
applied  
sciences

Article

An Improved CNN Model for Within-Project
Software Defect Prediction

Cong Pan 1,2,* , Minyan Lu 1,2,*, Biao Xu 1,2 and Houleng Gao 1,2

1 The Key Laboratory on Reliability and Environmental Engineering Technology, Beihang University,
Beijing 100191, China; xxbbzxc@163.com (B.X.); gaohouleng@126.com (H.G.)

2 School of Reliability and System Engineering, Beihang University, Beijing 100191, China
* Correspondence: cong_pan@buaa.edu.cn (C.P.); lmy@buaa.edu.cn (M.L.)

Received: 18 March 2019; Accepted: 22 May 2019; Published: 24 May 2019
����������
�������

Abstract: To improve software reliability, software defect prediction is used to find software bugs
and prioritize testing efforts. Recently, some researchers introduced deep learning models, such as
the deep belief network (DBN) and the state-of-the-art convolutional neural network (CNN), and
used automatically generated features extracted from abstract syntax trees (ASTs) and deep learning
models to improve defect prediction performance. However, the research on the CNN model failed
to reveal clear conclusions due to its limited dataset size, insufficiently repeated experiments, and
outdated baseline selection. To solve these problems, we built the PROMISE Source Code (PSC)
dataset to enlarge the original dataset in the CNN research, which we named the Simplified PROMISE
Source Code (SPSC) dataset. Then, we proposed an improved CNN model for within-project
defect prediction (WPDP) and compared our results to existing CNN results and an empirical study.
Our experiment was based on a 30-repetition holdout validation and a 10 * 10 cross-validation.
Experimental results showed that our improved CNN model was comparable to the existing CNN
model, and it outperformed the state-of-the-art machine learning models significantly for WPDP.
Furthermore, we defined hyperparameter instability and examined the threat and opportunity it
presents for deep learning models on defect prediction.

Keywords: CNN model; within-project defect prediction; abstract syntax tree; deep learning;
hyperparameter instability

1. Introduction

The increasing complexity of modern software has elevated the importance of software reliability.
Building highly reliable software requires a considerable amount of testing and debugging. However,
since both budget and time are limited, these efforts must be prioritized for efficiency. As a result,
software defect prediction techniques, which predict the occurrence of bugs, have been widely used to
assist developers in prioritizing their testing and debugging efforts [1].

Software defect prediction [2–5] is the process of building classifiers to predict whether defects exist
in a specific area of source code. The prediction results can assist developers in prioritizing their testing
and debugging efforts. From the perspective of prediction granularity, software defect prediction can
include method-level, class-level, file-level, package-level, and change-level defect prediction. For
the current research we focused on file-level defect prediction, because there exists ample amount of
labeled data. Typical software defect prediction consists of two phases [6]: (1) extracting features from
software artifacts such as source code, and (2) building classification models using various machine
learning algorithms for training and validation.

Previous research on software defect prediction has taken one of two research directions: one
is creating new features or using different combinations of existing features to better characterize
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defects and the other is utilizing existing statistics-based models or machine learning models and
making improvements to existing models for better classification of buggy code. Alongside the first
direction, researchers have designed various hand-crafted features to capture defect characteristics,
for example, Halstead features [7] based on operator and operand counts, McCabe features [8] based
on dependencies, and other comprehensive feature sets including Chidamber and Kemerer (CK)
features [9], metrics for object-oriented design (MOOD) features [10], and code change features [11].
As for the second direction, many machine learning models have been designed to target software
defect prediction, including the decision tree [12], random forest [13], logistic regression [14], naive
Bayes [15], and dictionary learning [16] models.

Unlike natural languages, programs have a well-defined syntax in the form of the Backus-Naur
Form, which can be further organized into abstract syntax trees (ASTs) [17]. ASTs have been widely used
for characterizing source code [18,19]. However, program semantics is also buried deep in ASTs [20],
however, it is ignored by traditional hand-crafted features. Researchers have shown the usefulness
of ASTs in software engineering tasks such as code completion and bug detection [17–19,21,22].
In recent studies [23,24], researchers have begun to extract features from ASTs to capture both syntax
and semantics of source code, and these features have shown great improvements over traditional
hand-crafted features.

Since the advent of AlexNet [25] in 2012, deep learning has been widely used in areas such as image
recognition, speech recognition, and natural language processing [26]. It has emerged as a powerful
technique for automated feature generation since deep learning architecture can effectively capture
highly complicated nonlinear features [26]. To make use of its powerful feature generation ability,
the deep belief network (DBN) [23] was proposed. One year later, the state-of-the-art method [24]
leveraging convolutional neural network (CNN) was proposed to learn the semantics of source code
via AST programs, which have been shown to outperform traditional feature-based approaches in
software defect prediction.

However, whether the CNN model outperforms traditional machine learning models has remained
unclear. First, the dataset used in the CNN study [24] was rather small. There were only 14 versions of
seven projects, which likely added to the work’s statistical uncertainty. Second, the results in the CNN
paper were derived from insufficiently repeated experiments. As suggested by Arcuri [27], to minimize
statistical bias and variance, there should be no fewer than 30 repeated experiments, and research on
model validation by Tantithamthavorn [28] also supported that conclusion. The CNN study repeated
the experiment only 10 times, a choice that undermined the confidence in their conclusions. Lastly,
the researchers for the CNN study did not choose the proper traditional baseline. The traditional
baseline [29] in the CNN study included only a logistic regression model for within-project defect
prediction (WPDP) and this was not suitable, as no research indicates that logistic regression could
achieve best performance for WPDP.

For this study, we proposed an improved CNN model for software defect prediction to validate
the hypothesis that CNN models can outperform traditional machine learning models for WPDP.
Specifically, we first compiled source code to ASTs and followed existing strategies to select them
and form token vectors such that the token vectors act as a summarization of source files. Then, we
converted the code vector strings into integers, which were then sent to our CNN model as input.
Our CNN model comprised a word embedding layer, three convolutional layers, three max-pooling
layers, four dense layers, and three dropout layers. Finally, the generated features produced by the
CNN model were fed into a logistic regression classifier to predict whether a source file was buggy.
We first evaluated our method on the Simplified PROMISE Source Code (SPSC) dataset, which was
used in a paper by Li [24], to confirm that our CNN model was comparable to or better than existing
state-of-the-art models in terms of F-measure (also known as F1 score). Then, we evaluated our model
on the PROMISE Source Code (PSC) dataset, which was derived from the PROMISE repository [30], to
target AST-based features in terms of F-measure, G-measure, and Matthews correlation coefficient
(MCC). The experimental results indicated that our model was comparable to the existing CNN
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model, and outperformed various traditional machine learning models including the random forest,
naïve Bayes, logistic gegression, RBF network and decision tree models for WPDP. Furthermore, we
discovered that different hyperparameter settings of a CNN model could generate similar average
results for all projects but is markedly different in terms of individual project or version, which we
referred to as hyperparameter instability. We concluded that hyperparameter instability may present a
threat and an opportunity for deep learning models on defect prediction.

Our study made the following contributions:

• We proposed an improved CNN model for better generalization and capability of capturing
global bug patterns. The model learned semantic features extracted from a program’s AST for
defect prediction.

• We built and published a dataset named PSC, which targeted AST-based features from the
PROMISE repository based on five principles. The PSC dataset was larger than the SPSC dataset,
and we excluded versions for which source code could not be found, or the labeled CSV file did
not match the source code.

• We performed two experiments to validate that the CNN model could outperform the
state-of-the-art machine learning models for WPDP. The first experiment demonstrated the
validity of our improved model, while the second experiment validated the performance of our
improved CNN model as compared with other machine learning models.

• We performed a hyperparameter search, which took dense layer numbers, dense layer nodes,
kernel size, and stride step into consideration to uncover empirical findings.

• We concluded that hyperparameter instability may be a threat and an opportunity for deep
learning models on defect prediction. The discovery was based on experimental data and targeted
deep learning models like CNN.

2. Background

2.1. Software Defect Prediction

Figure 1 presents a typical file-level software defect prediction process, which is the prediction
process adopted in most recent studies. As the figure shows, the first step of the process is to extract
program modules (i.e., source files) from software repositories. The second step is to label program
modules as buggy or clean. The labeling criteria are based on post-release defects collected from
bug fixing information or bug reports in bug tracking systems (i.e., Bugzilla). A source file is labeled
buggy if it contains at least one bug. Otherwise, it is labeled clean. The third step is to extract features
from the labeled program modules to form training instances. Traditional features consist of code
metrics such as Halstead features [7], McCabe features [8], and CK features [9], and process metrics
such as change histories. Recently, AST-based features have also been presented [23,24]. The fourth
step is to build a classification model and use training instances to train the model. Researchers have
proposed various machine learning models, such as the decision tree [12], random forest [13], logistic
regression [14], naive Bayes [15], and dictionary learning [16] models, as well as several deep learning
models including DBN [23] and CNN [24]. The last step is to feed new program feature instances into
the trained classifier to predict whether a source file is buggy or clean.
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Figure 1. A typical software defect prediction process based on machine learning.

In the following we will explain some terminologies regarding software defect prediction.
A training set refers to a set of instances used to train a model, whereas a test set refers to a set of
instances used to evaluate the learned model. When performing WPDP, the training set and the test set
come from the same project. WPDP can be performed if defect information regarding current version
or previous versions can be obtained. More specifically, in within-version WPDP the training set and
the test set come from the same version of the same project, whereas, when performing cross-version
WPDP, the training set and the test set come from different versions of the same project. We focused
on WPDP in this study to compare our improved model with existing baseline methods [23,24,29,31].
Specifically, we performed cross-version WPDP on the SPSC dataset in the first experiment, and
within-version WPDP on the PSC dataset in the second experiment.

2.2. Convolutional Neural Network

A CNN is a special type of neural network used to process data that has a known, grid-like
topology [26]. Examples include one-dimensional (1D) time-series data as well as two-dimensional
(2D) and three-dimensional (3D) image data. CNN has been tremendously successful in practical
applications, including speech recognition [32], image classification [25], and natural language
processing [33,34]. In this work, we leveraged a CNN model to extract features from AST
programs automatically.

Figure 2 demonstrates the overall architecture of a CNN. A CNN consists of convolutional layers
and pooling layers. In a simple fully-connected network, which we call dense network, neuron units
are connected to all neuron units of its neighboring layers. In CNN, neural units connected to these
two layers are sparsely connected, which is determined by kernel size and pooling size. A CNN
network features two key characteristics that are sparse connectivity and shared weights. These two
characteristics help reduce model capacity and capture global patterns rather than local patterns.

Figure 2. A basic convolutional neural network (CNN) architecture.
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Sparse connectivity means that each neuron is connected to only a limited number of other
neurons [35]. In a CNN, sparse connectivity is controlled by kernel size and pooling size. Let us take
node V3 in Figure 2 as an example. When kernel size = 3, it is connected to only three nodes h1, h2,
and h3, whereas, h4 is not affected by V3. In the same way, h2 is affected only by V2, V3, and V4. Each
subset connecting to the next layer in the CNN is called a local filter, which captures a specific kind of
patterns. To calculate the output to the next layer, one can multiply each local filter by outputs from
the previous layer, add a bias, and then perform a nonlinear transformation. In Figure 2, if we denote
the ith neuron in the mth layer (convolutional layer) as hm

i , the weights of the ith neuron in the (m − 1)th

layer as Wm−1
i , the bias in the (m − 1)th layer as bm−1, and we use ReLU as our activation function, then

the output can be calculated as follows:

hm
i = ReLU

(
Wm−1

i ∗Vm−1
i + bm−1

)
. (1)

Shared weight means that each filter shares the same parameterization (weight vector and
bias) [24]. For example, in Figure 2 all the solid black lines linking the input layer and convolutional
layer share the same parameters, and the same is true of the blue sparse-dotted lines and the orange
dense-dotted lines. Shared weight enables a CNN to capture features independent of their positions
and it can also effectively reduce model capacity.

In CNN, a pooling layer is usually used after a convolutional layer. It replaces the output of the
network at a certain location with a summary statistic of the nearby outputs [35]. Pooling helps to
make representations more robust, in other words, approximately invariant to small changes in the
input. Moreover, it can reduce the numbers of intermediate representations which translates into
reduced model capacity.

There are many hyperparameters in CNN models including filter size, pooling size, and
convolutional and pooling layer numbers. These hyperparameters must be tuned to make the
model work well. We will discuss the results of our hyperparameter tuning process in Section 5.3.

2.3. Word Embedding

The key idea behind word embedding is distributed representation of words. When a one-hot
encoder is used, each word is encoded into a vector in the shape of {0 . . . 0, 1, 0 . . . 0}. The length of the
vector is equal to the vocabulary size N, and words are independent of each other. On the contrary,
distributed representation regards words as related items, and a word is encoded into a shorter vector.
The length of the vector is far less than the vocabulary size N, and each item is a decimal number
between 0 and 1. After such word embeddings, the distance of words can be calculated easily.

In our improved CNN model, we built an embedding layer as the first layer, which was based on
the skip-gram model. Detailed information on the mathematical formulations of the skip-gram model
is given in [36]. In Figure 3 we illustrate the very basics of a skip-gram model. First, each word in
the corpus is selected, and its surrounding words (define by window size) are picked to form tuples
with two elements. A skip-gram model focuses on one word (“new” for example) as input, which is
represented as a one-hot encoder. The word vector for the input word is learned in the hidden layer,
and the length of the word vector is far less than the word vocabulary size. In the output layer, the
model predicts the neighboring words of the input word using softmax classifier. The weights of the
hidden layer are updated by comparing the model prediction result (neighboring word within word
vocabulary) with the neighboring word extracted from the original corpus (“york” for example). After
training, the learned word vectors can be used to represent input words, and they are extracted as
output of the embedding layer.
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Figure 3. A skip-gram model.

In software defect prediction, input vectors representing source code ASTs information are
embedded, which can be measured by distance and features a grid-like property. CNN models work
perfectly on grid-like data, and that is why the CNN model can be utilized for defect prediction after
word embedding.

2.4. Dropout

Dropout [37] is a network model aiming to deal with model overfitting issues. Its key idea is to
randomly drop neural units as well as their connections during training, which would prevent complex
co-adaptions of units and lower model generalization error (differences between model performance
on training set and test set). The concept of co-adaptation was proposed by Srivastava et al. [37]. In the
backward propagation process of a neural network, the weights of a unit are updated given what other
units are doing, so the weight might be updated to compensate for the mistake of other units, which is
called co-adaptation. When adding dropout layers, a unit is unreliable because it may be randomly
dropped. Therefore, each unit would learn better features instead of fixing the mistakes of other units.
Weight rescaling is performed on test sets to compensate for the dropped units.

Refer to Figure 4 as an example to illustrate the mechanics of dropouts. When we add a dropout
layer for the hidden layer and set the dropout probability to 0.5, hidden units are randomly chosen
to be dropped at a probability of 0.5, as H2 and H4, for example. The connections between the two
nodes and the input/output layers are also dropped. In this case, the weight update of H1 and H3

would be independent of H2 and H4, which would prevent co-adaptation of units and lower model
generalization error.

Figure 4. An example of dropout when p = 0.5.

In our improved CNN model, we used dropout between dense layers in order to better model
generalization. Although dropout could also be used between convolutional layers and max-pooling
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layers, we did not add dropouts because in convolutional layers and max-pooling layers units are
already sparsely connected, and because adding more sparsity through dropout would not be necessary.

3. Approach

In this section, we propose our improved CNN model, which followed the framework proposed
by Li [24]. Figure 5 shows the overall workflow of a software defect prediction based on our improved
CNN model.

Figure 5. The overall workflow of a software defect prediction based on our improved CNN model.

As Figure 5 shows, the prediction process consists of five parts. First, we parsed source codes into
ASTs and generated token vectors by selecting specified AST node types described in Figure 6. Next,
we mapped the string token vectors into integer input vectors to the CNN model. Then, we utilized
random over-sampling methods to handle class imbalance problems. Finally, we built our improved
CNN model to predict software defects.

Figure 6. Selected abstract syntax tree (AST) node types.

3.1. Parsing Source Code

Since we used source code as input, a suitable code representation form was deemed to be beneficial
for parsing source code. Code representations include character-level, token-level, AST-node-level,
tree-level, graph-level, path-level, among others. The AST-node-level code representations have
proven to beat character-level, token-level, and representations of higher granularities in program
classification tasks [38], so we extracted AST nodes from Java source code.

According to Li [24], three types of AST nodes are extracted as tokens: (1) nodes of method
invocations and class instance creations, which are represented as method names or class names;
(2) declaration nodes such as method declarations, type declarations, and enum declarations, which
are represented by their values; and (3) control-flow nodes including while statements, catch clauses, if
statements, and throw statements, which are represented by their node types. We excluded certain
node types including assignment and package declaration, because (1) information in the node could
not be traced, as in package declaration; (2) there was such little information in the node that a huge
amount of labeled data would have been needed to train such a model, as in assignment; (3) the
frequency of the node was too low, as in EnhancedForControl. A full list of the selected 29 AST node
types is listed in Figure 6.
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To parse source files into ASTs, we utilized a python tool called javalang. It enables parsing of
Java 8, and it is based on the official Java language specification. Due to the limited functionality
of javalang, several Java source files could not be parsed correctly, which may have hampered data
preprocessing. We considered three strategies to solve the problem: (1) correct the source file grammar
so that javalang could parse, (2) delete part of the source code that could not parse, (3) delete the file
directly. We adopted the third strategy for simplicity.

A motivating example of Java code for add calculation is shown in Figure 7. After parsing
code by javalang and traversing the AST, a list including 39 elements was generated, which
starts with CompilationUnit and ends with MemberReference. After selection of the 39 nodes,
a refined list including 26 elements was generated, which starts with ClassDeclaration and ends with
MemberReference. Some node types, such as CompilationUnit, Assignment and BinaryOperation
were excluded according to the criteria listed above. Next, we replaced some of the node types with
its names. For example, we replaced the fourth node ReferenceType with String to express detailed
information. In the end, a list including 26 elements was generated, the first five elements of which
were CommandParameter, main, args, String, and int.

Figure 7. Example of Java code for add calculation and its parsed abstract syntax tree (AST) tokens.

3.2. Mapping Tokens

After parsing source code, we obtained a token vector for each source file. However, these token
vectors could not serve as the direct input for a CNN model, and therefore we first needed to map
tokens from strings to integers. Then, we carried out a conversion that mapped each string token
to an integer ranging from one to the total number of token types so that each different string was
represented by a unique integer all the time. In addition, the CNN model requires input vectors to
have equal length. However, the length of the input vectors varied by the number of extracted AST
nodes for each source file after conversion. To solve the problem, we appended zero to the integer
vectors to make their lengths equal to the longest vector. The digit zero would not affect mapping
spaces because the mapping started from one.

Following common practices in the natural language processing (NLP) domain, we deleted
infrequent tokens that might have been used for a specific reason and may not have been suitable for
training instances. We define infrequent as once or twice, and these infrequent tokens were mapped
to zero.

3.3. Handling Class Imbalance

Perfectly balanced datasets rarely exist in real life, so we had to face class imbalance problems
when we trained the models for software defect prediction. Imbalance means that the number of buggy
samples was not proportional to the number of clean samples. The class imbalance problem generally
decreases the performance of classification models.
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We considered three strategies to solve the problem: (1) under-sampling, which means reducing
the number of samples from the majority class; (2) over-sampling, which means increasing the number
of samples from the minority class; and (3) a combination of over- and under-sampling, which aims
to get more robust results. Because our inputs were categorical data, some powerful methods like
SMOTE and its variations could not be used. Thus, we used random over-sampling for simplicity.
During random over-sampling, existing buggy and clean files were duplicated until their ratio reached
50:50. Handling the class imbalance applied to the training set only.

3.4. Building the Improved CNN Model

We built our improved CNN model based on common practices in other fields [25,33]. The overall
architecture is shown in Figure 8. Our improved CNN model consisted of an embedding layer, three
convolutional layers and max-pooling layers to extract global patterns, a flattening layer, four dense
layers with dropouts to generate deep features and help better generalization, and finally, a logistic
regression classifier to predict whether a source file was buggy.

Figure 8. Illustration of the proposed improved CNN model.

Other detailed architecture information is listed below.

• Implementation framework: We use Keras (https://www.tensorflow.org/guide/keras), a high-level
API based on tensorflow to build our model for simplicity and correctness. The version of
tensorflow/keras is 1.8.

• Word embeddings: Note that the implementation of the word embedding layer is also based on
Keras; it was wrapped inside the CNN model. Although word embedding is not a part of CNN
mathematically, we regarded it as our first layer in our CNN model.

• Three convolutional layers and max-pooling layers: It is universally accepted that increasing the
depth of deep models could get better results. Thus, we increased numbers of convolutional
layers and max-pooling layers from 1 to 3. Because adding more such layers requires the output
of the embedding layer to increase accordingly, which is time-consuming, we did not make
further attempts.

• Activation function: Except for the last layer which used the sigmoid activation function for
classification, all other layers used the rectified linear unit (ReLU) activation function.

• Parameter initialization: Due to limited calculation resources, large epochs like 100 were not set
for training a model. Therefore, it was essential to speed-up model training during the initial
epochs. We used He_normal [39] to initialize embedding layers, convolutional layers, and dense
layers due to its high efficiency in loss decrease. For the last layer, we used Glorot_normal [40]
which targets the sigmoid activation function for initialization.

https://www.tensorflow.org/guide/keras
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• Dropouts: We added dropouts between dense layers, which is a common practice to prevent
model overfitting [37].

• Regularization: To avoid model overfitting and make the model converge more quickly, we
added L2 regularizations for embedding layer and dense layers. When L2 is used, an extra L2
norm of weights is added to the loss function to decrease model capacity, which is essential for
model generalization.

• Training and optimizer: Our model trained by using the mini-batch stochastic gradient descent
(SGD) algorithm [41], along with an Adam optimizer [42], in order to get across the saddle points
in the hyperplanes to speed up training. We used binary cross-entropy as the loss function.

• Hyperparameters: We used the best hyperparameter combinations for both experiments on SPSC
and PSC dataset, which is illustrate in Section 5.3.

Architectural comparison between our improved CNN model and the CNN model [24] is
summarized in Table 1. Parameters listed above apply to the experiments on the PSC and SPSC datasets.

Table 1. Architectural comparison between Li’s CNN model and our improved CNN model. Differences
are highlighted in bold.

Li’s CNN Improved CNN

Embedding layer Yes Yes

#Convolutional Layers 1 3

#Pooling layers 1 3

Activation function ReLU + sigmoid (last dense layer) ReLU + sigmoid (last dense layer)

Parameter initialization None
He_normal (embedding layer,

convolutional layer, dense layers)
Glorot_normal (last dense layer)

Dropouts None Between dense layers

Regularization None L2 Regularization (embedding
layer, dense layers)

Training and optimizer Mini-batch SGD + Adam (loss
function not given)

Mini-batch SGD + Adam + binary
cross-entropy

3.5. Predicting Software Defects

We employed a logistic regression model as our classifier in compliance with previous work [24]
because it was easy to implement in Keras and we focused on the overall deep learning models rather
than the last layer of the CNN model as classifiers. After preprocessing of the labeled source files,
we split the dataset into a training set and a test set following a split ratio of 80:20. We performed a
stratified split to ensure that the ratio remained unchanged in both the training test and the test set.
After we fed the training set to our improved CNN model, all parameters, including weights and
biases, were fixed. Then, for each file in the test set, we ran the trained CNN model to obtain our
prediction results. The results were in the form of a decimal number between zero and one, based on
which we predicted a source file as buggy or clean. If the result was above 0.5, the prediction was
regarded as buggy; otherwise it was regarded as clean.
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4. Experimental Setup

All of our experiments were run on a Linux server with Intel(R) Xeon(R) CPU E5-2640 v3 @
2.60GHz. We used CPUs for training deep learning models.

4.1. Evaluation Metrics

To measure the defect prediction results, we used three metrics: F-measure, G-measure, and MCC
under different experiment settings. These metrics have been widely used in various software defect
prediction studies [5,23,24,31,43,44].

F-measure is the harmonic mean of precision and recall. It ranges from 0 to 1. A higher F-measure
means a better prediction performance. We calculated the F-measure as follows:

precision =
TP

TP + FP
. (2)

recall = TPR =
TP

TP + FN
. (3)

F-measure =
2 ∗ precision ∗ recall
precision + recall

(4)

G-measure is the harmonic mean of true positive rate (TPR, also recall) and true negative rate
(TNR). It aims to measure the bad influences of false alarms on software defect prediction. G-measure
ranges from 0 to 1. A higher G-measure means a better prediction performance. We calculated the
G-measure as follows:

TNR =
TN

TN + FP
(5)

G-measure =
2 ∗ TPR ∗ TNR
TPR + TNR

. (6)

MCC describes the correlation between true values and predicted values. It ranges from −1 to 1.
An MCC of 1 means perfect prediction, 0 means random prediction, and −1 means that all predictions
failed. We calculated the MCC as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (7)

4.2. Evaluated Projects and Datasets

We utilized the dataset from the PROMISE Repository (The original website is http://openscience.
us/repo; however, the website is currently unavailable, and a backup repository can be found at
https://github.com/opensciences/opensciences.github.io), which is a publicly available repository for
domains including software defect prediction. For this study, we selected two subsets of the original
dataset which were the SPSC dataset and the PSC dataset. The SPSC dataset was a smaller dataset that
was used in an existing CNN paper [24], while the PSC dataset was a larger dataset designed by hand
for defect prediction of a wider range. Both datasets included the version numbers, the class name of
each file, and the defect label for each source file, as well as 20 traditional features such as weighted
methods per class (WMC), depth of inheritance tree (DIT), and number of children (NOC). Since we
used the AST node information as input, we downloaded the corresponding versions of the projects
from open source repositories rather than using traditional features.

http://openscience.us/repo
http://openscience.us/repo
https://github.com/opensciences/opensciences.github.io
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In the following we describe the detailed design of the PSC dataset. To facilitate feature extraction
from the source code ASTs, we set five guidelines for dataset design: (1) the dataset had to come from
existing high-quality defect prediction repositories, (2) the dataset had to be based on open source
projects, (3) the projects included in the dataset had to contain at least two versions for cross-version
comparison, (4) the link between the open-source project versions and labeled CSV files had to be
verified to make comparisons with deep features and traditional features easier, and (5) the dataset had
to exclude extremely abnormal buggy rate versions of projects to correctly calculate evaluation metrics.
There are various open repositories for defect prediction, such as PROMISE [30], AEEEM [43], NASA
MDP [45], NETGENE [46], and RELINK [47]. Some of the repositories are based on closed-source
software, such as NASA MDP. Although there exists labeled data as well as hand-crafted features
in these repositories, AST-based features cannot be extracted without open source code. Therefore,
we chose to select projects and versions from the PROMISE repository. Next, we chose projects that
included multiple versions from the PROMISE repository. When checking links between open source
project versions and labeled CSV files, we selected all similar versions of the source code (i.e., 1.4 and
1.4.4) to prevent mistakes in the mapping process. After the match and validation process, we found
that in Xerces 1.4 the labeled CSV file did not match the source code versions in nearly half of the
instances, so we excluded Xerces 1.4 from our PSC dataset. In the last step, we did not exclude project
versions with less than 100 instances or a buggy rate above 95% or below 5% because these projects
could still prove helpful if the size of the dataset was not too small. Instead, we chose to exclude Xalan
2.7 because its buggy rate was at 98.8%, which would cause problems in evaluation metric calculations,
as the test set may hold no clean samples.

Tables 2 and 3 provide detailed information on the SPSC and PSC datasets. Table 2 includes
6538 files from 14 versions of seven projects, and information including the previous version (Vp) and
the newer version (Vn), average files, and the average buggy rate. We used Vp to train the model, Vn to
validate the model, and performed 30-holdout repeated experiments, which follows the cross-version
WPDP pattern.

Table 2. Simplified PROMISE Source Code (SPSC) dataset description. SPSC is applied for cross-version
within-project defect prediction (WPDP). Numbers in brackets indicate numeral changes compared
with the original dataset from PROMISE repository.

Project Versions (Vp, Vn) #Files #Defects Avg. Buggy Rate (%)

Camel 1.4, 1.6 1781(–6) 333(0) 18.7(+0.6)

jEdit 4.0, 4.1 547(–71) 134(–20) 24.5(–0.4)

Lucene 2.0, 2.2 420(–22) 234(–1) 55.7(+2.5)

Xalan 2.5, 2.6 1629(–59) 790(–8) 48.5(+1.2)

Xerces 1.2, 1.3 882(–11) 138(–2) 15.6(–0.1)

Synapse 1.1, 1.2 461(–17) 141(–5) 30.6(+0.1)

Poi 2.5, 3.0 818(–9) 529(–9) 64.7(+0.7)

Total - 6538(–245) 2299(–45) 35.2(+0.6)

Table 3 includes 14,066 files from 41 versions of 12 projects, and information including version,
numbers of files, and buggy rate. From the perspective of file numbers, it can be observed that the
SPSC dataset has expanded more than twice in size as compared with the SPSC dataset. We used
the 10 × 10 cross-validation strategy for training and validation, which followed the within-version
WPDP pattern.

The SPSC and PSC dataset are available at https://github.com/penguincwarrior/CNN-WPDP-
APPSCI2019.

https://github.com/penguincwarrior/CNN-WPDP-APPSCI2019
https://github.com/penguincwarrior/CNN-WPDP-APPSCI2019
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Table 3. PROMISE Source Code (PSC) dataset description. PSC is applied for within-version
WPDP. Numbers in brackets indicate numeral changes compared with the original dataset from
PROMISE repository.

Project Version #Files #Defects Buggy Rate (%)

Ant

1.3 124(–) 20(0) 16.0(+0.1)

1.4 177(–1) 40(0) 22.6(+0.1)

1.5 278(–15) 29(–3) 10.4(–0.5)

1.6 350(–1) 92(0) 26.3(+0.1)

1.7 741(–4) 166(–1) 22.4(0)

Camel

1.0 339(–0) 13(0) 3.8(0)

1.2 595(–13) 216(0) 36.3(+0.8)

1.4 847(–25) 145(0) 17.1(+0.5)

1.6 934(–31) 188(0) 20.1(+0.6)

Ivy

1.1 111(0) 63(0) 56.8(0)

1.4 241(0) 16(0) 6.6(0)

2.0 352(0) 40(0) 11.4(0)

JEdit

3.2 260(–12) 90(0) 34.6(+1.5)

4.0 281(–25) 67(–8) 23.8(–0.7)

4.1 266(–46) 67(–12) 25.2(–0.1)

4.2 355(–12) 48(0) 13.5(+0.4)

4.3 487(–5) 11(0) 2.3(0)

Log4j

1.0 119(–16) 34(0) 28.8(+3.4)

1.1 104(–5) 37(0) 35.6(+1.6)

1.2 194(–11) 186(–3) 95.9(+3.7)

Lucene

2.0 186(–9) 91(0) 48.9(+2.3)

2.2 234(–13) 143(–1) 61.1(+2.8)

2.4 330(–10) 203(0) 61.5(+1.8)

Pbeans
1.0 26(0) 20(0) 76.9(0)

2.0 51(0) 10(0) 19.6(0)

Poi

1.5 235(–2) 141(0) 60.0(+0.5)

2.0 309(–5) 37(0) 12.0(+0.2)

2.5 380(–5) 248(0) 65.3(+0.8)

3.0 438(–4) 529(0) 64.2(+0.6)

Synapse

1.0 157(0) 16(0) 10.2(0)

1.1 205(–17) 55(–5) 26.8(–0.2)

1.2 256(0) 86(0) 33.6(0)

Velocity

1.4 195(–1) 147(0) 75.4(+0.4)

1.5 214(0) 142(0) 66.4(0)

1.6 229(0) 78(0) 34.1(0)

Xalan

2.4 676(–47) 110(0) 16.3(+1.1)

2.5 754(–49) 379(–8) 50.3(+2.1)

2.6 875(–10) 411(0) 47.0(+0.5)

Xerces

Initial 162(0) 77(0) 47.5(0)

1.2 436(–4) 70(–1) 16.1(–0.1)

1.3 446(–7) 68(–1) 15.2(0)

Total - 14,066(–289) 6542(–77) 31.4(+0.6)



Appl. Sci. 2019, 9, 2138 14 of 28

4.3. Baseline Methods

We compared our improved CNN method on the SPSC dataset with the following baseline methods:

• CNN [24]: This is a state-of-the-art method of deep software defect prediction that extracts AST
node information as model input, and it proposes deep models (CNN) combined with word
embeddings for defect prediction.

• DBN [23]: This was the first method of deep software defect prediction conceived. It extracts AST
node information as model input, and it proposes deep models (DBN) for defect predictions. We
used the results from the CNN paper [24] for easy comparison.

• Traditional (LR) [29]: This is an empirical result of traditional software defect prediction, which
utilizes 20 code metrics extracted manually in the PROMISE repository as model input, and it
proposes logistic regression models for defect prediction. We also used the results from the CNN
paper for ease of comparison. It should be noted that the traditional model [29] is not the most
suitable baseline to represent traditional machine learning models.

We then compared our improved CNN method on the PSC dataset with the following
baseline methods:

• Five machine learning models [31]: Five models were trained and validated in the within-version
WPDP pattern. These five models were the decision tree (DT), logistic regression (LR), naïve
Bayes (NB), random torest (RF), and RBF network (NET). These models are the most prevalent
machine learning models, which in general represent the top results for WPDP. We excluded the
SVM model because it tends to work poorly in empirical scenarios [31].

• RANDOM [31]: This model predicts a source file as buggy at the probability of 0.5. If the
RANDOM model beats any model on averaged metrics, it means that the model is worse than
random guessing.

• FIX [31]: This model predicts all source files as buggy, which works as a null hypothesis model.
If the FIX model beats any model, it means that the model should not be used in practical situations.

In the original empirical paper [31], no detailed experimental data regarding each version
were found. Therefore, we obtained access to the corresponding Github pages where detailed
raw experiment data were available. We then filtered the experiment data to fit our PSC dataset
and calculated the average results from multiple experiments. The Github website is as follows:
https://github.com/sherbold/replication-kit-tse-2017-benchmark.

4.4. Model Validation Strategy

To reduce statistical bias and variance, we adopted the idea that the experiment should be repeated
no less than 30 times [27]. For better comparison of respective baselines, we performed 30-holdout
repeated experiments on the SPSC dataset and 10 × 10 cross-validation experiments on the PSC dataset.
A 30-holdout repeated experiment means that the same model is trained and validated 30 times, and the
experimental hyperparameters remain unchanged except for random seeds. A 10 * 10 cross-validation
means that for each of the ten trials, the source files for each version were divided evenly into ten folds.
For each trial, one fold is used for validation, and the other nine folds are used for training.

4.5. Statistical Hypothesis Test

Comparing model results by simply comparing average performance metrics can be misleading
due to their inherent variances. Therefore, statistical hypothesis tests were essential in our study.

We adopted the Friedman test [48] to check whether there were statistically significant differences
between the models. The Friedman test aims to check whether the null hypothesis that all models
perform equally can be rejected. It is a nonparametric statistical test using only ordinal information, so
it makes no assumptions about the distributions of the prediction results.

https://github.com/sherbold/replication-kit-tse-2017-benchmark
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Once the null hypothesis that there were no statistically significant differences among the
models was rejected, we used the post-hoc Holm–Bonferroni test [49] afterward to check whether the
performance of the two models was significantly different. The Holm–Bonferroni test checks whether
two models are significantly different in terms of their ranks for all possible model pairs. It can reduce
type I errors (false positives) due to the multiple hypothesis checks involved.

For both the Friedman test and the post-hoc Holm–Bonferroni test, we used a significance threshold
p = 0.05. A calculated p-value below the threshold meant that the two methods were significantly
different statistically.

In our paper, the statistical hypothesis tests were calculated on http://astatsa.com/FriedmanTest/.
We have verified the results of the website via generated R code, and the answer is correct.

5. Results and Discussion

This section presents our experimental results. First, we propose our research questions, which
were answered by subsequent experimental data and analysis.

5.1. Research Questions

• RQ1: Does our improved CNN model outperform state-of-the-art defect prediction methods
in WPDP?

• RQ2: How does the improved CNN model perform under different hyperparameter settings?
• RQ3: Could our model generate results comparable to those of other baseline methods for

each version of a project?

5.2. Performance of the Improved CNN Model

RQ1: Does our improved CNN model outperform state-of-the-art defect prediction methods
in WPDP?

To better answer the research question, we broke it down into two smaller research questions.
RQ1a: Does our improved CNN model outperform baseline methods on SPSC dataset for

cross-version WPDP?
To answer this question, we performed experiments on the SPSC dataset to pit the performance of

our improved CNN model against the baseline methods, including traditional, DBN, and CNN. We
followed the cross-version WPDP pattern for the experiment.

Table 4 shows the experimental results. Let us take Xalan for example. We used Xalan 2.5 for
training, and a newer version, Xalan 2.6 for validation. The F-measures of software defect prediction
for traditional, DBN, CNN, and improved CNN models were 0.627, 0.681, 0.676, and 0.780, respectively.
The table highlights the projects in which our improved CNN model outperformed the other methods.
On the basis of the average results of all projects, our improved CNN outperformed the state-of-the-art
CNN model by 2.2%, which was a minor improvement yet showed that our model was comparable to
the CNN model [20]. The CNN model [20] is a simple model that uses only one convolutional layer
and one pooling layer. In comparison, our model used three convolutional layers and pooling layers,
as well as dropouts, l2 regularizations, and He_normal weight initialization. Thus, it was reasonable to
assume that our improved model would perform no worse than the CNN model [20].

To check whether our improved model would outperform other models statistically, we first
performed the Friedman test. The Friedman test yielded a result of p = 0.034 < 0.05, which means that the
null hypothesis that all models perform equally was rejected. We then performed the Holm–Bonferroni
test, and the results can be seen in Table 5. From Table 5, we found that the performance of the CNN
and improved CNN models were significantly different from that of the traditional model, and there
were no significant differences between the performance of the CNN and improved CNN models.
Considering the average F-measure, we further discovered that the DBN, CNN, and improved CNN
models were significantly better performers than the traditional model, and there were no significant
differences between the DBN, CNN, and improved CNN models.

http://astatsa.com/FriedmanTest/
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Table 4. Performance comparison of different models on the SPSC dataset. The decimal values represent
the average F-measure values. The best F-measure values are highlighted in bold.

Project Traditional (LR) DBN Li’s CNN Improved CNN

Camel 0.329 0.335 0.505 0.487

JEdit 0.573 0.480 0.631 0.590

Lucene 0.618 0.758 0.761 0.701

Xalan 0.627 0.681 0.676 0.780

Xerces 0.273 0.261 0.311 0.667

Synapse 0.500 0.503 0.512 0.655

Poi 0.748 0.780 0.778 0.444

average 0.524 0.543 0.596 0.618

Table 5. Holm–Bonferroni test of prediction on the SPSC dataset.

Traditional (LR) DBN Li’s CNN

DBN 0.1098 - -

Li’s CNN 0.0038 0.0790 -

Improved CNN 0.0079 0.1563 0.5339

However, we could not conclude that our model could outperform the state-of-the-art machine
learning models for WPDP. First, due to the limited size of SPSC dataset, experiments performed on
the SPSC dataset would not give convincing results. There are only 12 versions of six projects in the
SPSC dataset, and these versions could not represent the PROMISE repository very well. Second,
the baseline selection of traditional methods is not convincing. Only the logistic regression model is
selected as the baseline model which uses traditional hand-crafted features. There is no evidence that
the logistic regression model could get better performance than other machine learning models, such
as naïve Bayes, random forest, and decision tree.

Summary: Our improved CNN model outperformed the traditional baseline for cross-version
WPDP, and the improved CNN model was comparable to the DBN and CNN model, which proved
the validity of our model. Although our improved model was significantly better than the traditional
model, we could not conclude that our model could outperform the state-of-the-art machine learning
models for WPDP due to the limited dataset size and inappropriate baseline selection.

RQ1b: Does our improved CNN model outperform the state-of-the-art machine learning
models on the PSC dataset for within-version WPDP?

Since performance results on the SPSC dataset could not represent the state-of-the-art machine
learning models because of limited dataset size and inappropriate selection of traditional baseline, we
further explored the ability of our improved model for WPDP on larger datasets, for example, the PSC
dataset. We compared our results with five machine learning models, FIX, and RANDOM baseline.
We followed the within-version WPDP pattern for the experiment.

We present our experimental results in terms of F-measure, G-measure, and MCC in Tables 6–8.
From the three tables, we observed that FIX got 0 for each version in terms of G-measure and MCC,
and RANDOM got results close to 0.5 and 0 in terms of G-measure and MCC. Both models hardly
even got the best scores for any version of a project, which indicated that the improved CNN model
and other five machine learning models performed well. We also observed that our improved CNN
model ranked first for F-measure, G-measure, and MCC. Most significantly, our model improved the
F-measure by 6% as compared with the DT model. As for G-measure and MCC, our model improved
on the RF and NB models by 5% and 2%, respectively. The results indicated that our improved
CNN model beat state-of-the-art machine learning models in terms of F-measure, G-measure, and
MCC metrics.
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Table 6. Performance comparison of different models on the PSC dataset. The decimal values represent
the average F-measure values. The best F-measures for each row are highlighted in bold.

Project. Version DT RF LR NB NET FIX RANDOM Improved CNN

Ant

1.3 0.36 0.31 0.36 0.43 0.14 0.28 0.24 0.67

1.4 0.40 0.24 0.22 0.44 0.04 0.37 0.32 0.38

1.5 0.42 0.37 0.41 0.35 0.15 0.20 0.18 0.25

1.6 0.55 0.59 0.57 0.58 0.59 0.42 0.33 0.41

1.7 0.53 0.52 0.50 0.56 0.45 0.36 0.31 0.39

Camel

1.0 0.00 0.00 0.00 0.30 0.00 0.07 0.08 0.40

1.2 0.46 0.40 0.35 0.32 0.26 0.52 0.41 0.69

1.4 0.30 0.27 0.18 0.26 0.05 0.29 0.25 0.46

1.6 0.27 0.25 0.18 0.30 0.16 0.33 0.28 0.52

Ivy

1.1 0.73 0.71 0.71 0.54 0.73 0.72 0.55 0.80

1.4 0.00 0.00 0.15 0.17 0.11 0.12 0.11 0.22

2.0 0.17 0.31 0.31 0.40 0.16 0.20 0.18 0.31

JEdit

3.2 0.56 0.63 0.68 0.55 0.59 0.50 0.40 0.69

4.0 0.49 0.56 0.49 0.41 0.43 0.39 0.31 0.48

4.1 0.45 0.54 0.61 0.52 0.54 0.40 0.33 0.41

4.2 0.46 0.29 0.37 0.44 0.38 0.23 0.20 0.58

4.3 0.00 0.00 0.00 0.21 0.00 0.04 0.04 0.00

Log4j

1.0 0.55 0.53 0.55 0.61 0.59 0.40 0.36 0.77

1.1 0.66 0.73 0.63 0.72 0.76 0.51 0.43 0.40

1.2 0.95 0.96 0.94 0.67 0.96 0.96 0.63 0.97

Lucene

2.0 0.58 0.59 0.65 0.54 0.66 0.64 0.48 0.74

2.2 0.62 0.67 0.70 0.48 0.66 0.74 0.53 0.63

2.4 0.72 0.73 0.74 0.54 0.71 0.75 0.54 0.77

Pbeans
1.0 0.87 0.90 0.79 0.81 0.81 0.87 0.66 0.89

2.0 0.22 0.35 0.48 0.25 0.14 0.33 0.30 0.67

Poi

1.5 0.79 0.75 0.73 0.46 0.77 0.75 0.55 0.61

2.0 0.26 0.25 0.23 0.27 0.14 0.21 0.20 0.13

2.5 0.82 0.85 0.82 0.56 0.82 0.78 0.58 0.90

3.0 0.83 0.84 0.81 0.49 0.82 0.78 0.56 0.76

Synapse

1.0 0.08 0.09 0.32 0.41 0.19 0.18 0.16 0.29

1.1 0.53 0.51 0.58 0.56 0.52 0.43 0.35 0.67

1.2 0.60 0.59 0.55 0.59 0.56 0.50 0.39 0.69

Velocity

1.4 0.90 0.89 0.89 0.89 0.91 0.86 0.60 0.90

1.5 0.80 0.83 0.80 0.45 0.78 0.80 0.57 0.78

1.6 0.54 0.50 0.51 0.38 0.47 0.51 0.41 0.83

Xalan

2.4 0.26 0.28 0.28 0.37 0.16 0.26 0.23 0.25

2.5 0.67 0.65 0.58 0.38 0.48 0.65 0.49 0.70

2.6 0.72 0.73 0.69 0.61 0.62 0.63 0.47 0.76

Xerces

Initial 0.71 0.68 0.73 0.34 0.63 0.64 0.48 0.65

1.2 0.38 0.33 0.07 0.23 0.03 0.28 0.24 0.41

1.3 0.50 0.44 0.42 0.38 0.35 0.26 0.22 0.56

average 0.51 0.50 0.50 0.46 0.45 0.47 0.36 0.57
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Table 7. Performance comparison of different models on the PSC dataset. The decimal values represent
the average G-measure values. The best G-measures for each row are highlighted in bold.

Project Version DT RF LR NB NET FIX RANDOM Improved CNN

Ant

1.3 0.50 0.39 0.50 0.63 0.18 0.00 0.49 0.67

1.4 0.56 0.29 0.29 0.58 0.05 0.00 0.51 0.51

1.5 0.51 0.44 0.47 0.69 0.17 0.00 0.50 0.28

1.6 0.66 0.66 0.64 0.67 0.69 0.00 0.48 0.53

1.7 0.65 0.60 0.55 0.68 0.50 0.00 0.51 0.46

Camel

1.0 0.00 0.00 0.00 0.62 0.00 0.00 0.54 0.50

1.2 0.54 0.46 0.41 0.36 0.28 0.00 0.49 0.76

1.4 0.37 0.30 0.20 0.35 0.05 0.00 0.49 0.54

1.6 0.35 0.29 0.19 0.37 0.17 0.00 0.50 0.60

Ivy

1.1 0.62 0.67 0.67 0.55 0.69 0.00 0.51 0.65

1.4 0.00 0.00 0.22 0.31 0.12 0.00 0.48 0.49

2.0 0.18 0.37 0.37 0.60 0.18 0.00 0.49 0.40

JEdit

3.2 0.65 0.69 0.74 0.61 0.64 0.00 0.50 0.73

4.0 0.59 0.63 0.56 0.49 0.48 0.00 0.48 0.65

4.1 0.55 0.60 0.68 0.59 0.58 0.00 0.49 0.00

4.2 0.60 0.34 0.42 0.58 0.42 0.00 0.49 0.78

4.3 0.00 0.00 0.00 0.53 0.00 0.00 0.49 0.00

Log4j

1.0 0.66 0.60 0.64 0.66 0.65 0.00 0.52 0.81

1.1 0.72 0.76 0.70 0.77 0.79 0.00 0.52 0.44

1.2 0.40 0.31 0.12 0.63 0.00 0.00 0.45 0.00

Lucene

2.0 0.62 0.63 0.68 0.58 0.69 0.00 0.51 0.75

2.2 0.53 0.62 0.56 0.49 0.52 0.00 0.49 0.62

2.4 0.67 0.67 0.69 0.55 0.65 0.00 0.49 0.00

Pbeans
1.0 0.75 0.77 0.60 0.71 0.28 0.00 0.53 0.89

2.0 0.32 0.45 0.68 0.33 0.18 0.00 0.50 0.67

Poi

1.5 0.74 0.69 0.61 0.47 0.61 0.00 0.50 0.61

2.0 0.32 0.32 0.28 0.39 0.15 0.00 0.51 0.25

2.5 0.76 0.81 0.72 0.56 0.71 0.00 0.52 0.82

3.0 0.75 0.78 0.73 0.49 0.72 0.00 0.50 0.72

Synapse

1.0 0.12 0.12 0.47 0.74 0.22 0.00 0.47 0.49

1.1 0.63 0.57 0.66 0.68 0.56 0.00 0.49 0.70

1.2 0.67 0.65 0.62 0.66 0.62 0.00 0.49 0.72

Velocity

1.4 0.71 0.72 0.70 0.70 0.67 0.00 0.50 0.66

1.5 0.60 0.73 0.65 0.46 0.57 0.00 0.51 0.72

1.6 0.62 0.58 0.58 0.42 0.51 0.00 0.51 0.84

Xalan

2.4 0.34 0.33 0.32 0.51 0.18 0.00 0.50 0.31

2.5 0.66 0.67 0.61 0.41 0.53 0.00 0.50 0.69

2.6 0.74 0.75 0.71 0.62 0.65 0.00 0.49 0.78

Xerces

Initial 0.73 0.70 0.49 0.36 0.41 0.00 0.49 0.58

1.2 0.49 0.38 0.73 0.32 0.65 0.00 0.49 0.66

1.3 0.60 0.51 0.08 0.50 0.03 0.00 0.48 0.65

average 0.52 0.51 0.50 0.54 0.41 0.00 0.50 0.56
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Table 8. Performance comparison of different models on the PSC dataset. The decimal values represent
the average MCC measure values. The best MCC measures for each row are highlighted in bold.

Project Version DT RF LR NB NET FIX RANDOM Improved CNN

Ant

1.3 0.24 0.23 0.24 0.30 0.05 0.00 0.00 0.68

1.4 0.22 0.12 0.06 0.23 −0.04 0.00 0.02 0.20

1.5 0.38 0.33 0.38 0.27 0.14 0.00 0.00 0.24

1.6 0.40 0.49 0.45 0.45 0.46 0.00 0.03 0.22

1.7 0.40 0.43 0.42 0.44 0.39 0.00 0.01 0.30

Camel

1.0 0.00 −0.02 −0.02 0.28 −0.01 0.00 0.03 0.39

1.2 0.21 0.19 0.18 0.14 0.19 0.00 0.01 0.50

1.4 0.21 0.23 0.16 0.14 0.06 0.00 0.01 0.39

1.6 0.16 0.19 0.16 0.21 0.18 0.00 0.01 0.42

Ivy

1.1 0.31 0.34 0.34 0.26 0.38 0.00 0.04 0.48

1.4 −0.02 0.00 0.11 0.11 0.16 0.00 0.01 0.16

2.0 0.23 0.27 0.27 0.31 0.17 0.00 0.01 0.25

JEdit

3.2 0.37 0.48 0.53 0.40 0.46 0.00 0.00 0.56

4.0 0.34 0.45 0.39 0.29 0.36 0.00 0.03 0.29

4.1 0.30 0.45 0.50 0.40 0.46 0.00 0.02 0.00

4.2 0.39 0.26 0.33 0.36 0.37 0.00 0.01 0.51

4.3 0.00 −0.01 −0.02 0.20 0.00 0.00 0.00 0.00

Log4j

1.0 0.40 0.42 0.42 0.53 0.49 0.00 0.04 0.69

1.1 0.50 0.62 0.46 0.60 0.66 0.00 0.04 0.29

1.2 0.27 0.27 0.04 0.17 −0.02 0.00 0.04 0.00

Lucene

2.0 0.24 0.30 0.38 0.32 0.40 0.00 0.02 0.53

2.2 0.07 0.23 0.21 0.19 0.12 0.00 0.01 0.29

2.4 0.34 0.34 0.37 0.33 0.30 0.00 0.01 0.00

Pbeans
1.0 0.49 0.57 0.23 0.37 0.02 0.00 0.09 0.63

2.0 0.06 0.23 0.33 0.13 0.04 0.00 0.05 0.67

Poi

1.5 0.48 0.39 0.28 0.24 0.35 0.00 0.00 0.29

2.0 0.22 0.19 0.18 0.19 0.15 0.00 0.01 0.01

2.5 0.52 0.60 0.47 0.28 0.46 0.00 0.03 0.70

3.0 0.52 0.56 0.49 0.26 0.48 0.00 0.00 0.42

Synapse

1.0 0.01 0.04 0.25 0.35 0.18 0.00 0.03 0.20

1.1 0.36 0.39 0.46 0.38 0.43 0.00 0.01 0.60

1.2 0.41 0.44 0.39 0.42 0.41 0.00 0.01 0.59

Velocity

1.4 0.56 0.52 0.51 0.53 0.59 0.00 0.01 0.56

1.5 0.33 0.49 0.38 0.19 0.27 0.00 0.02 0.42

1.6 0.34 0.31 0.32 0.24 0.33 0.00 0.02 0.76

Xalan

2.4 0.17 0.23 0.26 0.27 0.16 0.00 0.00 0.18

2.5 0.32 0.37 0.25 0.13 0.16 0.00 0.01 0.38

2.6 0.48 0.53 0.47 0.45 0.40 0.00 0.01 0.58

Xerces

Initial 0.47 0.42 0.46 0.19 0.32 0.00 0.01 0.23

1.2 0.29 0.28 0.04 0.12 0.11 0.00 0.01 0.28

1.3 0.43 0.40 0.37 0.29 0.31 0.00 0.02 0.50

average 0.30 0.33 0.30 0.29 0.27 0.00 0.02 0.38
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To check whether our improved model outperformed other models statistically, we first performed
the Friedman test. The Friedman test yielded a result of p = 0.00042, p = 0.000035, and p = 0.005668
for F-measure, G-measure and MCC, respectively, and they were all below the threshold 0.05, which
means that the null hypothesis that all models perform equally was rejected. We then performed the
Holm–Bonferroni test, and the results can be seen in Tables 9–11. As the tables indicate, the improved
CNN was significantly better than the other five models in terms of F-measure and G-measure. As for
MCC, the improved CNN and RF models were significantly better than other models, and there were
no significant differences between the CNN and RF models.

Table 9. Holm–Bonferroni test of prediction on the PSC dataset for F-measures.

DT RF LR NB NET

RF 1 - - - -

LR 0.0857 0.0857 - - -

NB 0 0 0.0752 - -

NET 0 0 0 0.0605 -

Improved CNN 0 0 0 0 0

Table 10. Holm–Bonferroni test of prediction on the PSC dataset for G-measures.

DT RF LR NB NET

RF 1 - - - -

LR 0.0231 0.0869 - - -

NB 0.0559 0.1766 1 - -

NET 0 0 0 0 -

Improved CNN 0.0231 0.0028 0 0 0

Table 11. Holm–Bonferroni test of prediction on the PSC dataset for MCCs.

DT RF LR NB NET

RF 0.0069 - - - -

LR 0.5251 0.0009 - - -

NB 0.2749 0 0.4681 - -

NET 0.0026 0 0.0169 0.2749 -

Improved CNN 0 0.1102 0 0 0

After further observation of results for each version of projects, we found that our model performed
poorly on JEdit 4.3 in terms of F-measure and G-measure. This was because our model got TP = 0,
which means that our model could not find buggy files on JEdit 4.3. Considering that the buggy rate of
JEdit 4.3 is 2.3%, we can conclude that our model is weak at predicting ultra-low buggy rate versions
of projects, and this is partly acceptable because other baseline models also performed poorly. Another
finding is that our model performed poorly on Log4j 1.2 and Lucene 2.4. This was because our model
got TN = 0, which means that our model could not find clean files on both versions. Considering that
the buggy rate of Log4j 1.2 and Lucene 2.4 is 95.9% and 61.5%, we can conclude that our model is not
robust when predicting ultra-high buggy rate version of projects in terms of G-measure. In conclusion,
our model performed not as well towards extreme buggy rate conditions.

Summary: Our improved CNN model outperformed the state-of-the-art machine learning models
for within-version WPDP in terms of F-measure, G-measure, and MCC. Moreover, statistical hypothesis
tests showed that the improved model was significantly better than the state-of-the-art machine
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learning models in terms of F-measure and G-measure, and our model could perform as well as RF in
terms of MCC.

5.3. Performance under Different Hyperparameter Settings

RQ2: How does the improved CNN model perform under different hyperparameter settings?
As a CNN-based deep model, our model featured various hyperparameters that required tuning.

We used the SPSC dataset from the PROMISE repository to tune the hyperparameters. After initial
exploration, we fixed some of the hyperparameters as follows: We set batch size to 256, which fit our
RAM; the number of epochs to 50 using early stopping strategy; the learning rate to 0.0015 after initial
selections; the convolutional layers and pooling layers to 3; the regularization alpha to 0.0001 to reduce
generalization error; the dropout to 0.5 as suggested in [36]; the filter length to 2; the numbers of filters
to 10; and the embedding output to 32. These hyperparameters applied to our experiment on the PSC
and SPSC dataset. The remaining hyperparameters included dense layers and dense nodes as well as
kernel size and stride.

Figure 9 shows the F-measure of our improved CNN model under different numbers of dense
layers and dense nodes. We observed that our model worked best under dense layers = 4 and dense
nodes = 50. Adding more dense layers had a significant impact on F1. Dense node numbers were
less significant for F-measure as compared with dense layer numbers. When the number of dense
layers increased, the number of dense nodes had to decrease accordingly to avoid increasing the
model capacity.

Figure 9. Dense layers and dense nodes. Here dl means dense layers.

Figure 10 shows the F-measure of our improved CNN model under different numbers of kernel
sizes and strides. The epochs were set to 10 for speed acceleration. We observed that our model worked
best under kernel size = 2 and stride = 2, which was slightly better than kernel size = 3 and stride = 3.
There was a minor difference between choosing kernel size and stride of 2 or 3. However, kernel size
and stride had to be matched in size, or there would have been a shape degradation in performance.

The tuned hyperparameters were specified for the exact dataset, (i.e., SPSC dataset). However,
when using this model for other projects, we can fine tune these hyperparameters based on the
characteristic of the projects. For example, if we were to utilize the model to predict projects with
larger source files, the length of the input vector to the embedding layer would be expanded. Thus,
some hyperparameters such as embedding output, kernel size, and stride should be adjusted to fit the
model capacity.
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Figure 10. Kernel size and stride. Here ks means kernel size.

5.4. Hyperparameter Instability of Deep Learning Models

RQ3: Could our model generate results comparable to those of other baseline methods for
each version of a project?

To answer the research question, we further analyzed experimental data on the SPSC dataset.
Before analyzing, we first defined the concept of hyperparameter instability as described below.

Hyperparameter instability indicates that the performance of a model is significantly different
from that of the same model under different hyperparameter settings in terms of each version or project,
but that it performs similarly on average.

Hyperparameter instability is not limited to deep learning models. However, deep learning
models would respond more negatively to hyperparameter instability, because machine learning
models inherently have fewer hyperparameters for tuning. Thus, it is relatively difficult to get two
machine learning models that feature different hyperparameter settings, however, get similar average
scores. As for deep learning models, there are so many hyperparameters for tuning, for example,
learning rate, network layers, hidden nodes in each layer, activation functions, and training optimizers.
Given the fact that, usually, not all hyperparameters are provided in detail in a paper, researchers who
aim to replicate the model could build a model of different hyperparameters, and the model would be
more likely to respond negatively to hyperparameter instability.

Supporting evidence was provided by the experimental results on the SPSC dataset. Although
our improved model was not significantly different from that of the CNN model, as Table 4 supports,
we discovered that our improved model performed dramatically better for Xalan, Xerces, and Synapse,
for which it improved the F-measure by 10.4%, 35.6%, and 14.3%, respectively. However, our model
performed dramatically worse for Lucene and Poi, decreasing the F-measure by 6% and 33.4%,
respectively. When focused on Poi, our model performed dramatically worse as compared with
traditional methods.

The analysis above shows that our improved model responded negatively to hyperparameter
instability. While the model could get a high average score, it was less robust, and it tended to fluctuate
when focused on an individual version or project. A reasonable explanation for this phenomenon is
that the combination of AST-based semantic features and deep learning models required deep learning
models to possess a larger model capacity as compared with machine learning models, which may
have added to the instability of the deep models. Thinking more positively, however, the phenomenon
may reveal not only that different kinds of classification models could predict different kinds of defects,
but also that different hyperparameter settings of the same deep learning model could predict different
kinds of defects as well. If the phenomenon of hyperparameter instability is verified in future research,
deep ensemble models may be used to further enhance defect prediction.
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6. Threats to Validity

Deletion of files when parsing source code. When we utilized javalang to parse the source files,
it did not always build the parse trees successfully due to its limited syntax support of the Java
programming language. We used a simple strategy to delete the source files that could not be parsed
by javalang. The statistical results showed that we removed 3.7% of source files on SPSC dataset and
2.1% on PSC dataset. As for average buggy rate, we increased it by 0.6% as compared with the original
PROMISE repository, which shows that we did not simply delete buggy files or clean files, but we
deleted files in a rather balanced way. Therefore, we claim that deletion of files would not influence
the validity of our results that much.

Quality of the PSC dataset. We designed the PSC dataset to target AST-based features, which
enlarged the existing SPSC dataset from 14 to 41 versions. We also took measures to make sure that
the link between open source project versions and labeled CSV files were verified and that several
evaluation metrics could be correctly computed. However, we cannot guarantee similar experimental
results on projects outside of the PSC dataset.

Programming language. Our dataset came from the PROMISE repository, where projects
are written in the Java programming language. Although our model and preprocessing strategy
could be applied to other programming languages (i.e., C, python), we cannot guarantee similar
experimental results.

Replication of baseline models. We did not replicate our baseline models. Instead, we made our
best efforts to conform to experimental environments listed in related papers, and we compared our
experimental results with those listed in related papers. Because some detailed information is not
given in those papers, it may influence experiment validity.

7. Related Works

7.1. Deep Learning Based Software Defect Prediction

Since 2012, deep learning has been used in various domains including software engineering.
In software defect prediction, deep learning first emerges in 2015, and it is used more frequently since
then. Up to now, many researchers have explored the use of deep learning in software defect prediction.
According to the feature type of deep learning-based software defect prediction, it is further divided
into two categories:

1. Defect prediction based on hand-crafted features

When using various kinds of traditional hand-crafted features, how to combine existing features to
generate more effective features remains a problem. Deep learning models own the ability of effective
feature combination. Therefore, deep learning models could be used in such situations to enhance
model performance. Yang et al. [50] proposed a deep learning model for just-in-time defect prediction,
which predicts defect-prone changes. They selected 14 basic change measures regarding code change,
and leveraged DBN model to build a set of expressive features from these basic measures. At last, they
used machine learning models for classification. Experiments show that their methods could discover
32.22% more bugs than the state-of-the-art model. Tong et al. [51] proposed a deep learning model and
two-stage ensemble learning for defect prediction. They leveraged stacked denoising autoencoders to
generate effective features from traditional hand-crafted features in the NASA MDP dataset, and used
ensemble classifiers for defect prediction. The results showed that deep representations of existing
metrics are promising for software defect prediction.
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2. Defect prediction based on deep features

Deep feature-based software defect prediction does not use hand-crafted features. Instead, this
kind of method generates deep features from source codes or ASTs. In 2016, Wang et al. [23] leveraged
DBN for software defect prediction. They used selected AST sequences taken from source codes as
input to the DBN model, which generate new expressive features, and used machine learning models
for classification. Their WPDP and cross-version defect prediction experiments showed that their
model outperformed the state-of-the-art machine learning models. Then in 2017, Li et al. [24] proposed
a CNN-based defect prediction model, which leveraged word embedding and a CNN model for
defect prediction. Although they used logistic regression instead of various machine learning models
for classification, their results outperformed the DBN models [23]. They also proved that adding
traditional features to deep features could further enhance model performance. In 2018, two papers
leveraging recurrent neural network (RNN) were published. The first paper [52] used a type of RNN
model, long-short term memory (LSTM) model, to predict defects, which takes AST sequences as the
input. The second paper [53] leveraged tree-based LSTM models to predict defects, which takes AST as
the input. However, their results were not as good as results for Li’s model [24]. There is also research
on deep defect prediction targeting assembly code [54,55], both of which leveraged a CNN model to
learn from assembly instructions.

7.2. Deep Learning in Software Engineering

Apart from software defect prediction, deep learning is also used in various software engineering
domains. Generally, deep learning models are used in software maintenance [56], code clone
detection [57], defect detection and localization [58,59], and other domains.

In software maintenance, Guo et al. [56] used a RNN model to establish links between requirements,
design, source code, test cases, and other artifacts, which is called trace links. Their results outperformed
the state-of-the-art tracing methods including the vector space model and the latent semantic indexing.
In code clone detection, Li et al. [57] proposed a deep learning-based clone detection approach. Code
clone refers to copied code with or without modification, which could challenge software maintenance.
They used AST tokens to represent method-level code clones and nonclones to train a classifier, and
then used the classifier to detect code clones. Their methods achieved similar performance with low
time cost. In defect detection and localization, Nguyen et al. [58] utilized deep neural network for bug
localization. The aim of the model was to solve lexical mismatch problem, which references that the
terms used in bug report are different from the terms and code tokens used in source files. Their model
achieved 70% accuracy with five suggested files. Pradel and Sen [59] leveraged DeepBugs, which is a
learning approach to detect name-based bugs. They used word embedding to form semantic features
from methods, and they used learn-bug detectors instead of manually writing them. Their approach
achieved high accuracy, high efficiency, and disclosed 102 programming mistakes in real-world code.

Other software engineering domains also leverage deep learning, such as source code
classification [60], runtime behavior analysis [61], feature location [62], vulnerability analysis [63], code
author identification [64], and so on.

8. Conclusions and Future Work

We proposed an improved CNN model which could better learn semantic representations from
source-code ASTs for WPDP. On the basis of Li’s CNN model, we made further improvements by
enhancing global pattern capture ability and improving the model for better generalization.

To verify that the CNN model could outperform state-of-the-art methods, we performed two
experiments. The first experiment was performed on the SPSC dataset to demonstrate that our model
was comparable to the existing CNN model for WPDP. The results showed that our model improved
the existing CNN model by 2.2% in terms of F-measure, and statistical hypothesis tests showed that
our method was comparable to the existing DBN and CNN models, and significantly better than the
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traditional baseline. The second experiment was performed on the PSC dataset, which was designed
especially for AST-based features extracted from the source code to validate that our model could
outperform the state-of-the-art machine learning models for WPDP. The results showed that our model
improved the F-measure by 6%, the G-measure by 5%, and the MCC by 2% as compared with the
best-performing machine learning models among DT, RF, LR, NB, and NET. Statistical hypothesis tests
show that our method was almost significantly better than other machine learning models in terms of
the evaluation metrics above, except for MCC, for which our model was comparable to the RF model.

On the basis of our experimental results, we also proposed the concept of hyperparameter
instability to describe a model whose performance is significantly different from the same model of
different hyperparameter settings in terms of each version or project, however, it performs similarly
on average. Our improved model responded negatively to hyperparameter instability, which posed
a threat to the robustness of the model, however, also suggested that deep ensemble models may
enhance defect prediction.

In the future, we would like to collect more C/C++ open source projects and build new datasets
for deep-feature-based defect prediction. In addition, it would be promising to use other kinds of deep
models such as RNN to generate features for predicting defects automatically. Determining what types
of defects could be predicted in deep learning-based defect prediction is also essential. Lastly, ensemble
methods of deep learning models for defect prediction could also be a future research direction.
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