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Abstract: The present study emphasizes the combined effects of double stratification and buoyancy
forces on nanofluid flow past a shrinking/stretching surface. A permeable sheet is used to give
way for possible wall fluid suction while the magnetic field is imposed normal to the sheet.
The governing boundary layer with non-Fourier energy equations (partial differential equations
(PDEs)) are converted into a set of nonlinear ordinary differential equations (ODEs) using similarity
transformations. The approximate relative error between present results (using the boundary value
problem with fourth order accuracy (bvp4c) function) and previous studies in few limiting cases is
sufficiently small (0% to 0.3694%). Numerical solutions are graphically displayed for several physical
parameters namely suction, magnetic, thermal relaxation, thermal and solutal stratifications on the
velocity, temperature and nanoparticles volume fraction profiles. The non-Fourier energy equation
gives a different estimation of heat and mass transfer rates as compared to the classical energy
equation. The heat transfer rate approximately elevates 5.83% to 12.13% when the thermal relaxation
parameter is added for both shrinking and stretching cases. Adversely, the mass transfer rate declines
within the range of 1.02% to 2.42%. It is also evident in the present work that the augmentation of
suitable wall mass suction will generate dual solutions. The existence of two solutions (first and
second) are noticed in all the profiles as well as the local skin friction, Nusselt number and Sherwood
number graphs within the considerable range of parameters. The implementation of stability analysis
asserts that the first solution is the real solution.

Keywords: nanofluid; non-fourier energy; suction; stratification; stability analysis

1. Introduction

The boundary layer theory has been a subject of interest for many researchers because of its
significance in many industrial and engineering applications, i.e., airfoil design of of airplanes,
the automobile industry and friction drag of a ship. The analytical solution on the boundary layer
flow of a viscous fluid was introduced by Crane [1] and Miklavčič and Wang [2] for stretching and
shrinking cases, respectively. A stretching sheet solution would generate a far field suction towards
the sheet but opposite flow behaviors were observed for the shrinking case. The shrinking sheet
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seemed to distract the velocity away from the sheet. An adequate wall mass suction is needed to
induce the flow due to the unconfined vorticity within the boundary layer. Wang [3] analyzed the
stagnation point flow over a shrinking sheet and discovered that the solutions were non-unique and
did not exist for larger shrinking rates. Fang et al. [4] analytically investigated viscous flow over
shrinking rate with a slip condition and also concluded that the imposition of wall mass suction
would induce two solutions. Jusoh et al. [5] also concluded that the application of suction at certain
values of the involving parameters contributed to the appearance of the second solution. Very recently,
Soomro et al. [6] obtained dual solutions for mixed convective flow of a viscous fluid with copper
nanoparticles over a permeable shrinking cylinder. The findings showed that the mixed effects of
opposing flow and wall mass suction might generate two solutions.

However, energy generation becomes a major issue in the industrial requirements. Attention
was focused on enhancing the heat transfer rate of the systems, which include power stations,
chemical plants, air conditioning and petrochemical industry. Nanofluid is created by dispersing
the nanoparticles (size < 100 nm) into a base fluid such as water, ethylene or propylene glycol to
inflate the thermal conductivity. Traditional Newtonian fluids such as water and air have been utilized
as cooling fluids in many industrial and manufacturing processes but due to the final inspection
of the product quality, it does not seem that the viscous fluid is a good choice for the cooling fluid.
Al-Waeli et al. [7] reported that the intensification of the working fluid’s thermal conductivity can
increase the thermal and electrical as well as the heat transfer efficiencies. The invention of nanofluids
with great thermophysical properties can improve the performance for massive engineering operations
such as in nuclear cooling systems, solar thermal energy, biomedical applications, lubrication, coolant
in automobile radiators and others [8–15]. Two remarkable nanofluid models were developed by
Buongiorno [16] and Tiwari and Das [17]. Buongiorno [16] highlighted seven slip mechanisms which
can contribute relative velocity between the nanoparticles and the working fluids; however, only
Brownian motion and thermophoresis are significant to model the nanofluids. Tiwari and Das [17]
proposed a model that investigated the effect of nanoparticles volume fraction on the enhancement of
the thermal properties. Khan and Pop [18] intiated the investigation on the flow of a nanofluid towards
a stretching sheet by using Buongiorno’s model. Latterly, Alsarraf et al. [19] explored the nanoparticles
shape effect (brick, blade, cylindrical, platelet and spherical) on the boehmite alumina nanofluid flow
characteristics. There are also a few boundary layer studies that modeled the non-Newtonian fluid as
the operating fluid with the presence of nanoparticles as reported by Mahmood et al. [20], Aziz and
Jamshed [21], Jamshed and Aziz [22] and Aziz et al. [23].

Most of the boundary layer flow and heat transfer problems considered the classical Fourier
model which represents the thermal conduction heat transfer. On the other hand, the model is not
precise for specific situations in real engineering phenomena since it produces a parabolic energy
equation [24]. In 1948, Cattaneo [25] modified the Fourier model known as Maxwell-Cattaneo (MC) law
by including a thermal relaxation time term to present the thermal inertia. Christov [26] re-examined
the MC law by considering the time derivative of heat flux which resulting in a hyperbolic energy
equation. Some studies were conducted to justify the uniqueness and stability of the solutions for
the energy equation using the Cattaneo-Christov heat flux model (see [27–29]). In the past few years,
many researchers have investigated the boundary layer problem of various fluids due to a stretching
sheet using the non-Fourier model. Mustafa [30] used this model for Maxwell fluid and noticed that
there was a relation between the thermal boundary layer thickness and the thermal relaxation time.
Salahuddin et al. [31] emphasized the magnetohydrodynamics (MHD) flow of Williamson fluid with
variable thickness. They discovered that the temperature profile decreased using the heat flux model
compared to the classical Fourier model. Hayat et al. [32] considered stagnation flow of Jeffrey fluid
towards a nonlinear stretching surface which resulted in the fluid temperature declining for higher
thermal relaxation parameters. Malik et al. [33] analyzed the MHD flow of Casson fluid and also found
that the temperature decreased using the Cattaneo Christov heat flux model. Very recently, a similar
study conducted for nanofluids [24,34] and diverse non-Newtonian fluid models such as Oldroyd
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B-fluid [35], Eyring Powell [36,37], Carreau fluid [38], viscoelastic fluid [39,40] and second grade
fluid [41,42] resulted in the non-Fourier model leading to the reduction of the temperature distribution.
Mahmood et al. [43] designed the boundary layer flow of Casson nanofluid using Cattaneo-Christov
heat flux model while Jamshed and Aziz [44] utilized the Casson hybrid TiO2-CuO/EG nanofluid on
the stretched flow problem with entropy generation.

Double stratification of fluids appears due to the temperature and concentration variations,
respectively. From the engineering perspective, many applications utilize the concept of double
stratification, such as heat rejection from environment, thermal energy storage systems and solar
energy because the better stratification corresponds to the higher energy performance. There are a few
studies focused on mathematical analysis for the convective flow of nanofluids with the presence of
stratification [45–53]. Ibrahim and Makinde [45] analyzed the natural convection and stable doubly
stratified flow with the presence of nanoparticles. Mat Yasin et al. [46] dealt with the mixed convective
flow in a thermally stratified porous medium saturated by a nanofluid using Tiwari and Das model.
The impact of double stratification and mixed convective flow of the non-Newtonian fluids with the
appearance of nanoparticles have been studied by Hussain et al. [47] and Abbasi et al. [48] using
Maxwell and Jeffrey nanofluid models. Besthapu et al. [49] examined the influence of both thermal and
solutal stratification on MHD nanofluid due to an exponentially stretching sheet. Daniel et al. [50,51]
considered the effects of viscous dissipation and Joule heating on both steady and unsteady MHD
mixed convection of doubly stratified nanofluid. Kandasamy et al. [52] investigated the effect of double
stratification on MHD nanofluid over a porous vertical plate. The previously published results showed
that the temperature and concentration distribution are decreased with the intensity of thermal and
solutal stratification, respectively.

The preceding literatures give an inspiration for the authors to examine the behavior of MHD
nanofluid flow with the double stratification phenomenon over a permeable shrinking/stretching
sheet. The non-Fourier energy equation is utilized in the governing model whereas the water-based
nanofluid is represented by the Buongiorno′s model. The partial differential equations (PDEs) are
simplified into a set of similarity differential equations by employing a suitable transformations and
then numerically computed using the remarkable boundary value problem with fourth order accuracy
(bvp4c) code in the MATLAB software. The results are graphically manifested for the nanofluid
velocity, temperature, and concentration within the applicable range of the pertinent parameters.
The study is also concerned with whether the non-Fourier energy model has relevant impact on the
heat and mass transfer rates as compared to the classical (Fourier) energy model. Since the present
work contemplates both shrinking flow and suction effect, the existence of non-unique solutions is
expected . The implementation of stability analysis may certify the physical or real solution. To the
best of the authors’ knowledge, the results are new and have not been published before.

2. Problem Formulation

An incompressible and steady flow of a nanofluid towards a shrinking/stretching sheet with linear
velocity Uw(x) = ax is considered in the present study as illustrated in Figure 1. The wall temperature
and concentration is represented by Tw(x) = T0 + Ax and Cw(x) = C0 + Ex, correspondingly where
Tw > T0 and Cw > C0. The ambient temperature and concentration are in the linear stratified form of
T∞(x) = T0 + Bx and C∞(x) = C0 + Fx such that T0 and C0 are the beginning ambient temperature and
concentration of the nanofluid. The following assumptions for the physical model are also examined
in the present work:

• The nanoparticles and the base fluid are assumed in a thermal equilibrium state.
• The Buongiorno’s model of nanofluid is used to incorporate the mixed effects of Brownian motion

and thermophoresis.
• The induced magnetic field is negligible as a result of the insignificant value of the magnetic

Reynolds number
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• The Hall current effect is excluded with an assumption of no external electric field is applied to
the physical model.

• Thermal and solutal stratifications exist due to the appearance of thermal and solutal
buoyancy forces.
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Figure 1. The coordinate system of the physical model.

2.1. Cattaneo Christov Heat Flux Model

The Cattaneo Christov heat flux model is in the vector form of:

ρcpv · ∇T = −∇ · q, (1)

or can be written as

ρcp

(
u

∂T
∂x

+ v
∂T
∂y

)
= −∇ · q, (2)

given that q is the heat flux and

q + λ2

(
∂q
∂t

+ v · ∇q− q · ∇v + (∇ · v)q
)
= −k∇T. (3)

For incompressible flow, Equation (3) will reduce to

q + λ2 (v · ∇q− q · ∇v) = −k∇T, (4)

and eliminating q from Equations (1) and (4) will give a non-Fourier energy equation (see
Akbar et al. [24], Salahuddin et al. [31], Kumar and Varma [34] and Khan et al. [41])

u
∂T
∂x

+ v
∂T
∂y

+ λ2Tc =
k

ρCp

∂2T
∂y2 , (5)

where

Tc = u
∂u
∂x

∂T
∂x

+ v
∂v
∂y

∂T
∂y

+ u
∂v
∂x

∂T
∂y

+ v
∂u
∂y

∂T
∂x

+ 2uv
∂2T
∂x∂y

+ u2 ∂2T
∂x2 + v2 ∂2T

∂y2 , (6)

It is noticed that for λ2 = 0, the Cattaneo Christov heat flux model is reduced to the classical
Fourier energy equation.



Appl. Sci. 2019, 9, 2124 5 of 21

2.2. Steady Flow Formulation

Under the boundary layer approximation, the governing model in the present study
which consists of continuity, momentum, energy and concentration equations are given by (see
Akbar et al. [24], Besthapu et al. [49] and Anwar et al. [54]):

∂u
∂x

+
∂v
∂y

= 0, (7)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 −

σMB0
2

ρ f
u +

g
ρ f

[
(1− C∞) ρ f∞ βT (T − T∞) +

(
ρp − ρ f∞

)
βC (C− C∞)

]
, (8)

u
∂T
∂x

+ v
∂T
∂y

+ λ2Tc =
k

ρCp

∂2T
∂y2 + τ1

[
DB

∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2
]

, (9)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

(
DT
T∞

)
∂2T
∂y2 , (10)

in conjunction with the initial and boundary conditions

u = εUw(x), v = V0, T = Tw(x), C = Cw(x) at y = 0 (11)

u→ 0, T → T∞(x), C → C∞(x) as y→ ∞ (12)

where (u, v) are the velocity components along the (x, y) directions, respectively, T is the nanofluid
temperature, C is the nanoparticles volume fraction, ν is the kinematic viscosity, σM is the electrical
conductivity of the fluid, ρ f is the density of base fluid, ρp is the density of nanoparticles, λ2 is the

thermal relaxation time, α =
k

ρCp
is the thermal diffusivity of the fluid, τ1 =

(ρc)p

(ρc) f
is the ratio of

heat capacity of the nanoparticles to the base fluid, DB is the Brownian diffusion coefficient, DT is
the thermophoretic diffusion coefficient, V0 = −

√
aνS is the mass flux velocity, ε is the multiplier of

shrinking/stretching parameter such that ε < 0 for shrinking sheet and ε > 0 for stretching sheet,
accordingly whereas ε = 0 for static sheet.

The governing boundary layer problem in Equations (8)–(10) with the initial and boundary
conditions (see Equations (11) and (12)) are transformed into a system of ordinary (similarity)
differential equations by utilizing a set of transformations as listed below:

η =

√
Uw(x)

νx
y, ψ =

√
Uw(x)νx f (η), θ(η) =

T − T∞(x)
Tw(x)− T0

, φ(η) =
C− C∞(x)
Cw(x)− C0

, (13)

where η is the similarity variable and ψ is the stream function such that

u =
∂ψ

∂y
and v = −∂ψ

∂x
, (14)

which identically satisfies Equation (7). The resulting transformed ordinary differential equations
(ODEs) align with the initial and boundary conditions are:

f ′′′ + f f ′′ −
(

f ′
)2 −M f ′ + λθ + Nφ = 0, (15)

1
Pr

θ′′ + f θ′ − f ′ (θ + δ1) + Nbθ′φ′ + Ntθ′2 − γTθT = 0, (16)

φ′′ + Pr Le( f φ′ − f ′φ− δ2 f ′) +
Nt
Nb

θ′′ = 0, (17)

f (0) = S, f ′(0) = ε, θ(0) = 1− δ1, φ(0) = 1− δ2, (18)
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f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, (19)

where
θT = f 2θ′′ − f f ′θ′ +

(
f ′2 − f f ′′

)
(θ + δ1),

and prime implies the derivative with respect to the similarity variable η. Furthermore, f is the
dimensionless stream function along the x−direction, θ is the dimensionless temperature, φ is the
dimensionless nanoparticle volume fraction, M is the magnetic parameter, λ is the thermal buoyancy
parameter, N is the solutal buoyancy parameter, Pr is the Prandtl number, Le is the Lewis number, Nb
is the Brownian motion parameter, Nt is the thermophoresis parameter, δ1 is the thermal stratification
parameter, δ2 is the solutal stratification parameter, γT is the thermal relaxation parameter and S is the
suction parameter, which are defined as

M =
σMB0

2

ρa
, λ =

Gr
Rex

2 , N =
Gc

Rex
2 , Gr =

gx3ρ f∞ βT (Tw − T0) (1− C∞)

ρ f ν2 ,

Gc =
gx3

(
ρp − ρ f∞

)
βC (Cw − C0)

ρ f ν2 , Rex =
xUw

ν
, Pr =

ν

α
, Le =

α

DB
,

Nb =
τ1DB(Cw − C0)

ν
, Nt =

τ1DT(Tw − T0)

νT∞
, δ1 =

B
A

, δ2 =
F
E

, γT = aλ2.

(20)

It is worthwhile to mention here that λ > 0 and λ < 0 corresponds to the assisting and
opposing flow, respectively. The system of ODEs in Equations (15)–(17) is reduced to the model
by Akbar et al. [24] for the problem of unstratified nanofluid.

The physical quantities of interest in the present study are the dimensionless skin friction
coefficient, local Nusselt number (heat transfer rate) and local Sherwood number (mass transfer
rate) which are in the form of:

Rex
1
2 C fx = f ′′ (0) , Rex

− 1
2 Nux = −θ′ (0) , Rex

− 1
2 Shx = −φ′ (0) , (21)

respectively. Equation (21) is obtained by substituting Equations (13), (14) and (22) (surface heat and
mass fluxes):

qw = −k
(

∂T
∂y

)
y=0

, qm = −DB

(
∂C
∂y

)
y=0

, (22)

into the dimensional form of local skin friction C fx , Nusselt number Nux and Sherwood number Shx :

C fx =
ν

ρU2
w

(
∂u
∂y

)
y=0

, Nux =
xqw

k (Tw − T0)
, Shx =

xqm

DB (Cw − C0)
. (23)

3. Stability Analysis

A boundary layer problem may produce zero, unique, dual or multiple solutions depending on the
imposition of appropriate physical parameters. Generally, for non-unique solutions, the first solution
which satisfies the boundary condition i.e., (see Equation (19)) is denoted as the physical or real solution
as compared to the other solutions. Hence, it is important to identify all the possible solutions that
may arise in the boundary layer problem to avoid misinterpretation of the fluid flow characteristics.
In certain cases, the second solution may exhibitthe same pattern of the real flow characteristics
based on the velocity, temperature or concentration profiles. Therefore, it is necessary to validate
the real solution through a proper analysis. The execution of the stability analysis is mathematically
performed to verify the physical or real solution among all the solutions. There has been much
current literature that discussed the importance, formulation and execution of the stability analysis
(see Ismail et al. [55–57], Bakar et al. [58,59], Anuar et al. [60], Salleh et al. [61,62], Najib et al. [63],
Jamaludin et al. [64] and Yahaya et al. [65]).
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The solution is considered unstable or not real if there is an initial growth of disturbance in
the solution. Theoretically, the disturbance may exponentially decay or grow with time and as
a consequence, the stability formulation is initiated by considering an unsteady (time dependent)
problem. Hence, for the present analysis, an unsteady form of Equations (8)–(10) need to be examined:

∂u
∂t + u ∂u

∂x + v ∂u
∂y = ν ∂2u

∂y2 − σM B0
2

ρ f
u + g

ρ f

[
(1− C∞) ρ f∞ βT (T − T∞) +

(
ρp − ρ f∞

)
βC (C− C∞)

]
, (24)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ λ2Tc = α
∂2T
∂y2 + τ1

[
DB

∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2
]

, (25)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

(
DT
T∞

)
∂2T
∂y2 . (26)

New dimensionless time-based transformations with τ = at are adapted to the unsteady
Equations (24)–(26):

η =

√
Uw

νx
y, ψ =

√
Uwνx f (η, τ), T = Axθ(η, τ) + T∞, C = Exφ(η, τ) + C∞, (27)

so that
∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
−M

∂ f
∂η

+ λθ + Nφ− ∂2 f
∂η∂τ

= 0, (28)

1
Pr

∂2θ

∂η2 + f
∂θ

∂η
− (θ + δ1)

∂ f
∂η

+ Nb
∂θ

∂η

∂φ

∂η
+ Nt

(
∂θ

∂η

)2
− γTθCs −

∂θ

∂τ
= 0, (29)

1
PrLe

∂2φ

∂η2 + f
∂φ

∂η
− (φ + δ2)

∂ f
∂η

+ PrLe
Nt
Nb

∂2θ

∂η2 −
∂φ

∂τ
= 0, (30)

where

θCs = (θ + δ1)

(
∂ f
∂η

)2
− f

∂ f
∂η

∂θ

∂η
+ f 2 ∂2θ

∂η2 − (θ + δ1) f
∂2 f
∂η2 , (31)

restrict to the conditions

f (0, τ) = S,
∂ f
∂η

(0, τ) = ε, θ(0, τ) = 1− δ1, φ(0, τ) = 1− δ2, (32)

∂ f
∂η

(∞, τ)→ 0, θ(∞, τ)→ 0, φ(∞, τ)→ 0. (33)

The representations in Equation (34) are used in the stability process where f0(η) = f (η), θ0(η) =

θ(η) and φ0(η) = φ(η) are the similarity solutions of the steady problem (see Equations (15)–(19)),
σ is an unidentified eigenvalue, F(η), G(η) and H(η) are small relative to f0(η), θ0(η) and
φ0(η), correspondingly

f (η, τ) = f0(η) + e−στ F(η)

θ(η, τ) = θ0(η) + e−στG(η)

φ(η, τ) = φ0(η) + e−στ H(η)

 , (34)

The linearized eigenvalue problem is attained by substituting Equation (34) into Equations (28)–(33).

F′′′ + F′′ f0 −
(
2 f ′0 + M− σ

)
F′ + F f ′′0 + λG + NH = 0, (35)

1
Pr

G′′ +
(

f0 + Nbφ′0 + 2Ntθ′0
)

G′ +
(
σ− f ′0

)
G− (θ0 + δ1) F′ + Fθ′0 + Nbθ′0H′ − γTθCs2 = 0, (36)

1
PrLe

H′′ + f0H′ + (σ− f ′0)H − (φ0 + δ2)F′ + Fφ′0 + PrLe
Nt
Nb

G′′ = 0, (37)
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where

θCs2 = f 2
0 G′′ − f0 f ′0G′ − ( f0θ0 + f0δ1)F′′ + (2θ0 f ′0 + 2δ1 f ′0 − f0θ′0)F′ + ( f ′20 − f0 f ′′0 )G

+(2 f0θ′′0 − f ′0θ′0 − θ0 f ′′0 − δ1 f ′′0 )F,
(38)

align with the conditions

F(0) = 0, F′(0) = 0, G(0) = 0, H(0) = 0, (39)

F′(η)→ 0, G(η)→ 0, H(η)→ 0. (40)

The stability of the similarity (steady) solutions f0(η), θ0(η) and φ0(η) depends on the smallest
eigenvalue, σ1 by solving the governing linearized eigenvalue model in Equations (35)–(40). Relaxation
of a boundary condition is required to possess a possible range of the computed eigenvalues. Hence,
in the present work, the boundary condition F′(η)→ 0 as η → ∞ (see Equation (40)) is relaxed and
replaced with the normalizing boundary condition F′′(0) = 1.

4. Results and Discussion

The present steady flow problem represented by the system of nonlinear ODEs in
Equations (15)–(17) with the conditions (see Equation (18) and (19)) is carried out using the bvp4c
(boundary value problem with fourth order accuracy) function in MATLAB software. To solve the
suitable boundary value problems, 3-stage Lobatto IIIa (finite difference method) is used in the
built-in-bvp4c function [66–68]. The main interest in the present study is to examine the effect of the
pertinent parameters namely suction S, thermal relaxation γT , thermal stratification δ1 and solutal
stratification δ2 on the dimensionless velocity, temperature and concentration profiles. The authors
are also concerned with the existence of dual solutions since suction and shrinking parameters are
taken into account. In the present work, M = Le = 1, Nb = 0.3, Nt = 0.1, λ = −0.5, N = 0.5,
δ1 = 0.1, δ2 = 0.2, ε = −1, S = 2.5 and γT = 0.01 are considered as the main value for the numerical
computations whereas Pr = 6.2 is selected to symbolize the water as the base fluid. It is worth to
mention here that the results are new, hence, the velocity, temperature and concentration profiles
with the inflation of control parameters may be different from the existing studies. However, a few of
comparisons is made with the previously published results for limiting cases to validate the bvp4c
method used in the current work as tabulated in Tables 1 and 2. The approximate relative error εa,
is also calculated and it shows that εa between present and previous results are adequately small
(0–0.3694%). It is clear from Table 2 that the thermal relaxation parameter γT which resulting from the
non-Fourier energy model can intensify the rate of heat transfer while reduce the rate of mass transfer.

Table 1. Comparison data of −θ′(0) for the case of unstratified viscous fluid when M = λ = N =

Nb = Nt = γT = 0, ε = 1 and various values of Pr.

Pr Present Khan and Pop [18] εa = | a−b
a | × 100% Akbar et al. [24] εa = | a−b

a | × 100%

0.07 0.066056 0.0663 0.3694% 0.0663 0.3694%
0.2 0.169089 0.1691 0.0065% 0.1691 0.0065%
0.7 0.453916 0.4539 0.0035% 0.4539 0.0035%
2 0.911358 0.9113 0.0064% 0.9114 0.0046%
7 1.895403 1.8954 0.0001% 1.8954 0.0001%

20 3.353904 3.3539 0.0001% 3.3539 0.0001%
70 6.462199 6.4621 0.0015% 6.4622 0.0000%

εa is the approximate percent relative error between present result, a and previous result, b.
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Table 2. Comparison data of −θ′(0) and −φ′(0) for the case of dual stratified nanofluid over stretching
sheet (ε = 1) when M = 0.49, λ = 0.3, N = 0.09, Pr = Le = 1,Nb = Nt = δ1 = δ2 = 0.2 and
various γT .

γT
Present Abbasi et al. [48] εa = | a−b

a | × 100%

−θ′(0) −φ′(0) −θ′(0) −φ′(0) −θ′(0) −φ′(0)

0 0.82851 0.37980 0.82852 0.37977 0.0012% 0.0079%
0.05 0.85574 0.35713 - - - -
0.1 0.88282 0.33457 - - - -

εa is the approximate percent relative error between present result, a and previous result, b.

Table 3 compares the numerical values of the heat and mass transfer rates for the problem of dual
stratified nanofluid over a shrinking and stretching sheet. For the shrinking flow,−θ′(0) approximately
increases 5.83% and 11.59% when γT = 0.005 and 0.01, respectively. In contrast,−φ′(0) decreases 1.13%
when γT = 0.005 and 2.42% when γT = 0.01. However, the percentage of increment for −θ′(0) in the
case of stretching flow is slightly higher as compared to the shrinking flow. In addition, the assisting
flow case (λ = 0.3) and opposing flow case (λ = −0.5) in Tables 2 and 3, correspondingly have same
pattern (increment/decrement) of the heat and mass transfer rates.

Table 3. Numerical values of −θ′(0) and −φ′(0) for the case of dual stratified nanofluid over shrinking
sheet (ε = −1) and stretching sheet (ε = 1) when M = Le = 1, λ = −0.5, N = 0.5, S = 2.3, Pr = 6.2,
Nb = 0.3, Nt = 0.1, δ1 = 0.1, δ2 = 0.2 and various γT .

γT
Shrinking Stretching

−θ′(0) −φ′(0) −θ′(0) −φ′(0)

0 4.466687 8.429299 5.055202 10.790924
0.005 4.743514 (+5.83%) 8.335221 (−1.13%) 5.395635 (+6.31%) 10.682332 (−1.02%)
0.01 5.052113 (+11.59%) 8.230340 (−2.42%) 5.752854 (+12.13%) 10.568364 (−2.10%)

(%) indicates the approximate percent relative difference between results with γT > 0 and γT = 0.

Figures 2–4 exhibit the variations of f ′′(0), −θ′(0) and −φ′(0) towards ε within specific range of
S. First and second solutions are designated by straight and dashed lines, respectively. Both solutions
are found and remain up to a critical value, εc whereas no possible solution is obtained for ε > |εc|.
A critical or turning point is interpreted as a point where first and second (dual) solutions meet.
The existence of dual solutions for S > 2 in the present study is in accordance to the result by Miklavčič
and Wang [2], Fang et al. [4], Jusoh et al. [5] and Soomro et al. [6]. It is apparent from these previous
studies that the flow will produce two solutions by employing S > 2 for a suitable combination of
the control parameters. It also can be seen from Figure 2 that the skin friction coefficient inclines as
ε→ −ε while declines when the stretching sheet (ε→ +ε) is considered. The sheet is at static motion
when ε = 0 for all values of S. Different characteristics of f ′′(0) are noticed for the second solution
which can justify the reliability of first solution as the physical solution. The utilization of suction
for both shrinking and stretching flow also boosts the heat and mass transfer rates as illustrated in
Figures 3 and 4. Suction may assist the movement of heated fluid particles towards the wall and
subsequently, increases both heat and mass transfer rates. The nanofluid velocity profile, as depicted
in Figure 5, elevates while the temperature and concentration (see Figures 6 and 7) deteriorate with
an upsurge of the suction parameter. This is due to the suction which can diminish the momentum
boundary layer thickness and therefore enhance the flow near to the sheet [5]. Besides, suction
also allows the heated fluid movement towards the wall surface and develops both thermal and
concentration boundary layer thickenesses.
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Figure 2. f ′′(0) versus ε for various values of suction S.
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Figure 3. −θ′(0) versus ε for various values of suction S.
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Figure 4. −φ′(0) versus ε for various values of suction S.
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Figure 5. Effect of suction S on the velocity profile.
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Figure 6. Effect of suction S on the temperature profile.
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Figure 7. Effect of suction S on the concentration profile.

Figure 8 demonstrated the temperature profile with various γT . The thermal relaxation parameter
γT appears as a result of non-Fourier energy equation and it should be mentioned again that γT = 0
corresponds to the classical Fourier energy equation. The nanofluid temperature declines with an
increment of γT . Theoretically, when γT increases, the fluid particles take more time to transfer the
energy to the neighbouring particles and hence, will lead to a reduction in temperature. The impact of
thermal and solutal stratification parameters on temperature and concentration profiles are displayed
in Figures 9–11. The nanofluid temperature enhances with the addition of thermal stratification
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parameter. The opposite result is observed with the increment of solutal stratification in which
the temperature decreases while the concentration increases. The impact of magnetic parameter M
on the dimensionless velocity, temperature and concentration profiles is portrayed in Figures 12–14.
Surprisingly, the combined effects of suction S, thermal buoyancy λ and shrinking (ε = −1) parameters
gave the reverse effect of the magnetic parameter M on all the profiles. Theoretically, a magnetic
field may induce a drag reduction known as Lorentz force which gives resistance to the fluid flow
and hence decelerates the velocity as reported by Rashidi et al. [69]. However, the shrinking flow
with a high value of suction parameter (S > 2) may contribute to the increment of velocity profile
as plotted in Figure 12 and depreciate both thermal and concentration boundary layer thickness (see
Figures 13 and 14).
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Figure 8. Effect of thermal relaxation γT on the temperature profile.
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Figure 9. Effect of thermal stratification δ1 on the temperature profile.
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Figure 11. Effect of solutal stratification δ2 on the concentration profile.
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Figure 12. Effect of magnetic parameter M on the velocity profile.
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Figure 13. Effect of magnetic parameter M on the temperature profile.
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Figure 14. Effect of magnetic parameter M on the concentration profile.

The present boundary layer problem produced two solutions within a certain range of the
pertinent parameters. Hence, it is necessary to prove the real or physical solution by a valid method
rather than conclude based on the velocity, temperature or concentration profiles. The stability analysis
is successfully conducted by solving Equations (35)–(40) using the bvp4c algorithm in MATLAB
software. Figure 15 illustrated the smallest eigenvalue σ1 of both solutions towards ε where σ1 act as
a determinant of the stability solutions. Positive σ1 implies that the flow is stable whereas negative
σ1 indicates an initial growth of disturbances which resulting that the flow is unstable [55–65]. It is
validated from Figure 15 that the first and second solutions have positive and negative σ1, respectively
which indicates that the first solution is the real solution. Furthermore, the smallest eigenvalue σ1 for
both solutions is σ1 → 0 as ε→ εc which proves the formulation of the present stability analysis.
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Figure 15. The smallest eigenvalue σ1 of both first and second solutions towards ε with S = 2.5.
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5. Conclusions

The present work scrutinizes the boundary layer flow coupled with heat and mass transfer of
a doubly stratified nanofluid using a non-Fourier energy model, or known as the Cattaneo-Christov
heat flux model. The governing model in PDEs are reduced to a system of similarity differential
equations and then numerically solved using bvp4c code which is programmed in the MATLAB
software. The conclusions are as follows:

• Thermal relaxation parameter γT which is resulting from the application of the non-Fourier energy
model, gives a different estimation of the heat and mass transfer rates as compared to the classical
energy equation. The rate of heat transfer increases whereas the mass transfer rate decreases with
the improvement of the thermal relaxation parameter for both stretching and shrinking cases.

• The skin friction coefficient inflates for the shrinking case (ε < 0), deflates for the stretching case
(ε > 0) and has no change for the static plate (ε = 0) when the suction parameter S is enhanced.
Higher values of the suction parameter i.e., S > 2 also contribute to the appearance of the dual
solutions in the present work.

• The stability analysis is conducted and it is mathematically proved that the first solution is the
physical/real solution.

• The combined effects of buoyancy parameter (λ and N) with higher values of the suction
parameter S in the shrinked flow gave the reverse effect of the Lorentz force to the velocity,
temperature and concentration profiles.

• Both temperature and concentration slightly inclines with the imposition of the thermal δ1 and
solutal δ2 stratification parameters, respectively.
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Abbreviations

The following abbreviations are used in this manuscript:

B0 magnitude of the magnetic field strength
C nanoparticle concentration
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
Le Lewis number
M magnetic parameter
N solutal buoyancy parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
Pr Prandtl number
Rex local Reynolds number
T nanofluid temperature
f dimensionless stream function along x−direction
g gravitational acceleration
t time
u, v velocities in the x, y directions, respectively
x, y coordinate axis align and normal to the sheet
ν kinematic viscocity
ρ f density of base fluid
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ρp density of nanoparticles
ρ f∞ density of base fluid far from the boundary
βT thermal expansion coefficient
βC solutal expansion coefficient
α thermal diffusivity of the fluid
τ dimensionless time variable
τ1 ratio of the heat capacity of the nanoparticles to the base fluid
λ thermal buoyancy parameter
λ2 thermal relaxation time
σ unknown eigenvalue
σM electrical conductivity of the fluid
θ dimensionless temperature
φ dimensionless nanoparticles volume fraction/concentration
γT thermal relaxation parameter
δ1 thermal stratification parameter
δ2 solutal stratification parameter
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