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Featured Application: The hybrid feature selection method, which combines both machine
learning and traditional statistical methods, is proposed to identify the brain abnormalities of
schizophrenia. The results suggest that the brain regions and connectivity in SZs are destroyed
compared with HCs, which may cause the cognitive deficits and autistic thinking in SZs. The
findings support the validation of the proposed hybrid feature selection method, and thus, it
is promised that such a hybrid feature selection method can be further used for other kinds of
medical data analysis to enhance the diagnosis ability and further for precision medicine.

Abstract: Many medical imaging data, especially the magnetic resonance imaging (MRI) data, usually
have a small sample size, but a large number of features. How to reduce effectively the data dimension
and locate accurately the biomarkers from such kinds of data are quite crucial for diagnosis and further
precision medicine. In this paper, we propose a hybrid feature selection method based on machine
learning and traditional statistical approaches and explore the brain abnormalities of schizophrenia
by using the functional and structural MRI data. The results show that the abnormal brain regions
are mainly distributed in the supramarginal gyrus, cingulate gyrus, frontal gyrus, precuneus and
caudate, and the abnormal functional connections are related to the caudate nucleus, insula and
rolandic operculum. In addition, some complex network analyses based on graph theory are utilized
on the functional connection data, and the results demonstrate that the located abnormal functional
connections in brain can distinguish schizophrenia patients from healthy controls. The identified
abnormalities in brain with schizophrenia by the proposed hybrid feature selection method show
that there do exist some abnormal brain regions and abnormal disruption of the network segregation
and network integration for schizophrenia, and these changes may lead to inaccurate and inefficient
information processing and synthesis in the brain, which provide further evidence for the cognitive
dysmetria of schizophrenia.
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1. Introduction

Schizophrenia (SZ) is a kind of mental disorder characterized by abnormal social behaviour
and a failure to understand reality. Recently, decades of research on brain structure and function
have provided us with some understanding of the neurobiological mechanisms underlying its
symptoms [1,2]. For example, studies on brain structure suggest that neuroanatomical alterations
may underlie the clinical onset of psychotic symptoms. The findings from functional brain imaging
studies support a leading hypothesis that SZ stems from disconnectivity, namely abnormal interactions
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between wide-spread brain networks. Recently, neuroimaging techniques like structural magnetic
resonance imaging (sMRI) and functional magnetic resonance imaging (fMRI) have become a powerful
tool to examine the abnormal regions and aberrant connectivity of brain networks in SZ, which
bring psychiatry from subjective descriptive classification into objective and tangible brain-based
measures [3]. For example, Du et al. applied a novel group information guided method to estimate
inherent dynamic functional brain networks and found that the abnormalities of SZ were mainly
distributed in the cerebellum, frontal cortex, thalamus and temporal cortex [4]. With fMRI data of
SZ, Shine et al. showed that dynamic changes of functional connectivity are essential for cognitive
processing [5]. Rosenberg et al. demonstrated that the whole-brain functional connectivity strength
might serve as a biomarker of sustained attention for both healthy and disease assessments [6].
It was shown that functional connectivity profiles can predict levels of fluid intelligence [7]. By a
supervised learning strategy that fuses sMRI, as well as fMRI data, some modality-specific biomarkers
of generalized cognition with SZ were identified [1]. Based on sMRI data, Palaniyappan et al. suggested
that concomitant increase and decrease in grey matter occur in association with persistent negative
thought disorder in clinically stable individuals with SZ [8]. These studies on developing biomarkers
allow the field of imaging analysis and psychiatry to move forward.

Given that SZ is often accompanied by cognitive decline, the thorough investigation of brain
dynamics, as well as brain structure in SZ seems important in order to better understand the underlying
neural mechanism. However, for MRI data of SZ, they usually have a small sample size, but a large
number of features, i.e., n� p, where n is the sample size and p is the number of features [9]. For such
kinds of data, there still lacks a systematic methodology to study them. That is because it is too difficult
to discover the potential information contained in the data from a limited number of observations,
which form a cognitive concept of the data or complete identification task [10]. To deal with data of
dimensions much larger than the sample size, the generally used approach is dimensionality reduction.
Feature selection and feature extraction are common methods for dimensionality reduction. For feature
selection, those essential features of the raw data that have the greatest contribution to distinguish
different objects can be identified. Thus, by feature selection, we can enhance the interpretability of
learning, which is crucial for exploring the mechanisms of why things are different. Mathematically,
consider any raw data as an N-dimensional vector X = (x1, x2, · · · , xN)

T , from which we can select
M features X̃ = (xR1 , xR2 , · · · , xRM )T as required, where xRi , i = 1, 2, · · · , M are features chosen from
{x1, x2, · · · , xN} based on some rules R. The rule could be either of the following items. X̃ is the
optimal choice with some evaluation indexes for classifiers; the feature subset has the lowest dimension
for a given accuracy; the conditional probability distribution function for the data and that of the
selected features remain the same; the error rate of the classifier would not be reduced by not increasing
or decreasing the number of features. By such a selection process, we could get rid of either redundant
or irrelevant features without incurring much loss of information. The distinguishing features can
be found, and in this way, the dimension of data space declines, the complexity of data reduces and,
especially, the performance of classification and prediction can be improved. Because of the direct
interpretability of the data, feature selection is widely used in many fields such as genomics, medical
image analysis, computer vision, speech recognition, computer vision, information retrieval, time
series prediction [11–13], etc.

According to different ways of combining the evaluation criteria and classifiers, feature selection
methods can be divided into five types, i.e., filter, wrapper, embedded, ensemble and hybrid
methods [14]. Filter methods mainly depend on the attribute of features, and the evaluation criteria
depend only on the original data, but not on classifiers [15]. Wrapper methods directly take the
performance of the classifiers as the evaluation criterion for the selection of feature subsets; thus,
the results of wrapper methods are related to specific classifiers [16]. Methods of embedding filter
methods and wrapper methods are called embedded methods. For embedded methods, they are
usually composed of two stages. Firstly, filter methods are used to eliminate most of the irrelevant
and noise features, so as to reduce the data dimension of the subsequent search process effectively.
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The second stage adopts wrapper methods to carry out the further feature selection process [17].
Ensemble methods are based on different sampling strategies to extract multiple sample sets, and
then, they use a specific feature selection algorithm to obtain multiple sets of feature subsets. These
feature subsets are further integrated to obtain a more stable feature subset [18]. Compared with the
above three methods, the performance of the ensemble methods no longer depends merely on a single
subset selected, but it is still limited since it uses only one specific feature learner. Hybrid methods
can be combined with some different feature selection methods. Hybrid approaches combine two or
more well-studied feature selection algorithms to form a new strategy and achieve a complementary
advantage of different feature selection methods to solve a particular problem [19,20]. The hybrid
approach usually capitalizes on the advantages from the sub-algorithms and therefore is more robust
compared with single approaches. The feature selection techniques mentioned above have been
applied to many fields of dimensionality reduction analysis [21–23]. In addition to the above five
types of feature selection methods, some traditional statistical methods can also be used to reduce
dimensionality, such as hypothesis testing, correlation coefficients, etc. These methods can obtain
features with higher distinguishing ability, so as to improve the discriminative capacity of different
classes [24,25].

Motivated by identifying biomarkers of SZ that are associated with cognitive composite ability
and specific cognitive domains such as attention, working memory and verbal learning, in this paper,
by proposing a hybrid feature selection method combining both machine learning and traditional
statistical approaches, we explore the brain abnormalities of SZ. The data have 410 features, including
both functional and structural MRI, i.e., functional network connectivity (FNC) and source-based
morphometric (SBM) of 40 patients with SZ and 46 healthy controls (HCs). By applying our method to
these two datasets, the results show that there exist six aberrant brain regions and 17 abnormal
functional connections between the SZ group and HC group. Among our findings, there was
an obvious decrease, as well as increase of both the grey matter volume and the connectivity of
brain regions. The decreasing regions mainly appeared in the default mode network (DMN) and
salience network (SN), e.g., the grey matter volume of precuneus (PCUN) and caudate (CAU), and
the connectivity of these two brain regions, as well as insula (INS) and CAU were significantly
reduced. Moreover, all connectivity corresponding with rolandic operculum and insula significantly
reduced [26–31]. The significantly increased grey matter volume of brain regions was mainly
distributed in frontal gyrus (FG) and supramarginal gyrus (SMG), and there also existed four with
significantly increased connectivity, such as middle frontal gyrus and superior occipital gyrus, as
well as middle occipital gyrus and fusiform gyrus, and the corresponding conclusion of increasing
also was discussed [28,29,32]. To further confirm the significance of the selected abnormal functional
connections, we also used complex network analysis. Since the level of response activity in brain
regions and the ability of functional connectivity between different brain regions can reflect the degree
of brain disorders, the results have the potential to provide evidence for accurate diagnosis and further
for precision medicine learning of such kinds of psychiatric diseases.

2. Methodology

There are many feature selection methods based on machine learning, as well as traditional
statistics. Combining both of them, especially developing a kind of hybrid feature selection method,
is still worthy of study. In this section, we will introduce a hybrid feature selection method combining
three kinds of machine learning methods and three kinds of statistical methods. In addition, some
graph theory will be presented to verify the validation of the features selected by the proposed hybrid
feature selection method.
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2.1. Feature Selection Methods Based on Machine Learning

2.1.1. Feature Selection with Support Vector Machine

Support vector machine based on recursive feature elimination (SVMRFE) is a multi-variable
wrapper feature selection algorithm, and it can keep relevant features and remove relatively
insignificant feature variables in order to achieve higher classification performance. SVMRFE was first
proposed for gene selection [33], and it has been widely applied to MRI data research, text analysis
and biological information processing [34–36].

For SVMRFE, the scoring function for each feature i is defined as:

Score(i) = |ωi| or Score(i) = ω2
i (1)

where ωi is the weight for feature i as obtained from the SVM training. Thus, features that
contribute the most to discriminating the two classes are represented by |ω| with the highest values,
and features with small scores are generally considered as noise, redundant or irrelevant to the
problem. Therefore, eliminating features with smaller scores does not bring about great changes of the
optimization problem, which is the essence of the algorithm [37,38]. The SVMRFE algorithm is briefly
described as below.

Algorithm 1: Support vector machine based on recursive feature elimination (SVMRFE)
Input: Dataset D
Process:

1. Initialization
Let the current feature subset Current−D contain all features, and the optimal feature subset
Best−D = ∅;

2. Training the classifier
Train a SVM on the training set with the Current−D, and evaluate the classification accuracy on the
test set;

3. Updating Current−D
Calculate the importance of each feature in Current−D by the scoring function (1), and eliminate
features with the smallest score;

4. Updating Best−D
If the accuracy rate of Current−D is greater than that of Best−D, then let Best−D = Current−D;

5. Repeat Steps 2–4 until the stop condition is satisfied.
Output: The optimal feature subset Best−D

The stopping criterion can be a desired dimensionality, a pre-specified number of iterations or a
generalization of the performances, etc.

2.1.2. Feature Selection with Random Forest

Random forest (RF) is an ensemble machine learning method using tree-type classifiers. It is built
by bootstrap sampling technology and random splitting technology, and the final classification result
is made by a majority vote of the trees [39,40]. Because of its excellent generalization performance,
RF is also further used for feature selection [41,42].

For a given tree, let S0 denote the set of input predictor data vectors and Sj be the subset of the
predict data reaching node j in the binary split tree. According to the performance of the current feature
on node j, Sj can be divided into two subsets, i.e., SL

j and SR
j ; here, SL

j
⋃

SR
j = Sj and SL

j
⋂

SR
j = ∅.

Choosing the best split according to the mean decrease of the Gini index, which is defined as:
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∆Ginii(j) = Gini(j)− (
|SL

j |
|Sj|

Gini(jL) +
|SR

j |
|Sj|

Gini(jR)) (2)

where Gini(j) = 1−∑c∈C P2
c is the Gini index at node j. This metric reflects the contribution of each

feature to node j; therefore, we can get an estimate of feature i with Gini importance:

ScoreGini(i) =
1

ntree

ntree

∑
t=1

∑
j

∆Ginii(j, t) (3)

where ∆Ginii(j, t) is the value of ∆Ginii(j) on one tree t. The Gini importance indicates how large its
overall discriminative value is for the classification task. We randomly chose a feature i, calculated
its Gini importance defined in (4) and removed the features with Gini importance below feature i.
The algorithm for feature section with random forest by Gini importance (RFFS-GI) is briefly described
as below.

Algorithm 2: Feature section with random forest by Gini importance (RFFS-GI)
Input: Dataset D;
Process:

1. Randomly choose a feature i into the feature set;
2. Calculate the Gini importance of all features in the feature set with the scoring function (3);
3. Keep features with Gini importance above that of the feature i;

Output: Optimal feature subset

In addition, for bootstrap sampling technology, about 1/3 of the samples will not be collected at
the end, and they are called the out of bag (OOB) data [43]. The role of OOB data can be considered
as equivalent to the test data. Therefore, we can also use the classification accuracy of the random
forest classifier on the OOB data as the feature separability criterion, so as to calculate the importance
of each feature:

ScoreOOB(i) = ∑
ooberr2− ooberr1

N
(4)

where ooberr1 is the classification error of the OOB data, ooberr2 is the classification error of the OOB
data with adding noise on feature i and N indicates the number of trees in a random forest. We can
understand that if a feature is randomly disturbed, the classification error of the OOB data will increase
greatly, and it can be considered that this feature has a great influence on the classification result.
The algorithm of feature section with random forest by the classification accuracy on the OOB data
(RFFS-OOB) is briefly described as below.

Algorithm 3: Feature section with random forest by the classification accuracy on the OOB data
(RFFS-OOB)
Input: Dataset D
Process:

1. Generate random forest;
2. Calculate feature importance based the scoring function (4), and sort the scores;
3. The top ranked features are selected as the optimal feature subset.

Output: Optimal feature subset.
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In order to improve the accuracy of feature selection results for the SBM and FNC data, we used
SVMRFE, RFFS-GI and RFFS-OOB, and repeated them 20 times separately, counted the frequency of
the selected features by each feature selection method and integrated the optimal feature subsets.

2.2. Feature Section Based on Statistical Methods

For classical statistical methods, the discriminative ability of a feature can be quantitatively
measured by its contribution on distinguishing different classes [25,44].

The Kendall tau correlation coefficient provides a distribution-free test of independence between
two variables. The Kendall tau correlation coefficient of feature j can be defined as:

τj =
nc − nd
n1 × n2

(5)

where nc and nd are the numbers of concordant and discordant pairs, respectively, and n1 and n2

correspond to the number of two classes of samples, respectively. For a pair of data (xij, yi) and
(xkj, yk) of feature j, it is a concordant pair when sgn(xij − xkj) = sgn(yi − yk), where sgn() is the
signum function (i.e., sgn(x) = −1 with x < 0, sgn(x) = 0 with x = 0 and sgn(x) = 1 with x > 0).
Correspondingly, it is a discordant pair when sgn(xij − xkj) = −sgn(yi − yk). The discriminative
power of each feature j is defined as the absolute value of its Kendall tau correlation coefficient.

The permutation test is a non-parametric test method, which is suitable for the case of a small
sample size and unknown sample distribution. Assume that there are two samples xA and xB, and
x̄A and x̄B denote the corresponding sample mean, say nA and nB are the corresponding sample size.
At first, we calculate the observed test statistic Tobs = x̄A − x̄B. Then, the two samples are merged
and divided into two groups with size nA and nB. For each division, the difference between the mean
values of the two groups is calculated and recorded. The calculated difference set is the accurate
distribution of the difference under the null hypothesis. Finally, the ratio of the absolute value of the
calculated difference greater than or equal to the absolute value of Tobs is the p-value based on the
two-sided test.

By the two-sample t-test, we can also determine whether there are significant differences of each
feature. The t-value of the feature j can be defined as:

tj =
|x̄1 − x̄2|√

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2 · ( 1

n1
+ 1

n2
)

(6)

where x̄1 and x̄2 are the means of feature j of patients and health controls (HCs) and s1 and s2 represent
the corresponding standard deviations. With the Kendall tau correlation coefficient, permutation test
and two-sample t-test, we can identify features with significant differences.

2.3. Hybrid Feature Selection Based on Both Machine Learning and Statistical Methods

By combining the above machine learning methods and statistical methods, we propose a hybrid
feature selection approach. In more detail, for machine learning methods, we summed the frequencies
of SVMRFE, RFFS-GI and RFFS-OOB, then we selected the features with total frequency greater than a
given value b to obtain the significant feature subset. At the same time, we selected features with the
absolute values of the Kendall correlation coefficient greater than a given value c and those with the
p-value of two-sample t-test, as well as that of the permutation test less than 0.05 as the significant
feature subset, respectively. Finally, we integrated the significant feature subset from both the machine
learning and statistical method as the optimal feature subset. The above process is a hybrid feature
selection procedure, and the flowchart is shown in the Figure 1. The experiment results will show that
the proposed hybrid feature section method is an effective attempt to combine machine learning and
the statistical methods.
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SVMRFE

RFFS-GI
permutation test

Kendall correlation 

coefficient

Machine Learning Statistic Methods

RFFS-OOB

Original Data

two-sample t-test

Sum Fre and Total Fre >  ! > " and #<0.05

Optimal Subset Ⅰ Optimal Subset Ⅱ

Integrate Subset

Intersection 

Figure 1. The flowchart of the hybrid feature selection method. Fre denotes frequency, τ the Kendall
correlation coefficient, p the p-values of test and b and c the given constants. In which, SVMRFE
refers to support vector machine based on recursive feature elimination, RFFS-GI refers to the feature
selection with random forest by Gini importance and RFFS-OOB refers to the feature selection with
random forest by the classification accuracy on the OOB data.

2.4. Complex Network Analysis Based on Graph Theory

The data we used here are a type of MRI data, which contain both the regions and the functional
connection information of brains. The hybrid feature selection method can be directly used to explore
the disease-related abnormal brain regions and abnormal function connections. Furthermore, since the
completion of various tasks allocated for brains is implemented by the coordination and cooperation
between various brain regions, so it is necessary to discover the connection networks of brains in depth.

The analysis of complex network properties by several indexes (see Figure A1) can characterize the
topological attributes of the network; for example, the clustering coefficient quantifies the functional
segregation of the brain network, in which the functional segregation reflects the ability of a specialized
process to occur within some densely-interconnected groups of the brain regions. The length of
characteristic path quantifies the functional integration of the brain network, and the functional
integration reflects the ability to combine rapidly some specialized information from distributed
brain regions [45]. Both global and local network efficiencies quantify the transmission capability
of the brain network, and the transmission capability reflects the ability of transmitting information
between different brain regions in the brain network. The main difference is that the global network
efficiency focuses on the global brain network, but the local network efficiency just focuses on the local
brain network. Thus, by complex network analysis, we can confirm the significance of those selected
abnormal connection features and can further explore the mechanism of SZ.

3. Experiments

In this section, based on the hybrid feature selection method and network topological analysis,
we located the brain abnormalities of both regions and connections with SZ. Firstly, by the SVMRFE,
RFFS-GI, RFFS-OOB, correlation coefficient and hypothesis test, the candidates of brain regions and
connections associated with SZ were selected separately, and then, by the hybrid method, we could
confirm the significant regions and connections of SZ. Furthermore, the complex network analysis
based on graph theory was used to verify the selected abnormal connections. Ultimately, we could
locate some of the abnormal brain regions and abnormal connections with SZ, which provided
theoretical guidance for the rapid and accurate diagnosis of psychiatric diseases and adjuvant therapy.
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3.1. Data Collection and Preprocessing

In this study, the Machine Learning for Signal Processing (MLSP) 2014 Schizophrenia classification
challenge data were used. The data can be download from https://www.kaggle.com/c/mlsp-2014-mri.
They were collected on a 3T MRI scanner at the Mind Research Network and funded by the Centers
of Biomedical Research Excellence. Image preprocessing was performed using statistical parametric
mapping software (SPM, http://www.fil.ion.ucl.ac.uk/spm). Further feature extraction was done by
the GIFT Toolbox (http://mialab.mrn.org/software/gift/), yielding different imaging modalities, i.e.,
SBM and FNC features for structural MRI and resting state functional MRI, correspondingly.

The data consisted of 40 patients with SZ and 46 HCs. A diagnosis of SZ was made by using
the Structured Clinical Interview for DSM-IV (SCID; Diagnostic and Statistical Manual of Mental
Disorders, DSM) [46]. Each sample had 410 features (32 for SBM and 378 for FNC). SBM features were
weights of brain regions, and they indicated the concentration of grey matter in different regions of
the subject’s brain [47]. FNC features were the pair-wise correlation values between the time-courses
of 28 brain regions and can be seen as a functional modality feature describing the subjects’ overall
level of synchronicity between brain areas [48]. These 28 brain regions were selected according to the
anatomical automatic labeling (AAL) template, and they are shown in Figure A2, while the connections
between the brain regions corresponding to these FNC features are shown in Figure A3.

3.2. Locating the Abnormalities in Brains for SZ

For both the FNC and SBM data, we performed feature selection methods based on machine
learning and statistical approaches, respectively. By the hybrid process, the key features can be selected;
namely for SBM data, we obtained the abnormal brain region, and for FNC data, the abnormal
connectivities were achieved. Further, we used the brain network based on graph theory to analyse the
selected abnormal connections. The following Figure 2 shows the whole flowchart of the procedure.

Figure 2. The flowchart of locating the abnormalities in brains for SZ. Where SBM refers to source-based
morphometric, FNC refers to functional network connectivity and FS refers to feature selection.

3.2.1. Feature Selection Results Based on Machine Learning Methods

SVMRFE, RFFS-GI and RFFS-OOB were applied to perform feature selections on the MRI data
respectively, with each method being repeated 20 times. Since these three methods were implemented
based on the classification results and SBM data and FNC data had different classification performance,
therefore, in order to obtain the key features of the two types of data more clearly, we selected the
features of both of them separately. By the three feature selection methods, the results of the frequency
of each feature that has been selected are shown in Figures 3 and 4 and Figures A4–A7.

It is generally believed that if the frequency of occurrence of a feature is too low, then the feature is
not significant. Therefore, we only considered features with a higher frequency to obtain the significant
feature subset. In Figure A8, the corresponding characteristic frequency distribution with a frequency
greater than or equal to 50 is shown. Each point in this figure corresponds to the number of features
with a frequency of occurrence greater than or equal to x. Further, we selected features with a frequency
greater than or equal to 55, which is a balance between the numbers of features and the frequency

https://www.kaggle.com/c/mlsp-2014-mri
http://www.fil.ion.ucl.ac.uk/spm
http://mialab.mrn.org/software/gift/
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(the details can be found in the illustration of Figure A8). From Figures 3 and 4 and Figures A4 and A7,
we can obtain the features of SBM data that are significant for distinguishing the HCs and SZ, and the
corresponding indexes were 3, 7, 11, 24, 26, 30 and 32. We can also obtain the discriminative features of
FNC data with indexes 244, 295, 183, 243, 33, 37, 40, 189, 220, 48, 78, 279, 353, 13, 185, 211, 265, 292, 328,
337 and 165.
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Figure 4. SVMRFE, RFFS-GI and RFFS-OOB results of FNC data.

3.2.2. Feature Selection Results Based on Statistical Methods

Statistical methods were utilized to screen out features with significant differences. The results of the
Kendall correlation coefficient are shown in Figure 5, and the hypothetical test results are shown in Figure 6.

We selected features with the p-value of the hypothesis test less than 0.05 and the absolute value
of Kendall correlation coefficient greater than 0.26, which is a balance between the size of the selected
feature subsets and their distinguishing ability of SZ. The results are shown in Figure 7, where τ is
the Kendall correlation coefficient and p1 and p2 are the p-values of the two-sample t-test and the
permutation test, respectively.
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Figure 5. The results obtained by the Kendall correlation coefficient. The x axis corresponds to the
features, and the y axis is the absolute value of the Kendall tau correlation coefficient.

Figure 6. The results of hypothesis test for both two-sample t-tests and the permutation test. The x axis
corresponds to the features, and the y axis is the significance level (−log2P). The red and green lines
show the significance levels of 0.05 and 0.01, respectively. The features with −log2P values above the
lines have significant differences, and they are the candidates of abnormal regions or connections.

SBM
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!# 0.004 0.002 0.004 0.011 0.001 0.027 0.001 0.008 0.006 0.006 0.018 0.008

Value

Value

Fea

Value

Fea

Fea

Figure 7. Feature selection results based on statistical methods.

3.2.3. Feature Selection Results Based on a Hybrid Method

By both machine learning and statistical methods, the key candidate features for SZ were selected,
and the dataset were quite similar. We adopted the intersection of them as the final selected feature
subset, and thus, the abnormal brain regions from the SBM data (see Figure 8) and the abnormal
functional connectivity from the FNC data (see Figure 9) can be obtained.
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Intersection

Brain region SMG CG MFG PCUN SFG CAU

Cingulate gyrus Precuneus CaudateMiddle frontal gyrus Superior frontal gyrusSupramarginal gyrus

Figure 8. The selected abnormal brain regions of SZ by the hybrid method. Segall et al. presented the
relationships between the cortical maps and the brain regions described by the SBM features [47].

Figure 8 shows the brain regions selected by our method that differed from healthy controls in SZ,
and these abnormal brain regions were mainly distributed in supramarginal gyrus (SMG), cingulate
gyrus (CG), middle frontal gyrus (MFG), precuneus (PCUN), superior frontal gyrus (SFG) and caudate
(CAU). Compared with the HC group, the SZ group had significantly reduced grey matter volumes in
the CG, PCUN and CAU and significantly increased grey matter volume of brain regions including
SMG, MFG and SFG.

ML SM Intersection Connectivity

13 33 33 17-29

33 37 37 17-48

37 40 40 17-50

40 48 48 17-71

48 61 78 7-49

78 64 165 56-42

165 78 183 29-71

183 165 185 29-42

185 171 189 46-64

189 183 211 64-59

211 185 220 64-71

220 189 243 48-39

243 211 279 59-60

244 220 295 50-71

265 226 328 68-71

279 243 337 34-71

292 279 353 52-55

295 295

328 302

337 328

353 333

337

353

Figure 9. The abnormal functional connections of brains with SZ. In this figure, the left table lists the
selected abnormal functional connections of the regions of interest (the relationships of the regions and
the labels are shown in Figure A2), in which ML refers to machine learning methods and SM refers to
statistical methods. The circular connectivity graph in the middle is a schematic map of the selected
functional connections, which are listed in the fourth column of the left table. The labels in this graph
correspond to the regions of interest, and the corresponding spatial maps of these regions (see [48]) are
also shown in this graph. The right graph depicts the locations and their connections of the selected
brain regions by the BrainNet Viewer toolbox [49].
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Figure 9 shows that by the hybrid feature selection method proposed here, 17 abnormal
functional connections between the SZ group and HC group can be discovered. Furthermore, by
combining with the relationship between the connections and the regions shown in Figure A2, six
connections are related to the caudate nucleus (CAU), including rolandic operculum (ROL), insula
(INS), supramarginal gyrus (SMG), superior occipital gyrus (SOG), precuneus (PCUN) and median
cingulate and paracingulate gyri. In addition, there also existed three abnormal functional connections
related to the insula (i.e., ROL, amygdala and CAU) and four aberrant functional connection in
rolandic operculum (i.e., insula, lingual gyrus, superior parietal gyrus and caudate). Among these
abnormal connections discovered by our method, we can find that all connectivities corresponding
with rolandic operculum and insula had significantly reduced, and these connectivities related to
caudate nucleus had significantly decreased except the median cingulate and paracingulate gyri.
Other than that, we also observed the significantly increased connectivity in middle frontal gyrus and
superior occipital and middle occipital gyrus and fusiform gyrus, as well as left and right superior
parietal gyrus. In conclusion, the brain connectivity in SZ generally decreased, but also had little
increased connectivity. To show these abnormal connections more vividly, in Figure 9, we used the
BrainNet Viewer toolbox to draw the precise locations of two brain regions with aberrant connections
and to show the aberrant brain connectivity network in SZ [49] .

3.3. Network Evaluation

Further, to support the validity of the connectivity findings by the above hybrid feature selection
method, we constructed a brain network based on these connections and explored its topological
properties [50,51]. More specifically, we first chose the clustering coefficient (C), characteristic path
length (L), global network efficiency (Eg) and local network efficiency (Eloc) as the evaluation index
for each network. Then, we constructed weight networks with a threshold of one for the original and
selected FNC data. At last, these four parameters of both SZ and HCs were calculated and tested by a
two-sample t-test. The p-values of these four parameters were 1.70× 10−1, 5.02× 10−3, 2.99× 10−2 and
4.27× 10−2 for the original FNC data and 6.64× 10−2, 3.41× 10−6, 5.40× 10−6 and 1.90× 10−2 after
feature selection by our method. Obviously, from the results of the p-values of the four parameters,
we can find that the p-values of all these parameters decreased significantly after feature selection,
which means that the distinction of four parameters between the HCs and SZ became more apparent
after feature selection, especially the characteristic path length and the global network efficiency. This
shows that the HCs and SZ become obviously distinguishable by the hybrid feature selection method
and shows the validity of our method.

4. Discussion

The methods based on machine learning pay more attention to the classification accuracy, but the
statistical methods emphasize the correlation between feature and label, which explains the essential
difference between the two approaches. Comparing the significant subsets selected by these two
approaches, it is clear that most of the biomarkers in these two subsets were same, and this means
that despite the emphasis of the two approaches being different, both of them did find the significant
features. Further, by integrating the significant subset of these two approaches, the significant features
can be double checked and obtained finally by the hybrid method proposed in this article. For example,
for the data before feature selection, the p-value of characteristic path length, which is referred to
as L in the above section, was 5.02× 10−3. The p-value of L for the optimal subset I, which was
obtained by machine learning methods, the p-value of L for the optimal subset II, which was obtained
by statistic methods, and the p-value of L for the optimal subset by the proposed hybrid method were
9.40× 10−6, 2.82× 10−5 and 3.41× 10−6 respectively. The results show that the HCs and SZ became
obviously distinguishable after feature selection; specially, our method was more significant than
machine learning, as well as statistical methods. In summary, the hybrid method can combine the
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strength of both machine learning and statistic methods to improve the accuracy of the results, and the
results of network evaluation also confirmed this point.

Our findings are quite consistent with those reports that the grey matter volume of CG, PCUN
and CAU is significantly reduced in SZ [26,27,52,53]. The CG is considered to be a brain region closely
related to task attention, memory and affection, which has been reported to be destroyed in SZ [54].
The PCUN is the portion of the superior parietal lobule on the medial surface of each brain hemisphere,
and it is often considered to be a brain region that plays an important role in the pathogenesis of
SZ [55]. Given that the Behavioural Inhibition System (BIS) activity and Cloninger’s Temperamental
Dimension Harm Avoidance (HA) are mainly bound up with the study of the anxiety trait [56,57]
and the research results show that the BIS-sensitively as well as HA are negatively correlated with
the regional gray matter volume at the CG and PCUN, the SZ may be accompanied by anxiety trait
due to the reduction of the gray matter volume at these two regions [58]. The CAU is one of the
structures that makes up the dorsal striatum, which is a component of the basal ganglia. It can affect
the cognitive function of patients, resulting in decreased memory ability, and may be the cause of
cognitive dysfunction in SZ [59].

In our findings, most of the brain connectivity in SZ was significantly reduced, which had
been generally accepted as the fact that the functional connectivity reduces significantly in SZ and the
reduction may cause the damage of information integration [60]. Among these abnormal connectivities,
CAU, INS and ROL were the most connected regions. The INS mainly participates in the formation of
aversion, the regulation of pain, the production of depression, the regulation of cardiac activity and
the planning of language [61], and these may be the cause of affective symptoms in SZ. Moreover,
many studies have found that the connectivity in the INS decreased, which may cause the disrupted
functional integration of the brain [30]. The ROL is mainly involved in language, and Wu et al.
suggested that the reduction of connectivity of ROL improves the vulnerability of speech recognition
to speech masking [62]. Not only that, the work also showed that the ROL is bound up with
hallucination [63]. It has been reported that SZ is often accompanied by motor abnormalities, and
the work showed that the abnormalities of the motor system are related to the abnormal functional
connectivity of CAU and CG [64]. In addition, the work showed that the network of DMN including
posterior cingulate cortex and lateral temporal cortex and SN including INS and CAU have abnormal
connectivity in SZ [65]. DMN is mainly related to oriented attention and self-monitoring [66], and SN
is implicated in orienting toward salient external stimuli and internal events [67]. These state clearly
that the abnormal connectivity of CAU and INS may result in the cognitive deficits.

In addition to the above findings that there exist some decreasing regions and connections,
we also found that there exist some increasing regions in SMG, MFG and SFG and the increasing
connectivity of MFG and superior occipital gyrus, the median cingulate and paracingulate gyri and
CAU, the left and right superior parietal, as well as middle occipital gyrus and fusiform gyrus. Some
corresponding conclusions were also mentioned in literatures [28,29,32]. Research showed that the
connectivity of the frontoparietal network (FPN) and DMN significantly increased [65]. The FPN
including dorsolateral prefrontal cortex and dorsolateral parietal cortex is implicated in executive
control [68], which means the function of executive control of SZ is different from HCs. In conclusion,
we found that most abnormal brain regions and connectivity discovered by our method were mainly
related to cognition and hallucination. These abnormalities may be the reason for the cognitive deficits
and autistic thinking in SZ. Moreover, our studies show that compared with HCs, the brain network of
SZ is not a single decline or rise, but a mix of both. The most abnormal connectivity may cause the
information integration and transmission damage. Thus, by our method, we did find the abnormal
regions and the connectivity of brain that were strongly related to SZ, and the results also supported
the effectiveness of using functional disconnectivity from neuroimaging as a biomarker for diagnosis
of mental disorders [69].
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5. Conclusions

By the proposed hybrid feature selection approach, which combined both machine learning and
traditional statistical methods, the abnormal brain regions and abnormal connections in brains of SZ
were discovered. The results of SBM data showed that the abnormal brain regions of SZ were mainly
distributed in supramarginal gyrus, cingulate gyrus, middle frontal gyrus, superior frontal gyrus,
precuneus and caudate. These brain regions are reported to have strong association with SZ, and
they are mainly involved in perception, thinking, emotion and spiritual activity. The results of FNC
data showed that most of the abnormal functional connections in brains of SZ were related to FPN,
DMN and SN. These three networks are closely related to cognitive deficits, especially in executive
control and salience processing. All of the results suggest that the brain regions and connectivity in SZ
are destroyed compared with HCs, and the abnormal activity may cause the cognitive deficits and
autistic thinking in SZ. In addition, the complex network analysis further verified the significance of
the selected abnormal functional connections. All findings supported the validation of the proposed
hybrid feature selection method, and thus, it is promised that such a hybrid feature selection method
can be further used for other kinds of medical data analysis to enhance the diagnosis ability.

Author Contributions: Conceptualization, C.Q.; methodology, C.Q. and L.L.; writing, original draft preparation,
L.L. and L.Y.; writing, review and editing, C.Q. and P.J.K.; funding acquisition, C.Q.

Funding: This research was funded by NSFC Nos. 11471006 and 11101327, the Fundamental Research Funds for
the Central Universities (No. xjj2017126), the Science and Technology Project of Xi’an (No. 201809164CX5JC6) and
the HPC Platform of Xi’an Jiaotong University.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Clustering coefficient (C):  

Average nodal clustering coefficient.  ( )
i

i

i N i N i i

t
C C

n n k kÎ Î

= =
-

å å  

Characteristic path length (L): 

integration and global routing efficiency of a network ( ) i j N ijL n n d¹ Î

=
-

å = !"#$%" 

Gamma (γ): the normalized clustering coefficient 
randC Cg =  

Lambda (λ): the normalized characteristic path length  
randL Ll =  

Sigma (σ): the extent of small-world property & = '/( 

Degree: number of links connected directly to a node  )* =+,*-
-.0

1/1)* =+2*-
-.0

 

Nodal clustering coefficient:  

local clustering and closeness of neighborhood of node 
3* 

Nodal efficiency:  

efficiency for a node communicating with the other 
4* =

5
6 7 5+

5
8*--.09-:*

 

Betweenness centrality:  

a centrality measure in the communications between 

other nodes 

;* =
5

<6 7 5><6 7 ?> + @-A<B>
@-A-:*:A

 

 

Figure A1. Different measuring parameters of the global and local network properties. Where ti is the
number of triangles around node i, dij is the shortest path length between node i and node j, Crand and
Lrand refer to the average clustering coefficient and characteristic path length values obtained from 100
random networks with the same number of nodes, as well as edges and the same degree of distribution
as the original network, σjk is the number of shortest paths between j and k and σjk(i) is the number of
shortest paths between j and k that pass through i.
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Labels Regions abbr. x( mm)  y( mm)  z( mm) 

21 Olfactory cortex OLF.L -8.06 15.05 -11.46 

17 Rolandic operculum ROL.L -47.16 -8.48 13.95 

7 Middle frontal gyrus MFG.L -33.43 32.73 35.46 

23 Superior frontal gyrus, medial SFGmed.L -4.8 49.17 30.89 

24 Superior frontal gyrus, medial SFGmed.R 9.1 50.84 30.22 

38 Hippocampus HIP.R 29.23 -19.78 -10.33 

56 Fusiform gyrus FFG.R 33.97 -39.1 -20.18 

29 Insula INS.L -35.13 6.65 3.44 

46 Cuneus CUN.R 13.51 -79.36 28.23 

64 Supramarginal gyrus SMG.R 57.61 -31.5 34.48 

67 Precuneus PCUN.L -7.24 -56.07 48.01 

48 Lingual gyrus LING.R 16.29 -66.93 -3.87 

39 Parahippocampal gyrus PHG.L -21.17 -15.95 -20.7 

59 Superior parietal gyrus SPG.L -23.45 -59.56 58.96 

50 Superior occipital gyrus SOG.R 24.29 -80.85 30.59 

53 Inferior occipital gyrus IOG.L -36.36 -78.29 -7.84 

25 Superior frontal gyrus, medial orbital ORBsupmed.L -5.17 54.06 -7.4 

68 Precuneus PCUN.R 9.98 -56.05 43.77 

34 Median cingulate and paracingulate gyri DCG.R 8.02 -8.83 39.79 

60 Superior parietal gyrus SPG.R 26.11 -59.18 62.06 

52 Middle occipital gyrus MOG.R 37.39 -79.7 19.42 

72 Caudate nucleus CAU.R 14.84 12.07 9.42 

71 Caudate nucleus CAU.L -11.46 11 9.24 

55 Fusiform gyrus FFG.L -31.16 -40.3 -20.23 

42 Amygdala AMYG.R 27.32 0.64 -17.5 

20 Supplementary motor area SMA.R 8.62 0.17 61.85 

47 Lingual gyrus LING.L -14.62 -67.56 -4.63 

49 Superior occipital gyrus SOG.L -16.54 -84.26 28.17 

 

Figure A2. Twenty eight brain regions selected for the experiment according to the AAL template.
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Fea R1 R2 Fea R1 R2 Fea R1 R2 Fea R1 R2 Fea R1 R2 Fea R1 R2

1 21 17 49 17 55 97 23 71 145 38 20 193 46 59 241 67 47

2 21 7 50 17 42 98 23 55 146 38 47 194 46 50 242 67 49

3 21 23 51 17 20 99 23 42 147 38 49 195 46 53 243 48 39

4 21 24 52 17 47 100 23 20 148 56 29 196 46 25 244 48 59

5 21 38 53 17 49 101 23 47 149 56 46 197 46 68 245 48 50

6 21 56 54 7 23 102 23 49 150 56 64 198 46 34 246 48 53

7 21 29 55 7 24 103 24 38 151 56 67 199 46 60 247 48 25

8 21 46 56 7 38 104 24 56 152 56 48 200 46 52 248 48 68

9 21 64 57 7 56 105 24 29 153 56 39 201 46 72 249 48 34

10 21 67 58 7 29 106 24 46 154 56 59 202 46 71 250 48 60

11 21 48 59 7 46 107 24 64 155 56 50 203 46 55 251 48 52

12 21 39 60 7 64 108 24 67 156 56 53 204 46 42 252 48 72

13 21 59 61 7 67 109 24 48 157 56 25 205 46 20 253 48 71

14 21 50 62 7 48 110 24 39 158 56 68 206 46 47 254 48 55

15 21 53 63 7 39 111 24 59 159 56 34 207 46 49 255 48 42

16 21 25 64 7 59 112 24 50 160 56 60 208 64 67 256 48 20

17 21 68 65 7 50 113 24 53 161 56 52 209 64 48 257 48 47

18 21 34 66 7 53 114 24 25 162 56 72 210 64 39 258 48 49

19 21 60 67 7 25 115 24 68 163 56 71 211 64 59 259 39 59

20 21 52 68 7 68 116 24 34 164 56 55 212 64 50 260 39 50

21 21 72 69 7 34 117 24 60 165 56 42 213 64 53 261 39 53

22 21 71 70 7 60 118 24 52 166 56 20 214 64 25 262 39 25

23 21 55 71 7 52 119 24 72 167 56 47 215 64 68 263 39 68

24 21 42 72 7 72 120 24 71 168 56 49 216 64 34 264 39 34

25 21 20 73 7 71 121 24 55 169 29 46 217 64 60 265 39 60

26 21 47 74 7 55 122 24 42 170 29 64 218 64 52 266 39 52

27 21 49 75 7 42 123 24 20 171 29 67 219 64 72 267 39 72

28 17 7 76 7 20 124 24 47 172 29 48 220 64 71 268 39 71

29 17 23 77 7 47 125 24 49 173 29 39 221 64 55 269 39 55

30 17 24 78 7 49 126 38 56 174 29 59 222 64 42 270 39 42

31 17 38 79 23 24 127 38 29 175 29 50 223 64 20 271 39 20

32 17 56 80 23 38 128 38 46 176 29 53 224 64 47 272 39 47

33 17 29 81 23 56 129 38 64 177 29 25 225 64 49 273 39 49

34 17 46 82 23 29 130 38 67 178 29 68 226 67 48 274 59 50

35 17 64 83 23 46 131 38 48 179 29 34 227 67 39 275 59 53

36 17 67 84 23 64 132 38 39 180 29 60 228 67 59 276 59 25

37 17 48 85 23 67 133 38 59 181 29 52 229 67 50 277 59 68

38 17 39 86 23 48 134 38 50 182 29 72 230 67 53 278 59 34

39 17 59 87 23 39 135 38 53 183 29 71 231 67 25 279 59 60

40 17 50 88 23 59 136 38 25 184 29 55 232 67 68 280 59 52

41 17 53 89 23 50 137 38 68 185 29 42 233 67 34 281 59 72

42 17 25 90 23 53 138 38 34 186 29 20 234 67 60 282 59 71

43 17 68 91 23 25 139 38 60 187 29 47 235 67 52 283 59 55

44 17 34 92 23 68 140 38 52 188 29 49 236 67 72 284 59 42

45 17 60 93 23 34 141 38 72 189 46 64 237 67 71 285 59 20

46 17 52 94 23 60 142 38 71 190 46 67 238 67 55 286 59 47

47 17 72 95 23 52 143 38 55 191 46 48 239 67 42 287 59 49

48 17 71 96 23 72 144 38 42 192 46 39 240 67 20 288 50 53

Fea R1 R2 Fea R1 R2

289 50 25 337 34 71

290 50 68 338 34 55

291 50 34 339 34 42

292 50 60 340 34 20

293 50 52 341 34 47

294 50 72 342 34 49

295 50 71 343 60 52

296 50 55 344 60 72

297 50 42 345 60 71

298 50 20 346 60 55

299 50 47 347 60 42

300 50 49 348 60 20

301 53 25 349 60 47

302 53 68 350 60 49

303 53 34 351 52 72

304 53 60 352 52 71

305 53 52 353 52 55

306 53 72 354 52 42

307 53 71 355 52 20

308 53 55 356 52 47

309 53 42 357 52 49

310 53 20 358 72 71

311 53 47 359 72 55

312 53 49 360 72 42

313 25 68 361 72 20

314 25 34 362 72 47

315 25 60 363 72 49

316 25 52 364 71 55

317 25 72 365 71 42

318 25 71 366 71 20

319 25 55 367 71 47

320 25 42 368 71 49

321 25 20 369 55 42

322 25 47 370 55 20

323 25 49 371 55 47

324 68 34 372 55 49

325 68 60 373 42 20

326 68 52 374 42 47

327 68 72 375 42 49

328 68 71 376 20 47

329 68 55 377 20 49

330 68 42 378 47 49

331 68 20

332 68 47

333 68 49

334 34 60

335 34 52

336 34 72

Figure A3. The connections between the brain regions R1 and R2 corresponding to FNC features.
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SVMRFE RFFS1 RFFS2 SVMRFE RFFS1 RFFS2

Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre

26 20 11 20 7 20 17 12 25 11 19 12

30 20 26 20 11 20 22 12 31 10 31 12

6 19 24 19 16 20 29 12 9 8 18 11

11 19 30 19 24 20 5 11 12 8 17 10

7 18 7 18 26 20 13 11 14 6 20 10

32 18 32 18 30 20 16 11 17 5 21 10

24 17 16 17 32 20 20 10 28 4 1 9

19 16 29 17 12 19 28 10 1 3 8 9

3 16 3 17 29 18 2 9 5 3 27 9

23 15 2 16 3 18 4 8 8 2 23 7

14 14 4 15 25 16 25 8 13 2 13 6

21 14 19 14 2 15 27 8 15 2 5 5

31 14 10 13 4 15 1 7 18 2 9 4

9 13 6 13 10 14 15 7 20 1 14 4

10 13 21 13 22 13 18 6 22 1 15 2

12 12 23 12 6 12 8 5 27 1 28 1

Figure A4. SVMRFE and RFFS results of SBM data, where Fea represents the feature number and Fre
represents the frequency at which the feature appears in 20 experiments.

SVMRFE RFFS1 RFFS2 SVMRFE RFFS1 RFFS2 SVMRFE RFFS1 RFFS2 

Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre 

13 20 244 20 5 20 278 19 71 14 321 20 152 16 42 8 47 17 

18 20 295 20 13 20 279 19 89 14 328 20 158 16 68 8 54 17 

20 20 226 20 30 20 313 19 106 14 333 20 162 16 69 8 96 17 

40 20 302 20 33 20 328 19 142 14 353 20 199 16 81 8 106 17 

42 20 37 19 37 20 332 19 156 13 68 19 305 16 85 8 151 17 

43 20 183 19 40 20 352 19 173 13 83 19 329 16 98 8 170 17 

48 20 220 19 48 20 356 19 245 13 128 19 338 16 102 8 182 17 

79 20 243 19 61 20 361 19 251 13 142 19 340 16 119 8 215 17 

83 20 33 19 62 20 371 19 259 13 165 19 341 16 148 8 228 17 

102 20 289 19 63 20 372 19 304 12 190 19 345 16 157 8 256 17 

106 20 61 19 64 20 45 18 321 12 194 19 24 15 169 8 296 17 

138 20 292 19 71 20 147 18 5 11 210 19 38 15 170 8 298 17 

177 20 62 19 75 20 182 18 30 11 211 19 59 15 172 8 312 17 

181 20 64 19 78 20 185 18 90 11 251 19 61 15 181 8 325 17 

183 20 189 18 85 20 215 18 125 11 278 19 62 15 182 8 342 17 

189 20 297 18 102 20 219 18 208 11 301 19 70 15 190 8 16 16 

213 20 63 18 105 20 233 18 222 11 304 19 125 15 193 8 38 16 

234 20 78 18 135 20 251 18 277 11 318 19 194 15 198 8 113 16 

243 20 185 18 150 20 254 18 278 11 335 19 198 15 200 7 157 16 

244 20 290 18 156 20 256 18 293 11 337 19 200 15 209 7 163 16 

265 20 279 18 171 20 342 18 312 11 339 19 289 15 232 7 169 16 

270 20 211 18 173 20 29 17 323 10 350 19 299 15 233 7 172 16 

275 20 40 18 183 20 57 17 368 10 368 19 322 15 234 7 233 16 

276 20 328 17 185 20 89 17 4 10 376 19 373 15 242 7 235 16 

285 20 353 17 189 20 100 17 41 10 4 18 2 14 246 7 264 16 

295 20 165 17 208 20 118 17 45 10 9 18 8 14 248 7 275 16 

301 20 337 17 213 20 144 17 49 10 20 18 110 14 255 7 323 16 

337 20 48 17 220 20 190 17 51 10 29 18 124 14 257 7 334 16 

339 20 150 16 221 20 193 17 54 10 42 18 171 14 264 7 347 16 

353 20 171 16 226 20 201 17 88 10 43 18 179 14 268 7 356 16 

5 19 265 16 243 20 238 17 118 10 45 18 232 14 274 7 49 15 

33 19 333 16 244 20 292 17 128 10 89 18 235 14 275 7 88 15 

37 19 13 16 265 20 311 17 144 10 118 18 242 14 276 7 205 15 

75 19 221 16 279 20 312 17 210 9 138 18 262 14 306 7 232 15 

78 19 9 15 284 20 331 17 213 9 179 18 277 14 309 7 236 15 

165 19 29 15 289 20 334 17 253 9 200 18 282 14 318 7 245 15 

211 19 38 15 290 20 363 17 334 9 219 18 293 14 319 7 276 15 

220 19 47 15 292 20 1 16 335 9 257 18 300 14 340 7 307 15 

259 19 194 15 293 20 96 16 373 9 259 18 308 14 342 7 363 15 

269 19 219 15 295 20 98 16 15 9 285 18 333 14 343 7 15 14 

272 19 284 14 297 20 140 16 20 8 35 17 368 14 344 7 23 14 

273 19 339 14 302 20 142 16 39 8 41 17 19 13 359 7 107 14 

Figure A5. SVMRFE and RFFS results of FNC data, Part 1.
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SVMRFE RFFS1 RFFS2 SVMRFE RFFS1 RFFS2 SVMRFE RFFS1 RFFS2 

Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre 

30 13 367 7 108 14 247 11 282 5 26 11 216 9 92 2 178 9 

41 13 370 7 137 14 250 11 283 5 46 11 221 9 95 2 184 9 

56 13 375 7 161 14 260 11 287 5 51 11 236 9 96 2 216 9 

60 13 8 6 167 14 288 11 291 5 69 11 253 9 99 2 274 9 

132 13 23 6 181 14 290 11 296 5 72 11 291 9 103 2 319 9 

157 13 26 6 193 14 298 11 299 5 90 11 307 9 104 2 349 9 

188 13 34 6 209 14 302 11 307 5 124 11 316 9 108 2 370 9 

210 13 44 6 223 14 306 11 311 4 125 11 324 9 109 2 7 8 

268 13 58 6 329 14 375 11 316 4 133 11 349 9 110 2 55 8 

297 13 67 6 330 14 23 10 320 4 180 11 366 9 111 2 57 8 

304 13 73 6 371 14 25 10 322 4 234 11 12 8 116 2 76 8 

318 13 75 6 11 13 93 10 338 4 255 11 26 8 120 2 116 8 

325 13 83 6 95 13 139 10 347 4 294 11 34 8 121 2 134 8 

336 13 93 6 112 13 143 10 350 4 299 11 35 8 122 2 136 8 

50 12 97 6 191 13 175 10 355 4 311 11 73 8 126 2 192 8 

54 12 100 6 248 13 180 10 357 4 340 11 99 8 127 2 197 8 

55 12 107 6 253 13 196 10 363 4 344 11 117 8 133 2 250 8 

58 12 113 5 260 13 202 10 365 4 345 11 129 8 135 2 271 8 

71 12 115 5 277 13 212 10 372 4 365 11 145 8 136 2 287 8 

127 12 123 5 282 13 225 10 376 4 373 11 191 8 138 2 308 8 

141 12 130 5 291 13 227 10 2 4 375 11 197 8 147 2 316 8 

148 12 131 5 313 13 230 10 3 4 34 10 209 8 155 2 361 8 

218 12 137 5 315 13 263 10 6 4 44 10 214 8 158 2 367 8 

223 12 141 5 22 12 280 10 11 4 81 10 229 8 160 2 8 7 

357 12 145 5 39 12 309 10 12 3 82 10 255 8 161 2 58 7 

14 11 151 5 66 12 315 10 17 3 130 10 266 8 163 2 103 7 

17 11 152 5 109 12 346 10 18 3 222 10 294 8 164 2 104 7 

51 11 159 5 114 12 354 10 21 3 238 10 296 8 167 2 111 7 

63 11 162 5 127 12 4 9 31 3 239 10 344 8 177 2 145 7 

64 11 166 5 131 12 6 9 32 3 242 10 351 8 179 2 146 7 

68 11 168 5 144 12 9 9 35 3 249 10 355 8 184 2 155 7 

112 11 176 5 186 12 28 9 36 3 273 10 378 8 186 2 158 7 

167 11 180 5 198 12 46 9 43 3 305 10 49 7 187 2 164 7 

169 11 199 5 212 12 47 9 46 3 306 10 65 7 195 2 176 7 

173 11 215 5 225 12 76 9 50 2 372 10 69 7 202 1 214 7 

205 11 216 5 246 12 95 9 53 2 36 9 77 7 204 1 229 7 

207 11 238 5 263 12 101 9 56 2 50 9 85 7 205 1 262 7 

208 11 241 5 288 12 119 9 72 2 86 9 91 7 207 1 268 7 

226 11 256 5 309 12 170 9 76 2 139 9 116 7 212 1 269 7 

231 11 260 5 358 12 184 9 82 2 141 9 126 7 217 1 270 7 

237 11 262 5 374 12 203 9 84 2 159 9 146 7 218 1 272 7 

239 11 263 5 6 11 204 9 87 2 175 9 176 7 230 1 300 7 

Figure A6. SVMRFE and RFFS results of FNC data, Part 2.
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SVMRFE RFFS1 RFFS2 SVMRFE RFFS1 RFFS2 SVMRFE RFFS1 RFFS2 

Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre Fea Fre 

186 7 231 1 320 7 108 5 7 0 2 4 3 3 175 0 207 2 

195 7 235 1 327 7 111 5 10 0 52 4 31 3 178 0 224 2 

217 7 237 1 343 7 113 5 14 0 70 4 36 3 188 0 240 2 

241 7 239 1 351 7 121 5 16 0 73 4 52 3 191 0 241 2 

248 7 240 1 14 6 131 5 19 0 80 4 80 3 192 0 258 2 

258 7 249 1 17 6 133 5 22 0 94 4 82 3 196 0 283 2 

267 7 250 1 24 6 137 5 24 0 140 4 84 3 197 0 310 2 

274 7 254 1 28 6 149 5 25 0 147 4 92 3 201 0 331 2 

283 7 258 1 93 6 150 5 27 0 154 4 105 3 203 0 338 2 

284 7 266 1 100 6 156 5 28 0 166 4 120 3 206 0 348 2 

286 7 267 1 115 6 159 5 52 0 177 4 123 3 214 0 364 2 

319 7 269 1 152 6 160 5 55 0 187 4 128 3 223 0 369 2 

350 7 270 1 188 6 163 5 57 0 203 4 134 3 224 0 378 2 

376 7 281 1 201 6 166 5 59 0 247 4 136 3 225 0 18 1 

377 7 285 1 227 6 192 5 60 0 280 4 164 3 227 0 56 1 

7 6 286 1 261 6 246 5 65 0 354 4 245 3 228 0 79 1 

15 6 288 1 267 6 281 5 66 0 377 4 249 3 229 0 87 1 

27 6 298 1 324 6 303 5 70 0 19 3 257 3 236 0 97 1 

39 6 301 1 346 6 317 5 74 0 27 3 264 3 247 0 99 1 

66 6 303 1 360 6 348 5 77 0 32 3 287 3 252 0 120 1 

87 6 305 1 362 6 369 5 79 0 84 3 327 3 261 0 121 1 

104 6 313 1 12 5 370 5 80 0 92 3 360 3 271 0 143 1 

107 6 314 1 31 5 374 5 86 0 110 3 362 3 272 0 148 1 

114 6 315 1 60 5 10 4 91 0 122 3 365 3 273 0 160 1 

135 6 317 1 65 5 21 4 94 0 126 3 367 3 280 0 196 1 

151 6 325 1 74 5 22 4 101 0 129 3 11 2 294 0 231 1 

154 6 329 1 98 5 32 4 105 0 168 3 44 2 300 0 266 1 

161 6 330 1 101 5 81 4 112 0 206 3 53 2 308 0 326 1 

172 6 341 1 117 5 88 4 114 0 252 3 67 2 310 0 341 1 

178 6 346 1 119 5 122 4 117 0 281 3 72 2 324 0 357 1 

187 6 348 1 174 5 130 4 124 0 314 3 97 2 326 0 1 0 

206 6 349 1 195 5 155 4 129 0 332 3 103 2 327 0 3 0 

240 6 351 1 204 5 168 4 132 0 10 2 153 2 331 0 77 0 

261 6 354 1 218 5 174 4 134 0 21 2 224 2 332 0 123 0 

320 6 358 1 237 5 222 4 139 0 25 2 228 2 336 0 132 0 

323 6 360 1 254 5 271 4 140 0 53 2 252 2 345 0 153 0 

347 6 361 1 303 5 310 4 143 0 59 2 326 2 352 0 202 0 

359 6 362 1 317 5 314 4 146 0 67 2 358 2 356 0 217 0 

16 5 364 1 322 5 321 4 149 0 91 2 86 1 366 0 230 0 

74 5 369 1 352 5 335 4 153 0 149 2 109 1 371 0 286 0 

90 5 378 1 355 5 343 4 154 0 162 2 115 1 374 0 336 0 

94 5 1 0 359 5 364 4 174 0 199 2 330 1 377 0 366 0 

Figure A7. SVMRFE and RFFS results of FNC data, Part 3.
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Figure A8. The characteristic frequency distribution with a frequency greater than or equal to 50. The x
axis corresponds to the frequency of occurrence, and the y axis is the number of features. We can find
that when the frequency is in the red range, i.e., greater than or equal to 52 and less than or equal
to 56, the number of features is quite stable. Compared with other ranges, in the red range, there
exists a balance between the number of features and the frequency of occurrence, which facilitates the
abnormal analysis of brain function connections and structures corresponding to diseases. Therefore,
we selected features with a frequency greater than or equal to 55.
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