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Featured Application: This work shows a new methodology to optimize the exact amount of
permeable internal coverings in a building, thereby becoming a passive method control system
for this indoor ambience.

Abstract: Although several papers define energy saving and thermal comfort optimization with
internal coverings materials, none of them deal with predictive models to improve design in building
constructions. Thus, artificial intelligence (AI) procedures were applied in this paper. In particular,
neural networks (NNs) were designed for indoor ambiences with internal covering materials in
different buildings, were trained and employed to predict indoor ambiences (indoor temperature and
relative humidity as a function of weather conditions), and, based on these procedures, local thermal
comfort conditions and energy consumption, due to the type of internal covering permeability level,
were calculated. Results from this original methodology showed a better acceptability of indoor
ambiences when permeable coating materials were used, in agreement with previous research works.
At the same time, with permeable coverings, a lower energy consumption of 20% in the heating,
ventilation, and air conditioning (HVAC) systems was needed to reach more comfortable conditions
during the summer season in the first hours of occupation. Finally, all these results suggest an original
methodology to optimize indoor ambiences based on the design of internal coverings by NN.

Keywords: novel method; internal coverings; neural networks; energy; thermal comfort; control
system

1. Introduction

Internal coverings are now commonly employed in new and old buildings. In particular, public
spaces, such as office buildings, are selected for internal coverings based on the principles of a good
economy and easily washable surfaces. Consequently, most of the time, impermeable coverings are
selected for buildings due to their high durability and ease of cleaning. On the other hand, in the last
decade, permeable internal coverings as a passive method to control indoor ambiences have attracted
much attention [1-5]. Initially, this passive effect was neglected for a long time [6]; however, under
low ventilation rates, this passivity was clearly appreciated [7]. Finally, initial studies in wooden
structures [6,8] were employed to analyze the same passive effect on concrete buildings covered with
coatings of different materials, such as paper, wood, and paint or plastic [7,9]. Initially, these studies
were evaluated in laboratories to define their coefficients, such as diffusion coefficients or water vapor
permeability [10], for applications such as inputting data in future modelling processes [11] so as to
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define the real effect of internal coverings over indoor ambiences after placing these materials in their
final constructive position in buildings [12].

The International Energy Agency (IEA) made several different attempts to predict indoor ambiences
based on outdoor weather conditions. However, predicting indoor ambiences is a complex objective
with a large number of unknown variables, such as the properties of materials in a building construction
positions. Despite the fact that materials are tested in a laboratory in their final application place,
experiments with different treatments change their expected behavior, [13] such varnishing, painting,
covering with paper, or simply dusting over the covering. Recent papers have reported that many of
the current numerical models for building energy systems assume empty rooms and do not account
entirely for the thermal inertia of objects and materials, such as furniture. This assumption makes the
models invalid for dynamic calculations [14]. The issues arising during the simulation processes are
too complex to understand and apply realistically to building behavior.

Despite the interest in heat and mass transfer processes in buildings, toward energy saving and
thermal comfort improvement, most of the studies are centered on phase change materials (PCMs)
that affect buildings [15,16] due to the addition of new materials, reaching a more intense effect over
indoor ambiences. Despite this, in accordance with the sustainability, and considering the impossibility
of development in most countries, these constructive materials seem expensive, which is why it is
necessary to continue the analysis of this effect on the basis of the usual internal covering materials to
reach the optimization level in buildings.

In previous research on the effect of permeable internal coverings in the indoor conditions of
25 office buildings [1-5], it was possible to define, based on statistical studies, the effects of internal
coverings over real indoor ambiences during an unoccupied period. During the occupied period, the
offices attend to clients and the air changes are so high that the covering materials are ineffective in
controlling the ambiences [7]. In this sense, internal covering materials like paper, wood, paint, and
plastic can be classified as permeable, semi-permeable, and impermeable, in clear agreement with its
expected permeability level.

Furthermore, in previous works [1-5], the statistical hourly study of the partial vapor pressure
difference between indoor and outdoor ambiences showed that, although this effect is more intense in
wooden constructions, the internal covering over concrete walls act as a barrier that influences the
building by controlling the indoor ambience. In particular, permeable materials show a tendency to
reduce the indoor partial vapor pressure when it is high in the ambience, and vice versa. Simultaneously,
impermeable materials only increase the effect of outdoor humidity, reaching a greater number of
dissatisfied persons during the first hours of occupation. As a consequence, during the first hours
of occupation, the enthalpy was high and the energy consumption increased to reach an acceptable
ambience, which was a peak of energy demand during the morning.

Although our results suggest the applicability of permeable materials, the information on optimal
material properties and the amount of internal coverings needed in an indoor ambience to act as an
adequate mechanical thermal comfort controller, remains unknown, and so a new design methodology
towards nearly-zero energy building (NZEB) is needed [17,18]. This is related to the fact that statistical
studies do not allow us to model this process and recognize the real material coefficients once placed
in the building.

Despite the fact that there are previous works about control systems of indoor ambiances in
buildings and its posterior optimization by artificial intelligence, a few of them are centered on wall
construction materials. Furthermore, the permeability level of internal coverings was simulated in heat
and mass transfer software resources, which, most of time, do not let researchers develop feedback
and redesign the building construction characteristics. Furthermore, in the present paper, the input
variables considered were outdoor temperature and relative humidity, which could be related to just
one output variable per neural network (NN), such as indoor local perception of indoor air quality
(PD), indoor air acceptability (ACC) and indoor enthalpy (energy consumption), with the aim of a
future optimization of indoor thermal comfort and a reduction of building energy consumption.
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NN are employed when the statistical results are insufficient in revealing great results in most
of the research areas, indicating the solution to different problems, such as natural ventilation and
thermal comfort in buildings [18,19]. In particular, NNs are a universal approach that allow us to
model everything that statistical curve fitting cannot, letting us model some processes and predict
their behavior. Once statistics showed these results, it was of interest to train neural networks based
on outdoor conditions to predict indoor conditions and reach a quantitative determination of the
permeability level of internal coverings. In the present paper, an initial step was performed on
the validation of an original modelling procedure based on real sampled data and its predictions,
in accordance with the knowledge developed in the last few decades.

2. Materials and Methods

2.1. Office Buildings

In previous research works [1-5], different statistical studies were developed to identify the
behavior of indoor conditions in office buildings in the northwest region of Spain. This region is of
special interest due to its high relative humidity, which is nearly 80% throughout the year, and its mild
climate with a mild temperature.

Offices were selected owing to their usage of the same construction materials and structure, except
the internal covering, which let us relate the effect of internal coverings with different ambiences. This
internal covering was classified as permeable, semi-permeable, and impermeable, in accordance with
indoor ambience behavior under different weather conditions. The behavior of internal coverings was
in accordance with the expected permeability level of other materials, such as paper, paint, and plastic.

Two time periods were identified in these offices, in accordance with the working hours, which
could be directly related to the high or low ventilation rate and the presence or absence of humidity
sources from its metabolic rate. The occupied period was defined as a period when clients and workers
were in the office from 09:00 to 19.00, and the unoccupied period was defined as the time-period
when nobody was in the office from 19:00 till 09:00 the next day. During the unoccupied period,
the ventilation rate was reduced and only the internal coverings could have decreased humidity
these ambiences.

2.2. Sampling Temperature and Relative Humidity

Different weather stations from the Environmental Information System of Galicia (SIAM) [20]
in the entire Galician region provide us the main climatic variables, such as temperature, relative
humidity, pressure, and air velocity, with a time frequency of 10 min. This sampling frequency can be
considered to be adequate for our research work.

On the other hand, to sample indoor conditions, different tiny tag data loggers [21] of temperature
and relative humidity were placed in each office during the summer and winter seasons, with a
sampling frequency of 5 min after calibration, with a precision range of +1 °C of temperature and 1%
of relative humidity, respectively.

3. Calculation

3.1. Local Thermal Comfort Indexes

Indoor temperature and relative humidity can be related to some local thermal comfort indexes, as
shown in a previous study by Toftum et al. [21-23] and Simonson et al. [24]. Different research works
revealed that the percentage of dissatisfied persons with warm respiratory thermal comfort (PDwrc)
or the percentage of dissatisfied persons with indoor air quality (PDjaq) were employed to identify the
acceptable level of an indoor ambience (ACCjaq), which ranges from -1 (clearly unacceptable) and
0 (just acceptable) to +1 (clearly acceptable), and the expected percentage of dissatisfied persons. As in
previous research, PDjsq was found to be more sensitive to the changes in the indoor air conditions,
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which is an interesting index for this study, as compared to the PDywgrc. The Equations (1) and (2)
represent the variables ACCypg and PDjaq:

ACCypg = —0.033h 4 1.662 1)

exp(—0.18 - 5.28 ACCiaq)

PDiag =
Ty exp(-0.18 - 5.28 ACCq)

x 100 )

The two indexes shown in Equations (1) and (2) were obtained by Fang et al. [25] and were based
on the laboratory studies, where the subjects were facially exposed to clean air in a climatic chamber,
and different indoor air temperatures and relative humidity could be modelled with a perception
of indoor air quality. In this sense, the first term defined by these laboratory results showed moist
air acceptability due to the indoor air quality. As can be seen from Equation (1), this acceptability
is clearly a function of moist air enthalpy (%). On the other hand, the second index obtained from
the previous index is the percentage of dissatisfied persons expected to be in disagreement with the
proposed indoor air (PDypg). This index, shown in Equation (2), is the only function of the moist air
acceptability (ACCiaq)-

At the same time, due to the moist air, the enthalpy difference respects the comfortable conditions,
both in summer or winter seasons, which are proportional to the energy consumption needed to reach
this comfortable ambience; the enthalpy was calculated for each indoor ambience under the effect of
each internal covering during extreme summer and winter seasons.

3.2. NN Training and Prediction

Matlab NN [26] is the main software resource employed to train and predict the behavior of
internal covering materials as a function of weather conditions. In this sense, it is of interest to highlight
that the generalized regression neural network (GRNN), due to its main advantages, is related to the
lack of need to define the topology of the network. One of the more complex decisions to make when
developing this kind of study is the number of nodes needed that relate to the precision of the results
and the time and the number of calculations needed to obtain each of the different predictions. As a
consequence, an interesting neural net selection of two hidden layers were selected by default, which
is considered to be adequate for most of the real processes.

The neuronal model of generalized regression employed in this research work (GRNN) was
proposed and developed by Specht in 1991 [27,28]. It possesses the desirable property of not requiring
any iterative training, that is, it can approximate any arbitrary function between input vectors (inputs)
and output vectors (outputs), taking the estimation of the function directly from the training data.
In this sense, the GRNN model relies on nonlinear regression theory. It is, in essence, a method to
estimate a function f (x, y) only through the training set, so that the joint probability function, which is
unknown, is estimated using the Parzen estimator [27,28]. To do this, we must first define the following
distances between “x” and “y”.

The output of the GRNN can be defined by Equations (3) and (4):

D? = (x-x;)" ((x—x7)) ®G)

: D?
n 1 _ i
i=1Y exp( 202)

2
Y exp(— 2t
i=1 p 202

where x isthe training sampled, y is the training sampled output, o is the smoothing parameter of the
GRNN, and T is the number of Parzen windows used in the estimation process. Equation (3) shows
the Euclidean distance between the input x; and the training sampled (D;), and Equation (4) shows the
fundamental expression of the neuronal model.

9(x) = @)
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The topology of the GRNN model has four layers. The first layer represents the vector of inputs
or inputs. The second layer, called the pattern layer, is equal to the number of observations of the input

vector. The value of the neuron in this non-visible layer is obtained by applying the activation function,
2

h = exp(—%), which is an extension of the Gaussian multivariate function. The third layer includes
two types of summations: (i) S; = Z h;, which represents the denominator (D(x)) and (ii) Sy = 2 wih;,

1 1
which is the numerator (N(x)), where “w;” are the values of the output used in the learning phase and

which act as weights. Finally, in the fourth layer the output is obtained by the following operation,

y= i‘l as we can see in the Figure 1.

7
S

Figure 1. Typology of a generalized regression neural network (GRNN).

Once training data are introduced in the input layer, the training starts and it will stop when a
previously marked fitness is reached or, if the values don’t improve, when they reach a value close
to zero, for a number of consecutive generations. In our case, the average percentage of incorrect
predictions for each weather station was selected, as we can see in Table 1.

Table 1. Average percentage of incorrect predictions.

GRNN Error (%)
Winter permeable 1.59
Winter semi-permeable 1.20
Winter impermeable 1.34
Summer permeable 1.47
Summer semi-permeable 1.21
Summer impermeable 1.68

In the second part of this experimental configuration, the main variables to be employed were
selected in accordance with the NN rules. In this sense, NNs can predict only one dependent variable as
a function of a wide number of independent variables. The problem appears to adjust this methodology
to our case study, where we need to define the indoor conditions as a function of how to minimize the
indoor and outdoor temperatures and the relative humidity. As a consequence of this, partial vapor
pressure was selected as the main study variable as it represents indoor conditions and due to its
difference with the outdoor partial vapor pressure, which used to be employed to analyze heat and
mass transfer processes in building construction materials.

However, different results from past studies [1,2] have shown that only outdoor partial vapor
pressure, outdoor temperature or relative humidity is needed to train the NNs with an adequate
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precision. In consequence, these two input variables were selected to train and predict indoor partial
vapor pressure, enthalpy, and local thermal comfort indexes during the summer and winter seasons.

Finally, in the second step, to compare and understand the behavior of the internal coverings,
each of the trained networks were required to be stimulated under the exact same weather conditions
for each season. Figures 2 and 3 depict the outdoor temperature and relative humidity (RH) sampled
in a typical Galician night. The data reflected in Figures 2 and 3 are real curves obtained from nearer
weather stations that are certificated and calibrated by the Spanish ministry. These are the real weather
conditions selected for their usual nearly constant high relative humidity, as is normal in the coastal
regions of Galicia. In the winter season relative humidity increases during the night and, in summer, it
may reach 100% during long periods of time due to fog, as we can see in Figure 3.
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Figure 2. Outdoor temperature during the unoccupied period employed in the prediction process
(data collected from different weather stations in Galicia, Spain).
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Figure 3. Outdoor relative humidity during the unoccupied period employed in the prediction process
(data collected from different weather stations in Galicia, Spain).

An interesting change in temperature from 20-15 °C during the unoccupied period of the summer
season can be observed. As we can see in Figure 2, in summer weather the temperate remains constant
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from 0:00 until 7:00, but during the winter season a nearly constant 12 °C can be observed. This event
is typical of the weather conditions that would help understand its effect over indoor ambiences.

4. Results

Using the previous methodology, and with a frequency of 10 min, about 80 samples/day during
the unoccupied period over more than 1 week were needed to obtain a minimum training data of
300 samples per office and per season. For NN validation, when the percentage of error is reduced
during the training process, it can be modified from the standard 60% of data for training and 40% for
validation [29] to a more interesting 75% of data for training the network and 25% to validate it, by
comparing the NN results with real sampled data and their derived indexes of thermal comfort and
energy saving, obtained from this sampled data, inside each office building.

The stopping criteria was the minimum absolute number of errors obtained in most of the indoor
vapor pressure predictions. In particular, the maximum absolute error allowed was fixed to 6 during
the training period and 9 during the testing period, with a standard deviation of this error in both
cases of 8%, which represented an nearly null percentage of incorrect predictions, providing a clear
example of the power of NNs to model this process. Next, as an example of the accuracy obtained to
define indoor air variables, such as partial vapor pressure (py), the sampled and predicted values were
compared during the validation process, as shown in Figure 4.
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EDD T T T T T 1
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Figure 4. Example of sampled and predicted partial vapor pressure in the winter season.

For the indoor partial vapor pressure prediction, more interesting thermodynamic variables and
thermal comfort indexes were predicted. The moist air enthalpy, PDjsq and ACCypq, was calculated
for each season and for each internal covering during the unoccupied period from 19:00 to 09:00.
Thus, partial vapor pressure, ACCipq, PDiaq, and enthalphy were represented as the three most used
materials for internal covering (paper, paint, and plastic) during the winter season in Figures 5-8 and
during the summer season in Figures 9-12. Taking into account the permeability of these materials
(Table 2) and the results obtained in previous works [1-5], based on a statistical study of indoor
ambiences with these wall internal coverings, the following assumption is considered in the present
study: Paper represents the permeable materials family, paint represents the semi-permeable materials
family, and plastic represents the impermeable materials family.
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Table 2. Permeability values of different types of coverings [1-5].

Covering Permeability (kg/(m s Pa))
Paper and Plaster 1.44e-10
Paint 1.75e-12
Plastic 0.80e-12

5. Discussion

Each NN was trained based on the respective indoor sampled conditions of each office and
its respective outdoor weather conditions, with an adequate margin of error. Each of the different
trained networks had predicted indoor conditions as a function of the same outdoor weather (Figures 2
and 3) with the aim to demonstrate the effect of internal coverings over indoor ambiences, as in the

laboratory analysis.

Previous to this analysis, it is important to remember that, in previous works [1,2], statistical
studies showed that internal covering materials used in several offices such as paper, paint, and plastic,
showed a statistical behavior representative of the permeable, semi-permeable, and impermeable
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materials and, in consequence, the offices buildings with these materials were selected to model the
behavior of internal covering materials.

In accordance with the previous works performed in the summer season, for this climatic region,
a more interesting period helps to appreciate the more intense effect of internal coverings. In this sense,
we can appreciate that, during the winter (Figure 5), permeable coverings tended to exert an opposite
effect on the outdoor conditions. In particular, the humidity cumulated and released from permeable
materials is expected to be found in the first 4 h (from 19:30 to 11:30) and, after this, only permeable
internal coverings will reduce partial vapor pressure more slowly than impermeable internal coverings.
Additionally, the opposite effect was appreciated during the last hours of occupation in this season.

This effect was more intense in the summer, as can be seen in Figure 9. As soon as the outdoor
partial vapor pressure was reduced from an initial value of 19:12 to 0:00, the indoor partial vapor
pressure in offices with permeable internal coverings released humidity and tended to increase its
partial vapor pressure. Furthermore, the opposite effect to the increase in the outdoor partial vapor
pressure can be appreciated during the last hours of the unoccupied period from 06:00 to 09.00.

We can also see that, during the winter and summer seasons, the indoor ambiences of office
buildings with impermeable internal coverings showed a tendency very similar to that of the outdoor
ambiences. Finally, the office with semi-permeable materials tended to maintain a nearly constant
partial vapor pressure during the night in both the seasons (cf. Figures 5 and 9).

As a consequence of this effect of the internal covering over indoor ambiences, we can appreciate
clear consequences to thermal comfort and energy saving. For instance, as seen in Figure 6, the
acceptability index (ACCjaq) during the winter showed a nearly constant value of 0.5, while the
impermeable coverings showed a great variability of this index over time. This variability is a clear
example of the effect of temperature and relative humidity over indoor partial vapor pressure in office
buildings with impermeable coverings.

As seen in Figure 10, this same index revealed higher acceptability during the summer season as a
consequence of lower indoor partial vapor pressure during the first and last hours of the unoccupied
period. Consequently, a better acceptability of indoor ambiences was expected when these materials
(permeable coatings) were used.

The same effect was identified via the expected number of people that were unsatisfied with the
perception of indoor air quality, by means of the PDjsq index (Figures 7 and 11). As expected, the
percentage of dissatisfied persons during the winter season tended to be reduced to an extremely
low value, which was similar for all the offices. Despite this, the effect of internal coverings was
more intense in summer and, as a direct effect of indoor partial vapor pressure, the percentage of
dissatisfied persons tended to be nearly 10% during the last hours of inoccupation and the first hours
of occupation. Moreover, from these results, it is possible to confirm that, in general, a better indoor
ambience is reached (Figure 11). Furthermore, this value of 10% of unsatisfied persons can be reduced
when compared with 40% of unsatisfied persons with impermeable coverings.

Finally, since the energy needed by a heating, ventilation, and air-conditioning (HVAC) system
to reach an adequate indoor ambience is directly related to moist air enthalpy, we could deduce the
energy consumption tendency as a function of this thermodynamic variable (represented in Figures 7
and 12). Figure 7 shows a higher enthalpy value during nearly all of the unoccupied periods in office
buildings with permeable internal coverings. Consequently, a lower energy consumption of 20% in
the HVAC systems was needed to reach more comfortable conditions during the summer season in
the first hours of occupation. At the same time, it is interesting to highlight that, during a reduced
percentage of time, offices with impermeable internal coverings showed a peak of indoor partial vapor
pressure and, as a consequence, a peak of enthalpy and percentage of dissatisfied persons.

Despite these results, these effects are reduced when compared with the values obtained during
the summer season. As can be seen in Figure 12 there is a difference in the indoor enthalpy of 10 kJ/kg
and the enthalpy of indoor air in offices with impermeable respect permeable internal coverings during
the last hours of inoccupation and during the first hours of occupation. This effect implies reduced
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energy consumption to reach a cool ambience during the summer season, which is really important
since such a reduced consumption is becoming one of the key objectives in the majority of today’s
research related to sustainability [30].

Based on these results, we can deduce that it is possible to model indoor ambiences based on the
outdoor conditions by means of NN procedures. At the same time, we can confirm the validity of
these predictions owing to its agreement with the results obtained in previous research [1,2] based on
the statistical analysis of real sampled data. In this sense, NN predictions let us confirm the effect of
permeable internal coverings, such as paper or wood, to control the indoor ambiences toward better
local thermal comfort and energy saving, which acted as a mechanical control system. In particular,
internal coverings materials behavior depended on the extreme outdoor conditions to which the office
was exposed. For instance, the climatic region of this study showed a high relative humidity but no
extreme temperature changes. This is the reason why, during the winter season, this effect was reduced
and clearly more intense in the summer season.

Finally, this passive method needs to be redesigned and adjusted to the amount of surface and
permeability level of covering employed in each case in order to obtain the best possible indoor
ambience behavior. Thus, this methodology can be employed for almost all kinds of buildings and
weather conditions [31,32]. Furthermore, this methodology would be of interest because climate
variations will induce different indoor ambiences in each type of building and, therefore, this and
others passive methods must be adjusted for each particular region [33-36]. Other kinds of artificial
PCMs [37] are employed as building construction materials rather than the typical permeable internal
covering materials, because these PCMs are well modelled in laboratories [37]. However, only limited
information is available about the behavior of PCMs in real buildings, which is why this new generation
procedure seems promising toward understanding their effect and improving their future design.

6. Conclusions

The present paper shows new and interesting results about a new methodology for internal
covering designs to improve these materials effect over indoor ambiences. In this sense, based on
the results obtained from previous works, the effect of permeable, semi-permeable, and impermeable
internal coverings was analyzed after placing them in the actual final building construction position.
The main data was employed to obtain different neural networks that, once trained, were employed to
predict the indoor ambience based on input data with the same weather conditions.

This result had a direct implication on the indoor thermal comfort and energy consumption,
proposing permeable coverings as the better way to reduce energy peak demands in the first hours
of occupation and a better thermal comfort condition, which acted as a mechanical control system.
In particular, a reduction of 20% in the expected energy consumption of the HVAC system and a
reduction from 40% to 10% of unsatisfied persons was obtained during the summer season when the
permeable coverings were employed.

Finally, from these interesting results, we can conclude that, once the effect of internal coverings
over thermal comfort and energy consumption has been demonstrated, it is possible to design internal
coverings and, consequently, to define the exact amount of internal covering surface and permeability
level needed, to reach an adequate behavior for a specific indoor ambience as the main constant to
adjust this mechanical control system.
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