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Abstract: The dynamic response of a simply supported double-beam system under moving loads was
studied. First, in order to reduce the difficulty of solving the equation, a finite sin-Fourier transform
was used to transform the infinite-degree-of-freedom double-beam system into a superimposed
two-degrees-of-freedom system. Second, Duhamel’s integral was used to obtain the analytical
expression of Fourier amplitude spectrum function considering the initial conditions. Finally, based on
finite sin-Fourier inverse transform, the analytical expression of dynamic response of a simply
supported double-beam system under moving loads was deduced. The dynamic response under
successive moving loads was calculated by the analytical method and the general FEM software
ANSYS. The analysis results show that the analytical method calculation results are consistent
with ANSYS’ calculation, thus validating the analytical calculation method. The simply supported
double-beam system had multiple critical speeds, and the flexural rigidity significantly affected both
peak vertical displacement and critical speed.

Keywords: moving loads; Euler-Bernoulli beam theory; double-beam; analytical method;
critical speeds

1. Introduction

Single-beam structures, one-dimensional continuous systems with different excitations and
various boundary conditions, have been investigated extensively for many decades. The solutions
and theories of dynamic problems of a single-beam structure are perfect [1–7]. Based on previous
studies on single beams, a double-beam system, consisting of two one-dimensional continuous beams
connected by a layer, is suggested. In fact, double-beam systems have attracted much attention from
researchers and engineers in the past decade.

Based on the assumption that both beams of system are identical, Chen and Sheu [8] studied the
dynamic response, free vibration, and static buckling of two parallel beams with different boundary
conditions and a viscoelastic material layer in between. Similarly, Vu and Ordonez et al. [9] introduced
a method to analyze a double-beam system subject to harmonic excitation with boundary conditions
that must be the same on the same side. Rusin and Śniady et al. [10] considered the dynamic response
of a double-identical-string system traversed by a constant or harmonically oscillating moving load.
Using a simple change of variables to decouple two governing equations describing the vibration of
two beams, Wu and Gao [11] developed analytical solutions for the dynamic deflections of both beams
under moving harmonic loads. However, many researchers reject this assumption due to the limitations
of identical beam systems. Based on previous studies for double-string systems [12], Oniszczuk [13]
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provided analytical solutions for the free and forced vibrations of an elastically connected complex
double-beam system with a simply supported boundary condition. Li and Hua [14] reported a
spectral finite-element method for a general double-beam system with unequal flexural rigidities,
unequal masses, and arbitrary boundary conditions to investigate the free vibration characteristics.
Zhang and Lu et al. [15] investigated the free and forced transverse vibrations of an elastically connected
simply supported double-beam system under a compressive axial load. Furthermore, new advances
have been made in the research of double-beam systems in recent years. Palmeri and Adhikari [16]
proposed a novel state-space form to study the transverse vibrations of a double-beam system with
inhomogeneous beams, arbitrary boundary, and rate-dependent constitutive law for the inner layer.
Stojanović and Kozić [17] developed the general analytical solutions of forced vibrations of beams
subjected to compressive axial loading and arbitrarily distributed continuous loads. Using the direct
Lyapunov method and simplifying the system, Pavlović and Kozić et al. [18] investigated the stability
and instability of a double-beam system under compressive axial loading. Li and Hu et al. [19,20]
applied a modal-expansion method to determine the forced vibration responses of a double-beam
system when interconnected by a viscoelastic layer and joined by a uniformly distributed connecting
elastic layer. Wu and Gao [21] studied the dynamic response of a double-beam system under a moving
oscillator and solved the problem using a single-step scheme.

Double-beam systems play an important role in many fields of structural engineering, such as
sandwich or composite beams, and nanostructures. Nanobeams as an important element in highly
accurate small-scale devices, and are used as nanosensors, nanoresonators, nanoactuators, nanoswitches,
etc. These structures have the advantage of size, scale, and significant mechanical behavior, which makes
them applicable in different systems. Murmu [22] mentioned that the nanobeam is an important element
and is being extensively used for reliable and computationally efficient analysis of nanostructures,
namely nanosensors, nanoresonators, and nanoswitches. Double nanobeam systems with great
application in nano-optomechanical systems and sensors are one of the main nanostructures being
investigated [23]. It was suggested that the applications of double-nanobeam systems are important
in nano-optomechanical systems [24]. Murmu and Adhikari [22,25] analyzed the free bending and
longitudinal vibrations of a double-nanobeam system (DCNTS) within the framework of nonlocal
elasticity theory. Assuming that two nanotubes are identical, an analytical method for the forced
vibration of an elastically connected DCNTS with a moving nanoparticle was developed by Şimşek [26].
Moreover, The double-beam model has also been widely used in studying the dynamic response of
bridge-rail systems under moving loads [27–32]. Hussein and Hunt [33] used an infinite double-beam
system under moving loads to simulate floating-slab tracks and investigated the vibration of the
system, in which the characteristics of two beams were different. Xin and Gao [34] studied the vibration
transmission from slab track structures into a bridge and used the finite-element method and multibody
dynamics theory to solve the problem.

The literature review indicates that the existing studies on the dynamics of double-beam systems
have mainly focused on the dynamic response under free vibration and individual moving loads
according to relatively complex calculation methods, but they have rarely evaluated the dynamic
response of simply supported double-beam systems under successive moving loads in arbitrary
spaces and sizes. A model was developed in this study for analyzing the dynamic response of a
simply supported double-beam system under successive moving loads in arbitrary spaces and sizes;
in order to reduce the difficulty of solving the equation, finite sin-Fourier transform was used to
transform the infinite-degree-of-freedom double-beam system into a superimposed infinite number of a
two-degrees-of-freedom system and obtain the analytical expression of its dynamic response. Based on
a double-beam system under load-groups containing several moving loads, the analytical method
proposed in this paper was used to calculate its dynamic response, and the calculation results were
consistent with those obtained from the ANSYS finite-element numerical method, thus demonstrating
the effectiveness of the analytical method proposed in this paper; some meaningful conclusions for
engineering design were drawn as well. The analytical calculation method proposed in this paper for
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studying the dynamic response of a double-beam system under successive moving loads is briefer
than previous methods and provides a theoretical foundation for further engineering applications of
double-beam systems.

2. Vertical Dynamic Response of a Simply Supported Double-Beam System

2.1. Mathematical Model Building and Parameter Solving

Figure 1 shows a simply supported double-beam system under successive moving loads in
arbitrary spaces and sizes; after introducing a constructor S(ζ), the successive moving loads P(t) can
be expressed as follows:

P(x, t) =
N∑

i=1

Fiδ[x− v(t− ti)]S
[

v(t− ti)

l

]
(1)

S(ζ) =

1 0 ≤ ζ ≤ 1

0 else
(2)

where δ is Dirac function; l is the length of a simply supported double-beam system; Fi is the ith moving
load. It is assumed that F1 acts on x = 0 at the initial moment (t = 0); ti = di/v, di represents the
distance from Fi to F1.
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The vertical vibration of the double-beam system shown in Figure 1 is governed by the two
coupled partial differential equations [35]:

E1I1
∂4y1

∂x4
+ m1

∂2y1

∂t2 + κ(y1 − y2) = P(t) (3)

E2I2
∂4y2

∂x4
+ m2

∂2y2

∂t2 − κ(y1 − y2) = 0 (4)

where y1(x, t), y2(x, t) are the vertical displacements of primary and secondary beams, respectively;
E1, E2 are the elastic moduli of primary and secondary beams, respectively; I1, I2 are the horizontal
moments of inertia of primary and secondary beams, respectively; m1, m2 are the masses per unit
length of primary and secondary beams, respectively; κ is the spring stiffness between the primary
and secondary beams.
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To solve the above vibration partial differential equations, the first step is to perform a finite
sin-Fourier transform for space coordinate x; for 0 ≤ x ≤ l, the finite sin-Fourier transform can be
defined as follows [35]:

ψ[yn(x, t)] = Un,k(t) =
∫ L

0
yn(x, t) sin(ξkx)dx (5)

ψ−1
[
Un,k(t)

]
= yn(x, t) =

2
l

∞∑
k=1

Un,k(t) sin(ξkx) (6)

where n = 1, 2, ξk =
kπ
l , k = 1, 2, 3, . . ..

Under minor deformation conditions, the boundary condition of a simply supported double-beam
system can be written as follows:

yn(x, t)
∣∣∣x=0,l = 0, EIy′′ n(x, t)

∣∣∣x=0,l = 0 (7)

According to the boundary condition,

ψ

d4yn(x, t)
dx2

 = ξ4
kUn,k(t) (8)

By performing finite sin-Fourier transforms for both sides of Equations (3) and (4), double-beam
infinite-degree-of-freedom system can be transformed into two-degrees-of-freedom system,

ξ4
kE1I1U1,k + m1

..
U1,k + κ

(
U1,k −U2,k

)
= Pk (9)

ξ4
kE2I2U2,k + m2

..
U2,k − κ

(
U1,k −U2,k

)
= 0 (10)

Pk =
N∑

i=1

Fi sin[ξkv(t− ti)]S
[

v(t− ti)

l

]
(11)

Equations (9) and (10) can be expressed in a matrix form as follows:

Mk
¨

Uk + KkUk = {Pk, 0}T (12)

Mk =

[
m1 0
0 m2

]
, Kk =

[
κ+ ξk

4E1I1 −κ
−κ κ+ ξk

4E2I2

]
, Uk =

{
U1,k
U2,k

}
(13)

By providing the canonical transformation of coordinates for Fourier amplitude spectrum Uk,

Uk = Γkqk (14)

qk =
(
q1,k, q2,k

)T
(15)

Γk =

 φ1,1
k φ1,2

k
φ2,1

k φ2,2
k

 (16)

where Γk is the generalized eigenvector matrix of matrix Kk relative to matrix Mk; qk is the generalized
coordinate vector.

By substituting Equation (14) into Equation (12),

MkΓk
¨
qk + KkΓkqk = {Pk, 0}T (17)
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By multiplying Γk
T,

Γk
TMkΓk

¨
qk + Γk

TKkΓkqk = Γk
T
{Pk, 0}T (18)

The orthogonality of mode of vibration shows that Γk
TMkΓk and Γk

TKkΓk are diagonal matrices;
thus, Equation (18) can be simplified as follows:

Mn,k
..
qn,k + Kn,kqn,k = Pn,k (19)

Mn,k =

 φ1,n
k
φ2,n

k


T

Mk

 φ1,n
k
φ2,n

k

 (20)

Kn,k =

 φ1,n
k
φ2,n

k


T

Kk

 φ1,n
k
φ2,n

k

 (21)

Pn,k =

 φ1,n
k
φ2,n

k


T

{Pk, 0}T (22)

where φ1,n
k ,φ2,n

k is the elements at the nth column of matrix Γk.
Assuming that Kn,k = ω2

n,kMn,k,

..
qn,k(t) +ω2

n,kqn,k(t) =
1

Mn,k
Pn,k (23)

2.2. Expression of Fourier Series of Successive Moving Loads

Through unfolding Pk(t) with Fourier series,

Pk(t) = a0 +
∞∑

j=1

[
a j cos( jθt) + b j sin( jθt)

]
(24)

where loading frequency θ = 2πv/(l + dN); dN is the total length of load series.
By solving various coefficients of Fourier series in Equation (24):

a0 =
1
T

∫ τ+T

τ
Pk(t)dt (25)

a j =
2
T

∫ τ+T

τ
Pk(t) cos( jθt)dt (26)

b j =
2
T

∫ τ+T

τ
Pk(t) sin( jθt)dt (27)

where T = v/(l + dN), τ can be assigned to any value and is usually set at τ = 0 or τ = −T
2 to help

in calculations.
By substituting Equation (11) into Equations (25)–(27),

a0 =
[1− cos(ξkl)]
ξk(l + dN)

N∑
i=1

Fi (28)

a j =

−v
N∑

i=1
Fi

l + dN


cos

[
ξkl + jθl

v + jθti

]
− cos( jθti)

ξkv + jθ
+

cos
[
ξkl− jθl

v − jθti

]
− cos( jθti)

ξkv− jθ

 (29)
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b j =

v
N∑

i=1
Fi

l + dN


sin

[
ξkl− jθl

v − jθti

]
+ sin( jθti)

ξkv− jθ
−

sin
[
ξkl + jθl

v + jθti

]
− sin( jθti)

ξkv + jθ

 (30)

2.3. Dynamic Response of Double-Beam Model Under Load Series

By using Duhamel’s integral to solve Equation (19), the generalized-coordinates solution with
zero initial conditions can be obtained as follows:

qs
n,k(t) =

1
Mn,kωn,k

∫ t

0
Pn,k(τ) sin

[
ωn,k(t− τ)

]
dτ (31)

By substituting Equations (24)–(30) into Equation (31),

qs
n,k(t) =

φ1,n
k

Mn,kωn,k


a0

[
1− cosωn,kt

]
ωn,k

+
∞∑

j=1


1
2 a j

[
−

cos( jθt)−cos(ωn,kt)
jθ−ωn,k

+
cos( jθt)−cos(ωn,kt)

jθ+ωn,k

]
+ 1

2 b j

[
sin( jθt)+sin(ωn,kt)

jθ+ωn,k
−

sin( jθt)−sin(ωn,kt)
jθ−ωn,k

]

 (32)

The homogeneous solution of Equation (19), considering the initial condition can be expressed as
follows:

q0
n,k(t) = q0

n,k(0) cos
(
ωn,kt

)
+

.
q0

n,k(0)

ωn,k
sin

(
ωn,kt

)
(33)

Using Equation (14):

Uk(0) =
2∑

n=1

 φ1,n
k
φ2,n

k

q0
n,k(0) (34)

.
Uk(0) =

2∑
n=1

 φ1,n
k
φ2,n

k

 .
q0

n,k(0) (35)

By pre-multiplying Equations (34) and (35) by

 φ1,n
k
φ2,n

k


T

Mk and utilizing weighted orthogonality,

q0
n,k(0) =

 φ1,n
k
φ2,n

k


T

MkUk(0)

Mn,k
(36)

.
q0

n,k(0) =

 φ1,n
k
φ2,n

k


T

Mk
.

Uk(0)

Mn,k
(37)

When a simply supported double-beam system has zero initial conditions, using Equation (5),

Un,k(0) =
∫ L

0
yn(x, 0) sin(ξkx)dx = 0 (38)

.
Un,k(0) =

∫ L

0

.
yn(x, 0) sin(ξkx)dx = 0 (39)

By simultaneously solving Equations (36)–(39),

q0
n,k(t) = 0 (40)
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Thus, the general solution of Equation (19) with zero initial conditions can be expressed as follows:

qn,k(t) = qs
n,k(t) + q0

n,k(t)

=
φ1,n

k
Mn,kωn,k

 a0[1−cosωn,kt]
ωn,k

+
∞∑

j=1


1
2 a j

[
−

cos( jθt)−cos(ωn,kt)
jθ−ωn,k

+
cos( jθt)−cos(ωn,kt)

jθ+ωn,k

]
+ 1

2 b j

[
sin( jθt)+sin(ωn,kt)

jθ+ωn,k
−

sin( jθt)−sin(ωn,kt)
jθ−ωn,k

]

 (41)

By substituting Equations (14) and (41) into Equation (6), the dynamic response of the double-beam
model under load series can be obtained as follows:

y =
2
l

∞∑
k=1

Γk
{
qk

}
sin ξkx (42)

where y =
{
y1, y2

}T.

3. Analysis of Calculation Examples

To validate the analytical calculation method proposed in this paper, a simply supported bridge-rail
system under the moving loads of four motor car groups was considered as an example, and the
analytical calculation method proposed in this paper and ANSYS finite-element numerical method
were used to calculate its dynamic response. The simply supported bridge-rail system can be simplified
as a simply supported double-beam, and the rail fasteners can be simulated with springs in interlaminar
distribution. The specific parameters of the simply supported double-beam system are as follows:
length of beams l = 32 m; length of springs is 1m; damping ratio is 0; primary beam: elastic modulus
E1 = 2.06 × 105 MPa, horizontal moment of inertia I1 = 3.217 × 10−5 m4, mass per unit length
m1 = 60 kg/m; secondary beam: elastic modulus E2 = 3.5× 104 MPa, horizontal moment of inertia
I2 = 10.42 m4, mass per unit length m2 = 36, 000 kg/m; spring stiffness κ = 6× 107 N/m. As shown
in Figure 2, four load-groups contain four moving loads, where load F = 160 kN, distance of load
L1 = 2.5 m, L2 = 14.875 m, L3 = 4.9 m, L4 = 24.775 m.
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Figure 2. The primary-secondary beam system under moving load-groups.

3.1. Effect of Speed of Loads on Dynamic Response of Double-Beam System

To better understand the overall vibration properties of a simply supported double-beam system,
the speed of loads was set at v = 100 m/s, and a 3D dynamic graph of vertical deflection of the simply
supported double-beam system within the entire span scope was plotted under a load series, as shown
in Figure 3.
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With the movement of loads, the amplitude of dynamic deflection of the simply supported
double-beam system changed constantly; the vertical dynamic deflection of secondary beam at any
moment showed an approximately symmetric distribution relative to the midspan position and had
only one extreme value in the vicinity of the midspan. The dynamic deflection distribution of the
primary beam at any moment was related to the position of the action point of the successive moving
loads, and its dynamic deflection showed several extreme values, all emerging at the action point of
the successive moving loads. The dynamic deflection of the primary and secondary beams reached
their maximum values near the midspan. Considering that this characteristic was not related to the
movement position of the load series, the following analyses uniformly used the dynamic deflection
response of the midspan.

The analytical calculation method proposed in this paper and the ANSYS finite-element numerical
method were used to calculate the dynamic response of the simply supported double-beam system
under a load series of four different moving speeds (40 m/s, 100 m/s, 122 m/s, and 180 m/s), and the
calculation results of the two methods were compared in terms of the time-history curves and peaks
of dynamic deflection response of the midspan. The comparison results are shown in Figure 4 and
Table 1 (where yan and y f e are the calculation results of dynamic deflection response of midspan
obtained by the analytical method proposed in this paper and ANSYS finite-element numerical method,
respectively; pan and p f e are the calculation results of peak deflection of midspan obtained from the
analytical method proposed in this paper and ANSYS finite-element numerical method, respectively;
ep =

(
pan − p f e

)
/p f e is the calculation error of peak deflection of midspan between the two methods);

λp is the ratio of peak dynamic deflection response of midspan of the primary beam to that of the
secondary beam. As shown in Figure 4 and Table 1, under a load series of multiple different speeds,
the analytical calculation results of time-history curves and peaks of dynamic deflection response of
the midspan for the simply supported double-beam system were consistent with the calculation results
obtained from the ANSYS finite-element numerical method, thus demonstrating the rationality of the
analytical calculation method proposed in this paper. Compared with the secondary beam, the primary
beam had a significantly increased peak dynamic deflection response and a high-frequency component
in the time-history curve of the dynamic deflection response of the midspan. Under the four speeds, λp

values were 1.950, 2.093, 1.706, and 2.467; the peak dynamic deflection responses of the midspan of the
primary and secondary beams did not increase with the increase in the speed of the loads, indicating
that the simply supported double-beam system under successive moving loads had critical speeds.

Figure 5 shows the relationship between the peak deflection of midspan pan and speed of loads v
for the simply supported double-beam system; pan,1 and pan,2 are the peak deflections of the midspan of
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the primary and secondary beams. As shown in Figure 5, the speed of the load-peak deflection of the
midspan relationship curve of the primary and secondary beams clearly showed “abrupt increases”,
indicating that the simply supported double-beam system had multiple critical speeds under successive
moving loads. The peak deflection of the midspan of the primary beam reached its maximum value
pan,1 = −3.754 mm at v = 122 m/s, and the peak deflection of the midspan of the secondary beam
reached its maximum value pan,2 = −2.208 mm at v = 124 m/s. Assuming the speed corresponding
to the maximum peak deflection of the midspan as the dividing speed, the dividing speeds of
primary and secondary beams were v1 = 122 m/s and v2 = 124 m/s, respectively. In the speed of
load-peak deflection of the midspan relationship curve of primary and secondary beams, the critical
speeds corresponding to the “abrupt increases” were close to each other and should be avoided in
engineering practice.

Table 1. Time-history curve peak of midspan displacement (unit: mm).

v (m/s) Layer pan pfe ep

40
Primary beam −3.067 −3.112 −1.46%

Secondary beam −1.572 −1.571 0.06%

λp 1.950 1.981

100
Primary beam −2.922 −2.933 −0.40%

Secondary beam −1.396 −1.399 −0.23%

λp 2.093 2.096

122
Primary beam −3.754 −3.815 −1.60%

Secondary beam −2.201 −2.200 0.04%

λp 1.706 1.734

180
Primary beam −2.769 −2.754 0.53%

Secondary beam −1.122 −1.121 0.07%

λp 2.467 2.456
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Table 1. Time-history curve peak of midspan displacement (unit: mm). 

( ) v m s  Layer anp  fep  pe  

40 
Primary beam −3.067 −3.112 −1.46% 

Secondary beam −1.572 −1.571 0.06% 

Figure 4. The response of the beams obtained by different method: (a,b) v1 = 40 m/s; (c,d) v2 = 100 m/s;
(e,f) v3 = 122 m/s; (g,h) v4 = 180 m/s.

3.2. Effect of Flexural Rigidity on Dynamic Response of Double-Beam System

The effect of four flexural rigidity (EI) of the primary beam (i.e., E1,1I1,1 = 0.0001E2I2, E1,2I1,2 =

0.001E2I2, E1,3I1,3 = 0.01E2I2, and E1,4I1,4 = 0.1E2I2) on the peak deflection of the midspan of a simply
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supported double-beam system under successive moving loads was evaluated. The amplification
factor of peak deflection of the midspan under different flexural rigidity is defined as follows:

αn|E1I1=E1,iI1,i =
pan,n

∣∣∣
E1I1=E1,iI1,i

pan,n
∣∣∣
E1I1=E1,1I1,1

(n = 1, 2; i = 1, 2, 3, 4) (43)
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Figure 5. The max response versus the speed for: (a) primary beam; (b) secondary beam. Figure 5. The max response versus the speed for: (a) primary beam; (b) secondary beam.

Figures 6 and 7 show the relationship between peak deflection of the midspan of a simply supported
double-beam system and speed of loads under different flexural rigidity. Under flexural rigidity,
the dividing speeds v1 and v2 of the simply supported double-beam system both changed slightly;
therefore, the effect of flexural rigidity on the dividing speed of the simply supported double-beam
system could be neglected. For the primary beam, the amplification factor of peak deflection of the
midspan and maximum value of the peak deflection of the midspan pan,1 both significantly decreased
with the increase in flexural rigidity. For the secondary beam, the amplification factor α1 of peak
deflection of the midspan α2 and maximum value of peak deflection of the midspan pan,2 both slightly
decreased with the increase in flexural rigidity. For different situations of the two beams, it was mainly
because the primary and secondary beams had a relatively significant difference in the flexural rigidity
change, mainly exerted by the dynamic response of the primary simply supported beam.
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double-beam system could be neglected. For the primary beam, the amplification factor of peak 
deflection of the midspan and maximum value of the peak deflection of the midspan ,1anp  both 
significantly decreased with the increase in flexural rigidity. For the secondary beam, the 
amplification factor 1α  of peak deflection of the midspan 2α  and maximum value of peak 
deflection of the midspan ,2anp  both slightly decreased with the increase in flexural rigidity. For 
different situations of the two beams, it was mainly because the primary and secondary beams had a 
relatively significant difference in the flexural rigidity change, mainly exerted by the dynamic 
response of the primary simply supported beam. 
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(b) secondary beam.

4. Conclusions

A dynamic analysis model was established for a simply supported double-beam system under
successive moving loads. Based on finite sin-Fourier transform and finite sin-Fourier inverse transform,
the analytical expression of dynamic response of the simply supported double-beam system under
successive moving loads was deduced. Considering the dynamic response of a simply supported
double-beam system under train loads, the results of the analytical method were compared with those
obtained from the general FEM software ANSYS. The following conclusions are drawn:

Under a load series of multiple different moving speeds, the analytical calculation results of the
time-history curve of deflection of the midspan of the double-beam system were consistent with the
calculation results obtained from the ANSYS, thus demonstrating the rationality of the analytical
calculation method proposed in this paper. The analytical calculation method proposed in this paper
has a clear concept, convenient for manual calculation, and provides a theoretical foundation for further
engineering applications of simply supported double-beam systems under successive moving loads.

The simply supported double-beam system under a load series uniformly showed the maximum
value of dynamic deflection response in the vicinity of the midspan, and the peak deflection of
the midspan moving speed of the load series relationship curve of the system showed several
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“abrupt increases”, indicating that the simply supported double-beam system had multiple critical
speeds under a load series.

In the simply supported double-beam system under a load series, the critical and dividing speeds
of the primary and secondary beams were close to each other, respectively, and should be avoided in
engineering practice. The deflection of the primary beam is suppressed by the secondary beam.

For the primary beam of the simply supported double-beam system, the amplification factor
of the peak deflection of midspan α1 and maximum value of peak deflection of midspan pan,1 both
significantly decreased with the increase in flexural rigidity; however, for the secondary beam, the effect
of speed of loads on the amplification factor of peak deflection of midspan α2 was not clear.
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18. Pavlović, R.; Kozić, P.; Pavlović, I. Dynamic stability and instability of a double-beam system subjected to
random forces. Int. J. Mech. Sci. 2012, 62, 111–119. [CrossRef]

19. Li, Y.X.; Hu, Z.J.; Sun, L.Z. Dynamical behavior of a double-beam system interconnected by a viscoelastic
layer. Int. J. Mech. Sci. 2016, 105, 291–303. [CrossRef]

20. Li, Y.X.; Sun, L.Z. Transverse vibration of an undamped elastically connected Double-Beam system with
arbitrary boundary conditions. J. Eng. Mech. 2016, 142, 4015070. [CrossRef]

21. Wu, Y.; Gao, Y. Dynamic response of a simply supported viscously damped double-beam system under the
moving oscillator. J. Sound Vib. 2016, 384, 194–209. [CrossRef]

22. Murmu, T.; Adhikari, S. Nonlocal transverse vibration of double-nanobeam-systems. J. Appl. Phys. 2010, 108,
83514. [CrossRef]

23. Khaniki, H.B. On vibrations of nanobeam systems. Int. J. Eng. Sci. 2018, 124, 85–103. [CrossRef]
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