coated platinum plate. And the specific capacitance was calculated by galvanostatic
charge/discharge (GCD) curves similar to our previous method [30].

3. Results and Discussion

3DG was prepared by annealing of freeze-dried RGO hydrogel, formed firstly, via hydrothermal
reduction of GO. As observed by SEM, 3DG after thermal treatment still exhibited porous structure
with pore sizes distributed from several hundred nanometers to several micrometers (Figure 1a),
demonstrating that further annealing of freeze-dried RGO hydrogel has less impact on its pore
structure [31]. High magnification of SEM image (Figure 1b) clearly shows the wrinkle structure of
graphene sheets stacking of 3DG, which is also confirmed via low magnification TEM (Figure 1c).
Obvious graphene crystalline strips are also presented for 3DG, as imaged from high-resolution TEM
(Figure 1d).
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Figure 1.SEM (a,b) and TEM (c,d) images with different magnifications for 3DG. Low magnification 
(a,c), and high magnification (b,d). 

Raman spectrum of 3DG (Figure 2a) shows the two characteristic peaks at 1335 and 1591 cm−1, 
attributed to D and G bands of graphene materials, respectively. The intensity ratio of D and G 
bands (ID/IG) reflects the defect extent of materials. The ID/IG value of prepared 3DG was measured to 
be 1.28, obviously higher than that of its RGO hydrogel precursor with a value of 1.04 [30], 
indicating sp2 domains and edge defects were increased after thermal reduction [32]. C 1s XPS 
spectra of 3DG (Figure 2b) reveal typical peaks at ca. 286 and 289 eV ascribed to C–O and COOH 
groups, respectively. But the intensity for these peaks related to oxygenated groups is obviously 
weaker than the corresponding peaks from RGO hydrogel. Lower oxygen content for 3DG was also 
demonstrated by the ratio of C/O measured by XPS. 3DG had a C/O ratio of 7.1:1, higher than that of 
RGO hydrogel of 6.2:1 [30]. The oxygenated groups were further removed from the 3DG via thermal 
reduction, improving its electrical conductivity. Residual oxygenated groups of a small amount at 
3DG surface benefit its contact with the electrolyte solution. 

 
Figure 2.Raman spectrum (a) and C 1s XPS spectra (b) of 3DG. 

Figure 1. SEM (a,b) and TEM (c,d) images with different magnifications for 3DG. Low magnification
(a,c), and high magnification (b,d).

Raman spectrum of 3DG (Figure 2a) shows the two characteristic peaks at 1335 and 1591 cm−1,
attributed to D and G bands of graphene materials, respectively. The intensity ratio of D and G bands
(ID/IG) reflects the defect extent of materials. The ID/IG value of prepared 3DG was measured to be
1.28, obviously higher than that of its RGO hydrogel precursor with a value of 1.04 [30], indicating
sp2 domains and edge defects were increased after thermal reduction [32]. C 1s XPS spectra of
3DG (Figure 2b) reveal typical peaks at ca. 286 and 289 eV ascribed to C–O and COOH groups,
respectively. But the intensity for these peaks related to oxygenated groups is obviously weaker than
the corresponding peaks from RGO hydrogel. Lower oxygen content for 3DG was also demonstrated
by the ratio of C/O measured by XPS. 3DG had a C/O ratio of 7.1:1, higher than that of RGO hydrogel
of 6.2:1 [30]. The oxygenated groups were further removed from the 3DG via thermal reduction,
improving its electrical conductivity. Residual oxygenated groups of a small amount at 3DG surface
benefit its contact with the electrolyte solution.
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Cyclic voltammetry (CV) curves of the 3DG at various potential scanning rates are shown in
Figure 3a. They always remain in a typical rectangular shape when the scanning rate changes from 10 to
100 mV·s−1. While the CV curves for the RGO hydrogel distorted rapidly when increasing the scanning
rate [30]. Therefore, the obtained 3DG via thermal treatment possesses better rate performance for
supercapacitors, and no obvious redox peaks relevant to oxygenated groups are seen, supporting the
electrical double-layer capacitance for 3DG. Figure 3b displays the GCD curve of 3DG at a current
density of 1 A·g−1. According to this figure, the specific capacitance of 3DG at 1 A·g−1 was calculated
to be 115 F·g−1, lower than RGO hydrogel (198 F·g−1 at ca. 1 A·g−1) [30]. Lower capacitance for
3DG was induced by the disappearance of pseudo-capacitance due to the removal of oxygenated
groups via thermal reduction [33]. Furthermore, the elimination of oxygenated groups increased
the hydrophobicity of 3DG, not benefiting its contact with electrolyte solution [29]. This value is
comparable to commercial activated carbon with a typical specific capacitance of 80 to 120 F·g−1 [34,35].
The discharge curves at different current densities are shown in Figure 3c. According to these curves,
specific capacitances were calculated and plotted versus current densities, as shown in Figure 3d. When
current density increases up to 40 A·g−1, the specific capacitance for 3DG still remains 81 F·g−1. A 70%
capacitance retention ratio for 3DG is presented when current density increasing 40 fold, obviously
better than most reported results for 3DG, while the corresponding RGO hydrogel only showed a
16% capacitance retention when current density increased to ca. 20 A·g−1. Excellent rate performance
was mainly resulted by the intact porous structure and better electrical conductivity for 3DG, which
facilitated ion and electron transport, compared with RGO hydrogel.
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4. Conclusions

3DG was prepared via thermal treatment of freeze-dried hydrothermally synthesized RGO
hydrogel at a relatively low temperature. This method was simple and environment-friendly, avoiding
common use of chemical agents and H2 at high temperature. Electrochemical measurement was
carried out in 6 M KOH aqueous solution using a three electrode system. Supercapacitors based
on 3DG as the work electrode revealed a specific capacitance of 115 F·g−1 at a current density of
1A·g−1, and a high capacitance retention of 70% when the current density increased to 40 A·g−1. It was
mainly attributed to the reserved porous structure and better electrical conductivity of3DG after simple
thermal treatment. The excellent rate capability will facilitate 3DG based supercapacitors in fast rate
charge/discharge applications.
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