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Abstract: Quadcopter unmanned aerial vehicles continue to play important roles in several
applications and the improvement of their control performance has been explored in a great number
of studies. In this paper, we present an altitude control algorithm for quadcopters that consists of
a combination of nonlinear and linear controllers. The smooth transition between the nonlinear
and linear modes are guaranteed through controller gains that are obtained based on mathematical
analysis. The proposed controller takes advantage and addresses some known shortcomings of the
conventional proportional–integral–derivative control method. The algorithm is simple to implement,
and we prove its stability through the Lyapunov theory. By prescribing certain flight conditions,
we use numerical simulations to compare the control performance of our control method to that of
a conventional proportional–derivative–integral approach. Furthermore, we use a DJI-F450 drone
equipped with a laser ranging sensor as the experimental quadcopter platform to evaluate the
performance of our new controller in real flight conditions. Numerical simulation and experimental
results demonstrate the effectiveness of the proposed algorithm.
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1. Introduction

In recent decades, unmanned aerial vehicles (UAVs) have gained popularity in the scientific
community due to their numerous advantages such as high maneuverability, diverse applicability,
reliability, and economy. UAVs are used in a broad range of applications such as scientific research,
civil engineering, military applications, aerial mapping, search and rescue operations, and risk zone
inspection [1–4]. Quadcopters are an important class of UAVs that are superior in many ways: they
have a simple structure, are quick to manufacture, and are inexpensive [4,5]. Controlling their position,
in general, and altitude, in particular, has been the subject of numerous studies [6–23] with ever more
advanced algorithms having been proposed to address the quadcopter control problem.

1.1. Related Works

Many applications of quadcopters in the real world have been discussed in recent years. The most
widely mentioned topics include autonomous landing on moving platforms [6–9], precision landing for
autonomous docking and wireless self-charging system [10,11], and autonomous delivery tasks [12–14].
These applications are all, somehow, based on a reliable altitude controller. Therefore, designing an
altitude controller with superior performance is one of the most common and important efforts that
researchers all around the world are nowadays undertaking.

To that end, several papers have addressed the altitude control problem in the literature.
Santos et al. [15] presented an algorithm to accomplish quadcopter trajectory tracking tasks by
controlling the altitude through an adaptive dynamic controller that was capable of dealing with
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uncertainties in model parameters. Jayakrishnan [16] and Xiong et al. [17] used the sliding mode
control (SMC) technique to control the horizontal position and attitude while also providing a
significant improvement of altitude control. In other studies [18–20], the second order SMC
method was also used to improve quadcopter altitude control performances. Yet another method
was presented by Muliadi et al. [21], where the authors proposed a neural network approach to
control UAV altitude dynamics. The results obtained with this method were verified through
comparisons with a conventional proportional–integral–derivative (PID) control system. However,
these approaches [15–21] have a common disadvantage in that the SMC technique generates a high
chattering control signal method which reduces the lifetime of the entire system.

Although several control methods have been proposed in the literature, PID control has become
the most widely used technique in a variety of applications all over the world because it is simple
and easy to design and typically delivers a satisfactory performance. The PID approach was used in
many studies [22–28] to achieve not only quadcopter altitude control, but also attitude stabilization
and horizontal position control. In recent studies [29–32], the authors proposed the use of a multi-loop
control architecture (i.e., inner-loop and outer-loop) to control quadcopters in specific applications.
The outer-loop controllers were designed in different ways while the inner-loop controllers were all
implemented using the PID control law.

Nevertheless, the conventional PID controller has several limitations. First, their fixed gains limit
system performance over a wider operational range. When the required range of operation is large,
the conventional PID controller is prone instability, because the nonlinearities in the system cannot
be properly dealt with. Second, as conventional PIDs are based on a linear model, their performance
may suffer in a nonlinear system like a quadcopter. Several studies have attempted to overcome
these shortcomings. Phi et al. [33] presented a gain scheduling PID controller which determines the
PID gains by linearly adjusting the gain as a function of tracking errors. In another approach [34],
the authors used a pickup table to schedule the PID gains in a quadrotor fault tolerant control task.
Both methods were able to improve the control performance under different operating conditions.
However, it is still a linear control law which means that it may not perform well in non-linear systems.
Further, scheduling the gains results in discontinuous transitions which may result in sudden jerks
or oscillations. A quadcopter self-tuning fuzzy PID controller where the gains are tuned nonlinearly
through fuzzy logic have been proposed to address this problem [35]. Goodarzi et al. [36] introduced
a nonlinear PID control to achieve asymptotic system stability under the presence of uncertainties.
Another way to cope with the difficulties in control of a nonlinear system is to represent the dynamical
system by the Takagi–Sugeno (T–S) fuzzy model [37]. Based on this approach, Liu et al. [38] addressed
the problem of finite-time stability and stabilization for a class of nonlinear systems with time-varying
delay. However, both the T–S fuzzy and linear parameter varying (LPV) approaches [39,40] require
considerably greater computational resources compared with a conventional PID controller.

The references indicate that most of the existing methods either are complex to design and
implement or require great computational resources. Meanwhile, PID control law appears to play an
important role for finding a simple and efficient control method for a variety of systems. Designing a
controller that makes use of the inherent advantages of the PID approach while tackling its shortcomings
is therefore an important and worthwhile challenge.

1.2. Main Contributions

Motivated by the above observations, in this article, we propose an altitude control algorithm
for quadcopter unmanned aerial vehicles. The main advantages of this new method are twofold:
(1) while our method inherit the advantages of the PID approach, i.e., it is simple and straightforward,
its multi-loop approach ensures that unlike other control algorithms [33–38], our controller requires
less computational resources and exhibits a smooth performance at all times; and (2) compared to
conventional PID controllers, our control algorithm delivers a greatly improved performance with
regard to both raising time and error convergence speed.
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We use the Lyapunov stability theory to validate the system’s stability. We prescribe a maximum
acceleration/deceleration of the vehicle which allows the controller to have the vehicle move at an
appropriate acceleration before fast and hard approaching a target. This contributes to a safer and
smoother flight performance of both single vehicles performing specific missions [5,14,41,42] and
multi-agent systems flying in formation or switching their inter-communication topology [43,44].
For safety reasons, we firstly evaluate the performance of our new controller with numerical simulations
and then we will conduct experimental flights to demonstrate the effectiveness of the proposed algorithm
in real flight conditions.

1.3. Organization

The remainder of this paper is organized as follows: Section 2 presents the dynamical quadcopter
model and Section 3 the control algorithm while the numerical simulation and experimental
demonstration results and their discussions are provided in Section 4, before ending with the
main conclusions.

2. Preliminaries

2.1. Quadcopter Dynamics Model

Here, we briefly summarize the quadcopter dynamics model as it has already been presented
previously [45,46].

Let φ, θ, and ψ denote the three Euler angles roll, pitch, and yaw, respectively, where,
∣∣∣φ∣∣∣ < π/2,

|θ| < π/2, and
∣∣∣ψ∣∣∣ ≤ π (see Figure 1). The symbols x, y, and z respectively represent the position of the

quadcopter along the x, y, and z axes in an earth-fixed frame {E}. Jx, Jy, and Jz denote the moments of
inertia along the x, y, and z axes, respectively; m represents the mass, l the arm length of the vehicle, and
g the gravitational acceleration. The quadcopter dynamics model can be described as follows [45,46]:

..
φ =

(
Jy − Jz

Jx

)
.
θ

.
ψ+

l
Jx

U2

..
θ =

(
Jz − Jx

Jy

)
.
φ

.
ψ+

l
Jy

U3

..
ψ =

(
Jx − Jy

Jz

)
.
φ

.
θ+

1
Jz

U4

..
x =

1
m
(cosφ sinθ cosψ+ sinφ sinψ)U1

..
y =

1
m
(cosφ sinθ sinψ− sinφ cosψ)U1

..
z = g−

1
m
(cosφ cosθ)U1

(1)

where Ui(i = 1, 2, 3, 4) denotes the control inputs which are:
U1 = F1 + F3 + F2 + F4

U2 = F4 − F2

U3 = F3 − F1

U4 = Cd(F1 + F3 − F2 − F4)

(2)

where Fi = CtΩ2
i denotes the thrust force generated by motor i; Ωi is the speed of motor i; Ct and Cd

are the thrust and drag coefficients, respectively.
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Figure 1. Quadcopter configuration. 

2.2. Quadcopter Control Scheme 

The overall control scheme consists of position and attitude controllers (Figure 2). Conventional 
PID controllers are used for both horizontal (x- and y-) position control and attitude control while a 
new algorithm is proposed for altitude control. It is worth noting that our new algorithm can also be 
used for horizontal position control. 
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Figure 2. Full quadcopter controller scheme. The proposed algorithm is applied to the altitude control 
while conventional proportional–integral–derivative (PID) controllers are used for horizontal 
position and attitude control. 

3. Controller Design 

The multi-loop PID-PID control scheme for quadcopter altitude control was introduced and 
verified in some existing studies [28,33,47]. In this section, we present our new altitude control 
algorithm which also consists of a multi-loop controller, i.e., outer-loop and inner-loop. We derive 
the outer-loop as a multi-mode (i.e., nonlinear and linear modes) control law while the inner-loop is 
a PID controller. 

Let dz  denote the desired attitude, and zv  represent the vertical velocity of the vehicle. The 
altitude tracking error is then given by: 

z de z z= −  (3) 

Then the derivative of ze  is: 

z d ze z v= −   (4) 

A multi-mode control law is chosen for the outer-loop of the altitude controller as: 
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2.2. Quadcopter Control Scheme

The overall control scheme consists of position and attitude controllers (Figure 2). Conventional
PID controllers are used for both horizontal (x- and y-) position control and attitude control while a
new algorithm is proposed for altitude control. It is worth noting that our new algorithm can also be
used for horizontal position control.
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3. Controller Design

The multi-loop PID-PID control scheme for quadcopter altitude control was introduced and
verified in some existing studies [28,33,47]. In this section, we present our new altitude control
algorithm which also consists of a multi-loop controller, i.e., outer-loop and inner-loop. We derive the
outer-loop as a multi-mode (i.e., nonlinear and linear modes) control law while the inner-loop is a
PID controller.

Let zd denote the desired attitude, and vz represent the vertical velocity of the vehicle. The altitude
tracking error is then given by:

ez = zd − z (3)

Then the derivative of ez is:
.
ez =

.
zd − vz (4)
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A multi-mode control law is chosen for the outer-loop of the altitude controller as:

vz =


−

√
2amax(−ez − e0) +

.
zd, ez < −dl

kez +
.
zd, −dl ≤ ez ≤ dl√

2amax(ez − e0) +
.
zd, ez > dl

(5)

where, amax is a positive constant which represents the desired maximum acceleration of the vehicle;
dl a positive constant at which the line (∆) : vz = kez +

.
zd to be tangential to the curve (S) : vz = −

√
2amax(−ez − e0) +

.
zd, ez < −dl√

2amax(ez − e0) +
.
zd, ez > dl

; k, e0 positive constants, and e0 < dl; vz the control action

which will be fed into the inner-loop (see Figure 3) as a velocity reference [31].
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implemented in the outer-loop while a PID controller is used in the inner-loop. 
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Figure 3. The multi-loop altitude control scheme of the quadcopter. The proposed algorithm is
implemented in the outer-loop while a PID controller is used in the inner-loop.

Figure 4 shows vz as a function of ez from Expression (5) corresponding to
.
zd = 0. For

.
zd , 0,

the graphs are shifted along the vz axis an amount of
.
zd without any change of the relations between

(S) and (∆). In order for the line (∆) to be tangential to the curve (S) at ez = dl, the followings
must be satisfied: 

kez =
√

2amax(dl − e0)

k =

√
2amax

2
√

dl − e0

(6)

Manipulating (6) yields: 
dl =

amax

k2

e0 =
dl
2

(7)
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Theorem 1. If the control law is designed as Expression (3) with the parameters satisfying (6) then the system (1)
is asymptotically stable and the tracking error is forced to zero.

Proof. Choose a Lyapunov candidate function as:

V =


2
√
−ez − e0, ez < −dl

1
2

e2
z , −dl ≤ ez ≤ dl

2
√

ez − e0, ez > dl

(8)

It is clear that V > 0, ∀ez , 0. We have:

.
V =



−
.
ez

√
−ez − e0

, ez < −dl
.
ezez, −dl ≤ ez ≤ dl.

ez
√

ez − e0
, ez > dl

(9)

Substituting (4) into (9) and choosing control laws as (5), we have:

.
V =


−
√

2amax, ez < −dl

−ke2
z , −dl ≤ ez ≤ dl

−
√

2amax, ez > dl

(10)

Clearly, we have
.

V < 0, ∀ez , 0 which means that the tracking error, ez, converges to zero as time
t→∞ . This completes the proof. �

Remark 1. When ez < −dl or ez > dl, the controller generates control actions that follow the curve (S). While
this is the case, the slope of (S) is smaller than that of (∆) which means that the acceleration is limited, which in
turn results in fewer overshoots and vehicle jerks. Whereas, when −dl ≤ ez ≤ dl, the control action follows the
line (∆) which has a higher slope. This guarantees that the tracking error converges to zero in a prompt and
hard manner.

Remark 2. When −dl ≤ ez ≤ dl, the proposed controller becomes a proportional-PID (P-PID) control scheme,
which implies that the parameter k can be obtained through a conventional PID tuning process. Moreover,
at ez = –dl and ez = dl, the line (∆) becomes a tangent to the curve (S), resulting in smooth transitions when
the controller switches control modes (between nonlinear and linear modes), with regard to both acceleration
and velocity.

4. Numerical Simulation, Experimental Results and Discussions

In this section, we demonstrate the effectiveness of the proposed altitude control algorithm.
The quadcopter dynamics from Expression (1) are used to verify the stability and advanced performance
of our controller. By comparing our new method to a conventional PID controller, we highlight and
discuss the effectiveness of the new method.
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4.1. Experimental Platform Description

4.1.1. Hardware and Avionics Devices

We use a DJI-F450 quadcopter as the experimental platform (Figure 5) which is operated by an
onboard flight computer unit (FCU) Pixhawk [48,49]. The quadcopter attitude and acceleration are
provided by an inertial navigation system (INS). We use a commercially available laser ranging sensor
LidarLite V3 to measure the altitude and a commercial global positioning system (GPS) receiver to
determine the position of the vehicle. Additionally, a power supplying system (including battery,
power adapter module), a set of remote control transmitter/receiver for the manual pilot, and a set of
radio telemetry transmitter/receiver for ground station monitoring are used. The quadcopter dynamical
parameters are listed in Table 1.
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Table 1. System parameters used for the simulations.

Parameter Value Unit

m 2.0 kg
Jx 0.0121 kg.m2

Jy 0.0119 kg.m2

Jz 0.0223 kg.m2

l 0.23 m
g 9.81 m/s2

Ct 7.732 (10−6) Ns2

Cb 1.275 (10−7) Nms2

4.1.2. Software

We implemented all vehicle altitude, position, and attitude controllers on the Pixhawk FCU
running at frequencies of 100 Hz, 100 Hz, and 400 Hz, respectively. The altitude controller gains
and reference values for altitude are listed in Table 2. It is worth noting that the horizontal position
controller and attitude controller are beyond the scope of this paper and will not be presented in this
section. The system signal flows are briefly described by the block diagram in Figure 6.
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Table 2. Controller parameters and the altitude references.

Parameters Value and Unit

amax 2.5 m/s2

k 0.7
kp 1.1
ki 0.002
kd 0.2
zd 0, 15, 12, and 10 sin (0.1t) m
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4.2. Numerical Simulation and Discussions

The experimental quadcopter parameters and controller gains are used for the simulation.
The controllers are implemented based on Matlab/Simulink with the sampling time is chosen identically
as the operating frequency of the controllers in the experimental system. The initial vehicle altitude
and vertical velocity are all zero, i.e., z(0) = 0 and

.
z(0) = 0. The vehicle is armed on a horizontal level

surface with the attitude stabilization controller enabled.
We present two test scenarios to evaluate the effectiveness of our proposed algorithm, namely the

tracking of (1) a step altitude reference; and (2) a moving altitude reference. For comparison, we also
simulated the performance of a conventional PID controller for both scenarios.

4.2.1. Scenario 1: Tracking Step Altitude References

This scenario consists of three stages: (i) initialization; (ii) take-off; and (iii) descent. During the
first five seconds the vehicle is initialized, i.e., it is armed and prepares for take-off. The altitude,
vertical velocity, and acceleration are all zero (Figures 7–10) and the control signal, U1, increases from
the initial value of zero to the hovering value of about 19.62 N (Figure 11).

During the second stage (from t = 5 to t = 30 s), the quadcopter takes off and ascends to the
desired altitude of 15 m. The altitude responses are nearly identical for both controllers during the early
stage of the flight (5 ≤ t < 9 s in Figure 7). Initially, the conventional PID controller responds slightly
faster than our new controller (see Inset 1 in Figure 7). This is reversed during the later stages of the
flight when the tracking error becomes smaller than dl (ez ≤ dl ≈ 5.1 m) and the controller smoothly
switches to the linear mode. For 9 ≤ t < 30 s our new controller exhibits a significantly superior
performance compared to the conventional PID. With our algorithm, the tracking error converges to a
small range closed to zero (ez is less than 0.5%) at t ≈ 21 s while the conventional PID only reaches
this range around t ≈ 25 s (Inset 1 in Figure 8). The velocity, acceleration, and control signal of the
conventional PID controller exhibit large amplitudes and slow converging speeds (Figures 9–11).

In order to evaluate the performance of our controller when the step amplitude is smaller than dl,
during the third stage (30 ≤ t ≤ 50 s), the quadcopter is commanded to descend from the current altitude
of 15 m to the desired altitude of 12 m (corresponding to a step of 3 m). If we look at the insets 2 in
Figures 7 and 8, it is clearly seen that our controller aggressively responds and quickly reaches the altitude
reference at t ≈ 45 s while the conventional PID controller only reaches this reference at t ≈ 49 s.
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Figure 9. Comparison of the vertical velocity performance between our new controller and a
conventional PID controller for Scenario 1.



Appl. Sci. 2019, 9, 2122 10 of 15

Appl. Sci. 2019, 9, x 10 of 16 

 
Figure 9. Comparison of the vertical velocity performance between our new controller and a 
conventional PID controller for Scenario 1. 

 
Figure 10. Comparison of the vertical acceleration performance between our new controller and a 
conventional PID controller for Scenario 1. 

 
Figure 11. Comparison of the control signal, 1U , between our new controller and a conventional PID 

controller for Scenario 1. 

0 5 10 15 20 25 30 35 40 45 50

time (s)

-1

-0.5

0

0.5

1

1.5

2

2.5

ve
loc

ity
 v

z (
m/

s)

conventional PID controller

proposed controller

0 5 10 15 20 25 30 35 40 45 50

time (s)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

ac
ce

l. 
a

z 
(m

/s
2

)

conventional PID controller

proposed controller

0 5 10 15 20 25 30 35 40 45 50

time (s)

0

5

10

15

20

25

U
1

 (N
)

conventional PID controller

proposed controller

Figure 10. Comparison of the vertical acceleration performance between our new controller and a
conventional PID controller for Scenario 1.

Appl. Sci. 2019, 9, x 10 of 16 

 
Figure 9. Comparison of the vertical velocity performance between our new controller and a 
conventional PID controller for Scenario 1. 

 
Figure 10. Comparison of the vertical acceleration performance between our new controller and a 
conventional PID controller for Scenario 1. 

 
Figure 11. Comparison of the control signal, 1U , between our new controller and a conventional PID 

controller for Scenario 1. 

0 5 10 15 20 25 30 35 40 45 50

time (s)

-1

-0.5

0

0.5

1

1.5

2

2.5

ve
loc

ity
 v

z (
m/

s)

conventional PID controller

proposed controller

0 5 10 15 20 25 30 35 40 45 50

time (s)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

ac
ce

l. 
a

z 
(m

/s
2

)

conventional PID controller

proposed controller

0 5 10 15 20 25 30 35 40 45 50

time (s)

0

5

10

15

20

25

U
1

 (N
)

conventional PID controller

proposed controller

Figure 11. Comparison of the control signal, U1, between our new controller and a conventional PID
controller for Scenario 1.

4.2.2. Scenario 2: Tracking a Moving Altitude Reference

Here, the vehicle tracks a moving altitude reference using the same controller gains as in Scenario 1.
The moving altitude reference is given as a sine function of time t as:

zd = 10 sin(0.1t) (11)

Clearly, the altitude performance of our new algorithm is superior to a conventional PID controller
(Figure 12). While the moving reference altitude reaches 10 m altitude at time t ≈ 15.7 s, our controller
reaches the peak about 3.8 s later (at t ≈ 19.5 s), while the conventional PID controller lags by 9.7 m,
reaching the maximum altitude at t ≈ 21.1 s. Due to this significant delay, the conventional PID does
not even reach the full altitude. In addition, the tracking error of the PID controller exhibits large
amplitude oscillation and a slow response compared to our algorithm (Figure 13).
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4.3. Experimental Demonstration and Discussions

In this subsection, we present the experimental results of a step-altitude-reference-tracking flight
to evaluate the performance and demonstrate the effectiveness of our new controller in real flight
conditions. After arming, the quadcopter stays on the ground and prepares for take-off during the
first ten seconds (Figure 14). The altitude reference of 15 m is commanded at time t ≈ 10 s leading the
vehicle to ascend. It is clear that, initially, the conventional PID controller performance is considerably
faster than our proposed controller. However, similarly to the simulation results, our new controller
exhibits a superior performance compared with the PID controller when the tracking error becomes
smaller. If we look at the inset in Figure 14, it is seen that the response of our proposed controller
is about 5 s faster than that of the conventional PID controller. The experimental vertical velocity
and acceleration performance (Figures 15 and 16) also prove the stability and the effectiveness of the
proposed algorithm.
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The way our new algorithm exhibits the performance promises a smooth system response when the
vehicle starts a movement and a fast target approaching speed when the tracking error becomes small.
These properties are useful in performing tasks that require high accuracy and smooth performance
such as precision landing, obstacle avoidance, and autonomous delivery to high buildings, etc.

5. Conclusions

This paper presented a new altitude control algorithm for quadcopters. The experimental
validation and the numerical simulation results clearly demonstrated that our algorithm performs
significantly better compared to a conventional PID controller. While taking advantage of the strength
of conventional PID approaches, our method successfully tackles some of their shortcomings. Our
algorithm is simple to design and implement, and can be applied to a large range of position control
applications for unmanned vehicles. Future work is dedicated to precision landing control design with
our proposed controller for an autonomous quadcopter docking and self-charging system.
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