
applied  
sciences

Article

Ensemble of Deep Convolutional Neural Networks
for Classification of Early Barrett’s Neoplasia Using
Volumetric Laser Endomicroscopy

Roger Fonollà 1,†,* , Thom Scheeve 1,† , Maarten R. Struyvenberg 2, Wouter L. Curvers 3,
Albert J. de Groof 2, Fons van der Sommen 1 , Erik J. Schoon 3, Jacques J.G.H.M. Bergman 2 and
Peter H.N. de With 1

1 Department of Electrical Engineering, Video Coding and Architectures, Eindhoven University of Technology,
5612 AZ Eindhoven, Noord-Brabant, The Netherlands; t.scheeve@tue.nl (T.S.); fvdsommen@tue.nl (F.v.d.S.);
P.H.N.de.With@tue.nl (P.H.N.d.W.)

2 Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam,
1105 AZ Amsterdam, Noord-Holland, The Netherlands; m.r.struyvenberg@amc.uva.nl (M.R.S.);
a.j.degroof@amc.uva.nl (A.J.d.G.); j.j.bergman@amc.uva.nl (J.J.G.H.M.B.)

3 Department of Gastroenterology and Hepatology, Catharina Hospital, 5623 EJ Eindhoven, Noord-Brabant,
The Netherlands; wouter.curvers@catharinaziekenhuis.nl (W.L.C.);
erik.schoon@catharinaziekenhuis.nl (E.J.S.)

* Correspondence: r.fonolla.navarro@tue.nl
† These authors contributed equally to this work and should be considered co-first authors.

Received: 29 April 2019; Accepted: 21 May 2019; Published: 28 May 2019

Abstract: Barrett’s esopaghagus (BE) is a known precursor of esophageal adenocarcinoma (EAC).
Patients with BE undergo regular surveillance to early detect stages of EAC. Volumetric laser
endomicroscopy (VLE) is a novel technology incorporating a second-generation form of optical
coherence tomography and is capable of imaging the inner tissue layers of the esophagus over a
6 cm length scan. However, interpretation of full VLE scans is still a challenge for human observers.
In this work, we train an ensemble of deep convolutional neural networks to detect neoplasia in 45
BE patients, using a dataset of images acquired with VLE in a multi-center study. We achieve an
area under the receiver operating characteristic curve (AUC) of 0.96 on the unseen test dataset and
we compare our results with previous work done with VLE analysis, where only AUC of 0.90 was
achieved via cross-validation on 18 BE patients. Our method for detecting neoplasia in BE patients
facilitates future advances on patient treatment and provides clinicians with new assisting solutions
to process and better understand VLE data.

Keywords: Barrett’s esophagus; deep learning; volumetric laser endomicroscopy; optical coherence
tomography; classification; esophageal adenocarcinoma; glands; machine learning

1. Introduction

Esophageal adenocarcinoma (EAC) is among the most common and lethal cancers in the world.
EAC has shown a rapid increase since the late 1980s and it is estimated that the number of new
esophageal cancer cases will be doubled by 2030 [1]. Barrett’s esophagus (BE) is a condition in
which normal squamous epithelium at the distal end of the esophagus is replaced by metaplastic
columnar epithelium due to overexposure to gastric acid and it is associated with an increased risk of
developing EAC [2]. For this reason, patients diagnosed with BE currently undergo regular surveillance
with white-light endoscopy (WLE) with the aim to detect early high-grade dysplasia (HGD) and
intramucosal adenocarcinoma. It is important to detect these lesions early, as curative treatment is
still possible at this stage by a minor endoscopic intervention. However, early neoplastic lesions
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are regularly missed because of their subtle appearances, or as a result of sampling errors during
biopsy [3–5].

Volumetric laser endomicroscopy (VLE) is a novel advanced imaging system with the potential to
early detect suspicious areas containing BE, which may be regularly missed with current white-light
endoscopy. VLE incorporates a second-generation form of optical coherence tomography (OCT)
technology. Improvements in image acquisition speed enable this balloon-based system to perform
a quick circumferential scan of the entire distal esophagus. VLE provides a three-dimensional map
of near-microscopic resolution of the subsurface layers of the esophagus over a length of 6 cm and
depth of 3 mm into the tissue. However, a VLE scan generates a large amount of gray-shaded data
(i.e., typically 1200 cross-sectional images or frames of 4096 × 2048 pixels) that need to be analyzed in
real time during endoscopy.

In recent studies [6,7], clinical VLE prediction models were developed for BE neoplasia with
successful accuracy results. Several visual VLE features (lack of layering, high surface signal intensity,
and irregular glandular architecture) were identified as possible indicators of BE neoplasia by
comparing VLE-histology correlated images from 25 ex-vivo specimens. However, follow-up studies
using ex-vivo [8] and in-vivo [9] VLE data suggested that full-scan VLE interpretation by experts
remains a challenge. Computer aided diagnosis (CADx) systems offer relevant assistance in clinical
decision making. In van der Sommen et al. [10], a CADx system was developed for the detection of
early BE neoplasia on WLE images. Early work in endoscopic optical coherence tomography (EOCT)
was shown in Qi et al. [11,12], where a CADx system based on multiple feature extraction methods
was developed to detect neoplasia in BE patients in a dataset of EOCT biopsies. Similar related work
was performed by Ughi et al. [13], where a system was developed to automatically characterize and
segment the esophageal wall of patients with BE using tethered capsule endomicroscopy (TCE).

The first related work performed on VLE was presented in Swager et al. [14], where a CADx
system was developed to detect early BE neoplasia on 60 VLE images from a database of high-quality
ex-vivo VLE-histology correlations (30 non-dysplastic BE (NDBE) and 30 neoplastic images, containing
HGD or early EAC). In their work, two novel clinically-inspired quantitative image features specific
for VLE were developed based on the VLE surface signal and the intensity histogram of several layers.
Recently, additional work was performed by Scheeve et al. [15], where another novel clinically-inspired
quantitative image feature was developed based on the glandular architecture, and analyzed in a
dataset of 18 BE patients with and without early BE neoplasia (88 NDBE and 34 HGD/EAC). Both
studies investigated the features using several machine learning methods, such as support vector
machine, random forest or AdaBoost, and showed successful results towards BE neoplasia assessment.
However, the results were only obtained in a small patient population (29 endoscopic resections and
18 VLE laser-marked regions of interest (ROIs), respectively), suggesting that a larger dataset might be
needed to further validate and possibly improve the results.

In this study, we extend the work of Scheeve et al. [15] by using a larger dataset of 45 patients,
and we incorporate current state-of-the-art deep learning techniques to improve the classification of
non-dysplastic and neoplastic BE patients. To the best of our knowledge, this is the first study applying
deep convolutional neural networks (DCNNs) for early BE neoplasia classification on patients acquired
with in-vivo VLE. The results are compared with previously developed clinically-inspired features
specific for VLE, and validated on a test dataset that is unseen during training time.

2. Materials and Methods

2.1. VLE Imaging System

The Nvision VLE Imaging System (NinePoint Medical, Inc., Bedford, MA, USA) integrates a
second-generation form of OCT technology, termed optical frequency-domain imaging (OFDI) [16–19].
The VLE system was composed of a disposable optical probe with an inflation system and an
imaging console, which incorporates a swept light source, optical receiver, interferometer, and a
data-acquisition computer. The light source consisted of a near infrared light (λ = 1250–1350 nm) that
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was transmitted into the catheter. At the distal end of the optical probe, a non-compliant balloon
allowed a correct alignment in the esophagus for in-vivo imaging. During an automatic pullback of
the optical probe, a 6 cm circumferential segment of the esophagus is scanned in 90 seconds. A VLE
pullback acquires 1200 cross-sectional images with a sampling density of 50 µm (voxel dimensions,
5.9 µm × 16.2 µm × 50 µm). The axial and lateral resolution of a VLE image were approximately 7 µm
and 40 µm, respectively. The penetration depth reached approximately 3 mm into tissue. For more
comprehensive technical details we refer to previous publications [16–19].

2.2. Data Collection and Description

In a prospective multi-center clinical study, for the PREDICTion of BE neoplasia (PREDICT
study), VLE data was acquired in vivo from 45 patients undergoing BE surveillance at the
Amsterdam UMC (AMC; Amsterdam, The Netherlands), the Catharina Hospital (CZE; Eindhoven,
The Netherlands), and the St. Antonius Hospital (ANZ; Nieuwegein, The Netherlands) from October
2017 to November 2018, using a commercial VLE system (NinePoint Medical, Inc., Bedford, MA, USA).
Patients undergoing surveillance of NDBE, or patients referred for work-up and treatment of BE with
early neoplasia (HGD and/or EAC), were eligible for this study. The study was approved by the
institutional review boards at AMC, CZE, and ANZ. Written informed consent was obtained from all
patients prior to VLE imaging.

For each patient, one or several regions of interest (ROIs) were extracted in the following manner.
First, four-quadrant laser-mark pairs were placed at 2 cm intervals using the VLE system, according to
the Seattle biopsy protocol [20,21]. Next, a full VLE scan was performed, after which the VLE balloon
was retracted from the esophagus. Then, regular endoscopy was used to obtain biopsies in between
the laser-mark pairs. Finally, ROIs were cropped from the full scan in between the same laser-mark
pairs, and were labeled according to pathology outcome, ensuring histology-correlation [22] of the
extracted ROIs. The histopathological correlation was assumed to apply over 1.25 mm, conform a
small biopsy specimen, comprising 25 cross-sectional images, in both vertical directions (i.e., distal
and proximal), and thus resulting in 51 images per ROI.

In total, 233 NDBE and 80 neoplastic (HGD/EAC) ROIs were laser-marked under VLE guidance
and subsequently biopsied for histological evaluation by an expert pathologist for BE. Out of the
total cohort of patients, the first 22 patients were used as the training dataset (134 NDBE and 38
HGD/EAC ROIs, totalling 8772 VLE images) and the remaining 23 were treated as the unseen test
dataset (99 NDBE and 42 HGD/EAC ROIs, totalling 7,191 VLE images).

2.3. Clinically-Inspired Features for Multi-Frame Analysis

In the previous works of Klomp et al. [23] and Scheeve et al. [15], several clinically-inspired
quantitative image features were developed, the layer histogram (LH) and gland statistics (GS),
to detect BE neoplasia in single frames. We referred to analysing one VLE image in a ROI to predict
BE neoplasia as single-frame analysis. In Scheeve et al. [15], a single VLE image per ROI was used
to compute the resulting prediction for each ROI. For a fair comparison with these studies, and per
our request to the authors, we present our results by extending the single-frame analysis to 51 VLE
images per ROI, further referred to as multi-frame analysis. The development of the clinically-inspired
features has been described previously [15,23,24]. A summary of the methodology for the multi-frame
analysis is given in the following sections.

2.3.1. Preprocessing

Relevant tissue regions were segmented from VLE images, removing regions not suitable
for analysis, such as regions of air and deeper tissue with a low signal-to-noise ratio. The tissue
segmentation masks were obtained using FusionNet with a domain-specific loss function [25]. Using
these segmentation masks, tissues of interest (TOIs) were segmented and flattened, by extracting the
first 200 pixels (i.e., approximately 1 mm of tissue) from the top of each column that is indicated by the
tissue segmentation mask [24].
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2.3.2. Layer Histogram and Gland Statistics

From the flattened TOI data, the LH feature was computed. The LH feature captures the (lack of)
layering in the VLE data by computing the N-bin histograms of the first M layers of d pixels, starting
from the top of the flattened TOI data [23,24]. To detect glandular structures in the flattened TOI data,
gland segmentation masks were computed using a simple segmentation algorithm, involving local
adaptive thresholding and basic morphological operations. After glands were detected, the GS feature
was computed, which captures the characteristics of glandular structures in the VLE data. This GS
feature comprises features for (1) texture analysis, (2) geometry analysis, as well as (3) VLE-specific
information [15]. Both LH and GS capture characteristics in the VLE data that are indicative for
dysplasia [7,26].

2.4. Ensemble of Deep Convolutional Neural Networks

In recent years, deep convolutional neural networks (DCNNs) have shown to be highly effective
for segmentation, classification, and learning specific patterns in images. In the paradigm of optical
coherence tomography (OCT), DCNNs have been successfully applied to OCT, such as segmentation of
retinal layers [27] and macular edema [28], detection of macular fluid [29], or treatment of age-related
macular degeneration [30,31]. In this section we present our approach with DCNNs in a dataset of
in-vivo VLE images for the classification of neoplasia in patients with BE.

2.4.1. Preprocessing VLE

In order to guide the network towards a better convergence, and similar to single-frame
analysis (Section 2.3.1), we performed some specific cleaning by removing non-informative areas
from the original VLE images. This removal involved two main sources of less important information:
(1) the pixel background information, and (2) the balloon pixel information. Our aim was to maximize
the useful information that the network can learn and exclude any additional learning that degrades
the classification task. For this reason each image was cropped to occlude the balloon. For each VLE
image, the balloon region (Figure 1, red curve) was removed following the steps below:

1. For each image the average intensity curve was computed along the vertical dimension, thus
allowing us to obtain the profile of changing intensity (Figure 1, cyan curve).

2. The first derivative of the average intensity curve was computed to obtain a quantitative
measurement of slope differences (Figure 1, yellow curve).

3. Given the first derivative, the balloon end location was defined as the local maximum value found
after the minimum point of the first derivative (Figure 1, green star).

0.0

0.2

0.4

0.6

0.8

1.0

Pi
xe

l i
nt
en

sit
y

Figure 1. (Best viewed in color) Example of preprocessing applied to each volumetric laser
endomicroscopy (VLE) frame. At the left side of the image the balloon line (red line) is located
by calculating the average intensity of the whole image (cyan line) and then using the first derivative
(yellow line) to extract the end point of the balloon pixel (green star). Scale bars: 0.5 mm.
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2.4.2. Preprocessing DCNN

Each of the networks were initialized using pre-trained ImageNet weights [32]. One limitation of
using a pre-trained model is that the associated architecture cannot be changed, since the weights are
originally trained for a specific input configuration. Hence to match the requirements of the pre-trained
ImageNet weights, each image was resized to 224× 224 pixels. In addition, the dataset was normalized
by subtracting the mean and dividing by the standard deviation specified by the pre-trained ImageNet
weights. As a final step, the gray-scale channel of each VLE image was triplicated to simulate the RGB
input requirement of the pre-trained model (Figure 2).

Detect balloon line Crop VLE image

• Subtract �

• Divide �

• Resize 224x224

Input to DCNN3-channel VLE 
image

ImageNet pre-
processing

Figure 2. Automatic workflow of the preprocessing applied to each VLE frame. First the balloon line is
detected in the VLE frame. Secondly, the image is cropped below the detected balloon line. The VLE
image is then resized to 224 × 224. The mean (µ) is subtracted and the standard deviation ( σ) divided
according to the pre-trained ImageNet weights. Finally, the gray-scale channel is then triplicated to
simulate the RGB requirements of the pre-trained network.

2.4.3. Data Split of the Training Dataset

For separating training and validation datasets, we propose to split the data according to the
patient neoplasia-basis, rather than splitting data on frame-basis. Splitting on frame-basis cannot be
done naively, since the frames are highly correlated in the following way. Each (multi-frame) ROI
of the training dataset (22 patients of the PREDICT study) contains a total of 51 frames comprising
roughly 2.5 mm of the total 6 cm length of the scanned esophagus. Succeeding frames are therefore
highly correlated and contain nearly the same data. The only remaining option therefore is splitting
data on patient neoplasia-basis. To avoid overfitting, the patient distribution for each neoplasia grade
was analyzed.

In Table 1, we show the number of patients that belong to each class, as well as the number of ROIs
pathologically confirmed as non-dysplastic and dysplastic. We can observe that three patients share
the NDBE and HGD class label, therefore we decided to split our datasets in three groups. To avoid
patient bias during training, we select only ROIs from NDBE and HGD and data from one patient
that have both. This leads to three permuted datasets. Given this permutation, we have trained three
individual DCNNs, which together is called an ensemble of networks. When evaluated in the external
test dataset, the resulting ensemble of the three networks is used to obtain the probability of an ROI
belonging to NDBE or HGD, further explained in Section 3.

Table 1. Class distribution based on the regions of interest (ROIs) of the training dataset of the first
22 patients.

Label No patients No ROI No frames

NDBE 14 114 5814
HGD 5 30 1530

NDBE and HGD 3 28 1428

NDBE: non-dysplastic Barrett’s esophagus, HGD: high-grade dysplasia.
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2.4.4. DCNN Description

In this section we present the choice of the network architecture and motivate why it best fits our
data. In this work we utilized an ensemble of networks, each of them based on the VGG16 architecture
proposed by Simoyan et al. [33]. We have found that due to the unbalanced nature of the data, a simple
but yet deep model was the most effective way to classify our VLE images. Deep models are useful to
learn complex features, but at the cost of a large amount of parameters to train and slow inference time.

Figure 3 depicts the architecture of the DCNN, based on the VGG16 network. VGG16 is composed
of five groups of convolutional blocks with a maxpooling layer at the end of each block. In the original
architecture, the classification layer was wrapped into two fully connected (FC) layers followed by the
classification layer with a softmax activation. In our work, we added a global average pooling (GAP)
layer (Figure 3, blue block) after the last convolutional block, which reduced the amount of learnable
parameters from 7 × 7 × 512 to 1 × 1 × 512. The GAP layer was followed by a fully connected
layer of 512 hidden units instead of 4096 proposed in the original VGG16 network. Subsequently,
a dropout layer (p = 0.5) was added to the architecture, followed by the final classification layer with
a softmax activation.
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Figure 3. Architecture of the deep convolutional neural network (DCNN) used in this study, which is
based on VGG16.

2.4.5. Training

We have fine-tuned the VGG16 of each ensemble-network by freezing the first four convolutional
blocks. Stochastic gradient descent (SGD) was chosen as optimizer with momentum (m = 0.99).
We opted for using an adaptive learning rate via cosine annealing with restarts. The learning rate
fluctuated between 1e-3 and 1e-6. The learning cycle was repeated every two epochs. Furthermore,
to alleviate imbalanced data between both classes, we have enforced an equal distribution of classes
for each epoch. We have chosen a batch size of 100, equally sampling both classes. For each image,
several data augmentations were applied, to enrich the generalization of the network and to avoid
overfitting. We chose to use a combination of horizontal flip, motion blur and optical grid distortion,
which in our opinion best represents the behaviour of VLE images with in-vivo data exploration. The
three DCNNs were trained until convergence was achieved.

3. Results

The results in this section are divided in three parts: (A) clinical feature comparison of single-frame
analysis and multi-frame performance, (B) performance of the three DCNNs and its ensemble, and (C)
comparison of our work with the literature.

A. Clinical feature comparison. In this section we report the results obtained in the multi-frame
analysis provided per our demand to the authors of Scheeve et al. [15]. We compared the multi-frame
classification results with the single-frame work. The multi-frame analysis for the LH feature achieved
an average area under the receiver operating characteristic curve (AUC) of 0.90 ± 0.07 compared to
the single-frame analysis, which achieved an AUC of 0.86 ± 0.02. In the same manner, the GS feature
achieved an average AUC of 0.83 ± 0.01 for the multi-frame analysis, in comparison with an average
AUC of 0.84 ± 0.02 for the single-frame methodology. Overall, we observe that the GS feature does
not achieve better performance than the single-frame technique. Alternatively, we saw an increased
performance on the LH feature when the multi-frame analysis is applied (AUC 0.90 vs. 0.86).
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B. Performance of the three DCNNs and its ensemble. In order to validate the ensemble of
DCNNs, we have evaluated our approach using the unseen test dataset. The posterior probabilities
were computed for each VLE frame using the three trained DCNNs. For each ROI, a total of 51 possible
predictions were obtained for each DCNN. The final probability of an ROI belonging to NDBE or
HGD was computed by averaging the total number of probabilities in each DCNN, reported as the
multi-frame probability. In Equation (1), the multi-frame probability can be explained as the decision
of an ROI belonging to certain class A, computed by averaging the total probabilities of M frames for a
number of N networks, where in our case M = 51 and N = 3.

P(A)ROI =
1

N × M

N−1

∑
i=0

M−1

∑
j=0

Pij(A). (1)

Given a multi-frame probability, we computed accuracy metrics for both the training dataset and
the test dataset. Additionally we computed the sensitivity, defined as the rate of HGD ROIs that are
correctly identified as such (true positives), and specificity, defined as the proportion of NDBE ROIs
that are correctly identified as such (true negatives). The receiver operating characteristic curve (ROC)
was computed as well for both datasets for each trained DCNN. In Table 2, we present the results of
the ensemble of DCNNs. To showcase the efficacy of our method, we report the classification results
using the single-frame and multi-frame analysis for each of the training dataset and the test dataset.
All metrics are reported with confidence intervals (CIs) at 95%. All presented values are reported at
the optimal threshold setting, which was calculated from the training dataset.

Table 2. Comparison of single-frame and multi-frame analysis using the ensemble deep convolutional
neural network (DCNN) for both the training and the test dataset.

Accuracy Specificity Sensitivity AUC

Single-frame
Training set 0.87 (95% CI, 0.82–0.92) 0.87 (95% CI, 0.82–0.92) 0.87 (95% CI, 0.82–0.92) 0.95 (95% CI, 0.90–0.99)
Testing set 0.83 (95% CI, 0.77–0.89) 0.84 (95% CI, 0.77–0.89) 0.83 (95% CI, 0.77–0.90) 0.90 (95% CI, 0.85–0.95)

Multi-frame
Training set 0.92 (95% CI, 0.89–0.96) 0.92 (95% CI, 0.88–0.96) 0.95 (95% CI, 0.91–0.98) 0.98 (95% CI, 0.96–0.99)
Testing set 0.88 (95% CI, 0.83–0.94) 0.85 (95% CI, 0.79–0.91) 0.95 (95% CI, 0.92–0.99) 0.96 (95% CI, 0.93–0.99)

Confidence intervals (CIs) reported between brackets.

We observe that similar to the results presented in Section 3, we obtain an increased performance
when accounting the multi-frame probability for both the training dataset (AUC, 0.98 vs. 0.95) and
the test dataset (AUC, 0.96 vs. 0.90). Figure 4 portrays the computed ROC for the test dataset and
the associated confusion matrix. The ROC curve was computed for each trained DCNN and the total
ensemble. It shows that the combination of the three DCNNs improves the performance of our model
(AUC, 0.96 vs. 0.92–0.96) (Figure 4a).

C. Comparison of our work with the literature. Previous work done in VLE images [14,15] focused
on extracting features to detect neoplasia in BE patients. To compare with the literature, we have
extended the work of Scheeve et al. [15] for multi-frame analysis. In Table 3, we compare our results
with recent work on VLE, as well as highlight the nature of each of the studies. Our study is based on
experiments with a more robust dataset, provided by increasing to 45 the number of BE patients, which
allows the DCNN to learn a wider range of features. Moreover, we show that using a multi-frame
approach for classifying an ROI increases the confidence of our algorithm, compared to single-frame
analysis (0.90 vs 0.86 with Scheeve et al. [15] method, and 0.96 vs 0.91 with our proposed DCNN).
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Figure 4. (a) Receiver operating characteristic curve for the three trained networks and the resulting
ensemble validated on the external dataset. AUC denotes the area under the receiver operating
characteristic curve. (b) Resulting confusion matrix for the external dataset.

Table 3. Evaluation of literature studies using volumetric laser endomicroscopy for detection of
neoplasia in Barrett’s esophagus patients.

Study Type Analysis Number of Patients Evaluation Method AUC

Swager et al. [14] Ex-vivo Single-frame resection 29, endoscopic resections LOOCV 0.91 *
Scheeve et al. [15] In-vivo Single-frame VLE 18, VLE laser-marked ROIs LOOCV on training dataset 0.86 *
Multi-frame LH and GS (Ours) In-vivo Multi-frame VLE 18, VLE laser-marked ROIs 4-fold CV on training dataset 0.90
Ensemble of DCNN (Ours) In-vivo Single-frame VLE 45, VLE laser-marked ROIs Validated with unseen test dataset 0.91
Ensemble of DCNN (Ours) In-vivo Multi-frame VLE 45, VLE laser-marked ROIs Validated with unseen test dataset 0.96

* Best reported results. VLE: volumetric laser endomicroscopy.

4. Discussion

DCNNs can be seen as black-box models that output probabilities based on features learned
during the training process, where it is difficult to control which features or patterns in the image are
relevant. In contrast with previous work on VLE images [14,15], where handcrafted features were
selected based on visual properties with a clinical explanation, we have trained several DCNNs that
provide a decision, based on learnable features from VLE images. Therefore, to observe the decisions of
our trained DCNN, we computed the class activation maps (CAMs) [34], allowing us to observe which
regions of the image were chosen as most important and discriminative. Examples of CAMs can be
seen in Figure 5. We observe that for the HGD class, the activation maps mainly focus on concentration
of glands that are located around the first layers of the esopaghus. Similar conclusions were presented
in the analysis reported by Wang et al. [35]. Alternatively, we consider that the activation maps of
the NDBE class indicate the homogeneity of the esophagus layers. These findings suggest a possible
link between clinically-inspired features and the decisions learned by our DCNNs. More validation is
needed to confirm these findings.

Table 3 shows the differences between the reported studies. In comparison with Swager et al. [14],
and similar to Scheeve et al. [15], we have obtained a dataset of in-vivo VLE images, but with the
following differences: (1) our dataset is different from Swager et al. but closer to Scheeve et al. and (2)
our dataset is larger than the other two references (Scheeve et al. compares only 18 patients). Our work
improves in both the data acquistion and the evaluation method, by using a dataset of 22 in-vivo
patients to uniquely train three DCNNs and further evaluate the results in a separate set of 23 in-vivo
unseen patients. We use the AUC as the comparison metric because it is the most suitable value that
better quantifies the work done in the aforementioned studies. Our work shows that we achieve
the best reported results by utilizing a larger dataset in combination with state-of-the-art DCNNs.
Moreover, in comparison with previous studies we take advantage of adjacent VLE frames to improve
the classification results for a more robust prediction of neoplasia. Although our results are a positive
step towards VLE interpretation, we have the opinion that an even larger dataset will provide more
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Figure 5. (Best viewed in color) Several VLE frames and its corresponding class activation maps (CAM).
Images (a,b) belong to regions of interest (ROIs) with high-grade dysplasia (HGD), represented as class
activation map (CAM) in images (e,f). Images (c,d) correspond to ROIs with non-dysplastic Barrett’s
esopaghagus (NDBE), with its CAM in images (g,h). Scale bars: 0.5 mm. Color bar (a–d): pixel intensity.
Color bar (e–h): class activation intensity.

insight into understanding VLE and will pave the way towards further improving early detection
of EAC.

5. Conclusions

Barrett’s esophagus (BE) is precursor of esophageal cancer, where detection of neoplasia in
patients with this condition can enable early prevention and avoid further complications. We show
that deep convolutional neural networks are capable of classifying a VLE region of interest between
non-dysplastic BE (NDBE) and high-grade dysplasia (HGD). In this work we have trained several
DCNNs to classify neoplasia in patients with BE and we evaluated them in a dataset of 45 patients.
We obtained a specificity of 0.85, a sensitivity of 0.95 and an AUC of 0.96 on the test dataset, which
clearly outperforms earlier work. Compared to earlier work, we took advantage of multi-frames of
the in-vivo endoscopic acquistion to improve the confidence of our algorithm on predicting neoplasia.
As far as our knowledge extends, our work is the first to train DCNNs on in-vivo VLE images and
validate it using an unseen dataset. In our opinion, the presented study will improve the treatment of
patients with BE by providing assistance to endoscopists. Our work could potentially aid clinicians
towards a more accurate localization of regions of interest during biopsy extraction and provide an
assessment to replace costly histopathological examinations.
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