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Abstract: In this paper, vibration control of an aero pipeline system using active constrained
layer damping treatment has been investigated in terms of the vibration and stress distribution.
A three-dimensional finite element model of such a pipeline with active constrained layer damping
(ACLD) patches is developed. The transfer of the driving force under harmonic voltage is analyzed
based on the finite element model. The vibration control of the pipeline with active constrained
layer damping treatment under different voltages is computed to analyze the influence of control
parameters and structural parameters on the control effect. An experiment platform is developed
to validate the above relations. Results show that the performance of the active constrained layer
damping treatment is affected by the elastic modulus and thickness of the viscoelastic layer, control
voltage and structure size. The performance increases significantly with the rising of the control
voltage and cover area of ACLD patches among these parameters.
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1. Introduction

Pipeline systems are widely used in engineering fields and play an important role in energy
transmission in civil and military industries. The system is mainly composed of structural parts such as
the pipeline body, joint, sealing element, clamp, valve and so on. Due to the installation requirements of
different industrial equipment, the arrangement of the pipeline system has strict limitations. Therefore,
higher requirements are placed on the stability and reliability of the piping system to avoid failure.

Pipeline vibrations are a major problem that needs to be faced to improve the pipeline’s stability
and reliability. The excitations of vibration mainly come from: the actuator in the hydraulic system,
pulsation excitation of the fluid output by the pump, and pulsation shock caused by movement of
components such as valves. When the excitation frequency is close to the modal frequency of the
pipeline, resonation of pipeline occurs, causing damage and failure.

For a long time, pipeline system failures caused by vibrations have been very common and the
economic losses caused have also been enormous. The main pipeline failures are: burst, collision, wear,
joint loose, clamp failure, ferrule crack and so on. For example, oil leakage, joints and seal failures
often occur in the hydraulic pipeline systems of engineering machinery; bursts and valve damage often
occur in marine hydraulic systems; collisions, clamp failure and ferrule crack often occur in aviation
hydraulic piping systems. These failures not only cause equipment damage and major safety accidents,
but also cause great safety hazards for equipment users. Therefore, it is necessary to effectively control
the vibrations of a pipeline system.
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Much research on the vibration mechanism of pipelines has been carried out by scholars. It is
generally believed that the main causes of pipeline vibration are complex coupled vibration of hydraulic
fluid and the coupled effect of components and substance in hydraulic systems. The vibration control
of a pipeline is used to control the path of vibration transmission and dissipate the vibration energy of
the system [1–6]. This field has been utilized by some researchers. Vibration control can be divided
into passive control and active control on the basis of the mechanism.

Passive vibration control mainly includes measures of changing the ratio of the external excitation
frequency and the modal frequency of the pipeline, increasing the structural damping, shifting the
resonance frequency of a pipeline and dissipating the vibration energy. The traditional passive control
method was to deploy a number of inertial attachments [7]. Some researchers [8–10] developed the
emerging pounding tuned mass damper (PTMD) technology and explored its application with various
materials. Experimental results demonstrate that the single-sided PTMD was a cost-effective method
for efficiently and passively mitigating the vibration of suspended piping systems compared with the
traditional tuned mass damper (TMD). Passive vibration control has the advantages of a clear damping
mechanism, simple structure, no energy input and being easy to implement. However, its control
frequency range is narrow, and it can only effectively control high-order vibration frequency [11].
The effect on low-frequency vibration is satisfactory. The control parameters cannot change with the
excitation environment effectively, so the passive control effect is limited.

Active vibration control of the pipeline generally needs to collect the vibration signal of the
pipeline system through the sensors, then transmits the signal to the upper computer and obtains the
control signal through a certain control algorithm [12,13]. In the end, the control signal is applied on
the actuation component to control the vibration of the pipeline system. The existing active control
methods of pipelines mainly include: (1) controlling the pressure pulsation amplitude inside the
pipeline system through active control components. (2) controlling the vibration of the pipeline
through the active control components. The research on the control method of ACLD structure is still
insufficient. The control methods used by most researchers are PD control and simple LQC control.
PD control is too simple, and simple LQC control is difficult to make optimal in practical applications
due to various conditions [14–16]. The existing active vibration control on different objects [17–21]
has a better control effect on low frequency, strong adaptability to the external environment, and can
automatically follow the change of vibration characteristics [22]. The design flexibility is great, but the
closed-loop control system has many links, and the stability of the system needs to be further improved.

In recent years, some scholars have proposed a new active control method, that is, the active
constraint layer damping (ACLD) treatment. The mechanism of this method is: (1) Actively adjusting
the damping characteristic of the substrate through the active constraint layer damping. When the
substrate vibrates, the viscoelastic damping layer takes shear deformation and dissipates the vibration
energy. Meanwhile the deformation of the active constraint layer increases the shear deformation of
the viscoelastic layer to improve the energy dissipation of vibration. (2) The active constraint layer
damping treatment has a similar damping effect as an active damping control system. Due to the
active control strategy, the ACLD structure not only greatly reduces the weight of the system, but
also effectively enhances the dissipation of vibration energy. Some scholars [23–25] have analyzed
the effectiveness of ACLD in vibration control from a structural perspective. Application of ACLD
treatment on vibration control of different objects is also a major research area [26,27]. These studies
showed that: (1) ACLD can effectively suppress the vibration of the controlled structure; (2) the ACLD
structure can suppress the vibration level of the passive structure more effectively than the pure passive
damping structure; (3) The active control part of the ACLD structure is capable of adaptively adjusting
the structural damping, while the passive control part can increase the gain and phase margin of the
control system. However, existing research focused mainly on the damping mechanism of ACLD and
its application on plates and cylindrical shells. Research about ACLD treatment and the influence of
its control parameters in pipeline vibration control, especially in the field of aero pipeline system is
less common.
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In this paper, a method of applying ACLD to vibration control of aero pipeline is proposed
based on the vibration and stress distribution. The driving force transmission characteristics under
different voltages were analyzed. The numerical calculation of the vibration control of the pipeline
with ACLD patches under different voltages is carried out. The effectiveness of the proposed method
on vibration control is verified, and the influence of control parameters and structural parameters
on the vibration control effect is analyzed. The vibration control platform was built, and the voltage
negative feedback control software and vibration monitoring software were developed. The influence
of structure parameters and control parameters on the damping effect shows that the ACLD treatment
has a favorable damping effect on the vibration of pipelines.

2. Materials and Methods

2.1. Theoretical Modeling of Active Constraint Layer Damping

When establishing the model of driving force between layers of ACLD, the force between the
active constraint layer and the pipeline is concentrated at both ends of the active constraining layer
according to the assumptions of the point-force model proposed by Crawley [28]. The driving force of
the active constraint layer is transmitted to the substrate through the points on the edges of the two
ends and the viscoelastic layer.

When a harmonic voltage is applied to the active constraint layer, the active constraint layer
adhered to the surface of the pipeline generates strain due to the inverse piezoelectric effect, thereby
generating stress and transmitting it to the pipeline through the viscoelastic layer in the form of shear
force. Thus, the influence on the pipeline can be expressed by an equivalent pair of balanced forces
and couples at the midpoint of the section of the pipeline. The driving force schematic of the active
constraint layer has been shown in Figures 1 and 2. PZT is the piezoelectric transducer and VEM is the
viscous-elastic material. Fs is a pair of balance force between two layers. T1 is the tension along the x
axis. σ1 and M1 are the stress and internal forces of the pipeline, respectively.
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The relationship of stress and strain on the viscoelastic layer can be expressed as:

τ = Gγ = G
u(x, t)

h
, (1)
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where τ is the shear stress between the active constraint layer and the viscoelastic layer; G is the
shear modulus of the viscoelastic layer, which satisfies G = E/[2(1 + ν)]; E is the elastic modulus of
viscoelastic layer; ν is the Poisson’s ratio for viscoelastic layer; γ is the tangent strain of viscoelastic
layer; h is the thickness of the viscoelastic layer.

When a harmonic voltage is applied to the active constrained layer, the stress analysis of the active
constrained layer is conducted using the infinitesimal (dx). According to the theory of elastic dynamics,
the dynamic equation is established:

∂T1

∂x
+
τ
h
= ρp

∂2u(x, t)
∂t2 . (2)

The stress which active constraint layer acts on the matrix and T1 are the force and reaction force.
ρp is the density of the piezoelectric ceramics. Therefore, according to the second type of piezoelectric
equation, it can be deduced that:

ce
11
∂2u(x, t)
∂x2 + G

u(x, t)
hhp

= ρp
∂2u(x, t)
∂t2 , (3)

where ce
11 is the elastic stiffness constant, hp is the thickness of PZT.

The rearranged equation can be expressed as:

∂2u(x, t)
∂t2 − λ2 ∂

2u(x, t)
∂x2 − ξ2u(x, t) = 0, (4)

where λ =
√

ce
11/ρp, ξ =

√
G/ρPhhp.

When active constraint layer is stimulated by voltage U = U0 sin(ωt), the analytic solution of the
above kinetic equations can be expressed as:

u0 = C1 cos(βx) + C2 sin(βx), (5)

where

β =

√
ω2 + ξ2

λ
=

√
ρphhpω2 + G

ce
11hhp

. (6)

Under the action of a simple harmonic AC voltage, the displacement of the active constraint layer
attached to the surface of the substrate is as follows:

u(x, t) =
∆l
β

sec
βl
2

sin(βx) sin(ωt). (7)

According to the second type of piezoelectric equation and the relation of stress and strain, it
can be inferred that the stress distribution of the active constraint layer attached to the surface of the
substrate is:

T1 = ce
11S1 − e31E3 = ce

11∆l
[
sec

βl
2

cos(βx) − 1
]

sin(ωt). (8)

According to the relation of stress and strain on the viscoelastic layer, the expression of the shear
stress transmitted by the viscoelastic layer can be derived as:

τ = Gγ =
G∆l sec βl

2

βh
sin(βx) sin(ωt). (9)
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Since the modeling is based on the point-force model assumption, the driving force of the active
constraint layer is transmitted to the substrate through points on both edges. Therefore, the total shear
force transmitted by the viscoelastic layer to the substrate is:

Fs =
G∆lb
β2h

(
sec

βl
2
− 1

)
sin(ωt), (10)

where b is the width of the active constraint layer. When the excitation applied to the active constraint
layer, the force between the active constraint layer and the structure is equivalent to the eccentric load
on the surface of the substrate in the direction parallel with the axis, which causes the bending and
deformation of the substrate.

2.2. Transform of Piezoelectric Parameters Matrix

The structural and performance parameters of each layer are shown in the Tables 1 and 2
respectively. As shown in the Figure 3 arc piezoelectric ceramics are adopted to fit the pipeline well
and polarized along the thickness.

Table 1. Geometric parameters of the pipeline with ACLD patches.

External Diameter (mm) Thickness (mm) Length (mm) Radian (rad)

Pipeline 18 1.5 500 2π
Viscoelastic layer 18.52 0.26 100 π/2
Active constraint

layer 20.52 1 100 π/2

Table 2. Performance parameter of the pipeline with ACLD patches.

Material Elasticity Modulus E (Pa) Poisson’s Ratio ν Density (kg/m3)

Pipeline 2.01× 1011 0.3 8.03× 103

Viscoelastic layer 4.5× 105 0.499 980
Active constraint layer —— 0.3 7400

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 18 

( ) ( )
sec

2 sin sin

lG l
G x t

h

β

τ γ β ω
β

Δ
= =

. 

(9) 

Since the modeling is based on the point-force model assumption, the driving force of the active 
constraint layer is transmitted to the substrate through points on both edges. Therefore, the total shear 
force transmitted by the viscoelastic layer to the substrate is: 

( )2 sec 1 sin
2s

G lb lF t
h

β ω
β
Δ  = − 

  , 
(10) 

where b is the width of the active constraint layer. When the excitation applied to the active constraint 
layer, the force between the active constraint layer and the structure is equivalent to the eccentric load 
on the surface of the substrate in the direction parallel with the axis, which causes the bending and 
deformation of the substrate. 

2.2. Transform of Piezoelectric Parameters Matrix 

The structural and performance parameters of each layer are shown in the Tables 1 and 2 
respectively. As shown in the Figure 3 arc piezoelectric ceramics are adopted to fit the pipeline well and 
polarized along the thickness. 

PZT

d33

d31

d32
Z

X

Y

 

Figure 3. Piezoelectric coefficient coordinate system. 

Table 1. Geometric parameters of the pipeline with ACLD patches. 

 
External Diameter 

(mm) 
Thickness 

(mm) 
Length 
(mm) 

Radian 
(rad) 

Pipeline  18 1.5 500 2π  
Viscoelastic layer 18.52 0.26 100 /2π  
Active constraint 

layer 
20.52 1 100 /2π  

The parameters of piezoelectric ceramics adopted in this paper are shown in Table 3. 

Table 2. Performance parameter of the pipeline with ACLD patches. 

Material Elasticity Modulus E  (Pa) Poisson’s Ratio ν Density (kg/m3) 
Pipeline 112.01 10×  0.3 38.03 10×  

Viscoelastic layer 54.5 10×  0.499 980 
Active constraint layer —— 0.3 7400 

Table 3. Performance parameter of the piezoelectric confinement layer. 

Figure 3. Piezoelectric coefficient coordinate system.

The parameters of piezoelectric ceramics adopted in this paper are shown in Table 3.

Table 3. Performance parameter of the piezoelectric confinement layer.

Piezoelectric Strain Constant
(×10−12C/N)

Elastic Constant
(m2/N)

Relative
Dielectric Constant

d31 d33 d15 YE
11 YE

33 YE
55 εT33/ε0

Active constraint layer 186 420 660 15 5.3 25 2200
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The anisotropic stiffness matrix of the piezoelectric ceramics (polarized in Z direction) is as follows:

C =



c11 c12 c13 0 0 0
c21 c11 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66


=



13.9 7.78 7.43
7.78 13.9 7.43
7.43 7.43 11.5

2.56
2.56

3.06


× 1010 (11)

The electrical parameters of piezoelectric materials include: resistivity, dielectric constant and
piezoelectric constants. The dielectric constants of piezoelectric materials used in this paper are
as follows:

εs
11 = εs

11r ε0 = 370× 8.84× 10−12 = 3.27× 10−9, (12)

εs
22 = εs

22r ε0 = 370× 8.84× 10−12 = 3.27× 10−9, (13)

εs
33 = εs

33r ε0 = 635× 8.84× 10−12 = 5.613× 10−9. (14)

E-Type piezoelectric equation is adopted in the piezoelectric coupling analysis in this paper:{
T = cES− eE
D = eS + εSE

, (15)

where T is the mechanical stress, S is the mechanical strain, D is the electrical displacement, and E is
the electric field intensity. Piezoelectric parameters ei j is used to calculate the e matrix, the parameters
are entered as a datasheet, and the parameters in the matrix will change according to the different
order of the polarization direction. The piezoelectric stress of piezoelectric ceramics adopted in this
paper is as follows:

e =



e31

e31

e33

e15

e15


=



−5.2
−5.2
15.1

12.7
12.7


. (16)

The arc piezoelectric material is polarized in radial direction, while the section of pipeline and
piezoelectric materials are defined as X-Y plane when modeling. Therefore, the matrix needs to
be transformed to the X-Direction polarized state. The final piezoelectric parameter matrix of the
piezoelectric material is thus shown below.

Elastic constant matrix (X-Direction polarized):

C =



c33 c13 c13 0 0 0
c13 c11 c12 0 0 0
c13 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c66 0
0 0 0 0 0 c44


=



11.5 7.43 7.43
7.43 13.9 7.78
7.43 7.78 13.9

2.56
3.06

2.56


× 1010. (17)

Dielectric constant matrix (X-Direction polarized):

ε = ε0εr = ε0


εr33

εr11

εr11

 =


5.61
3.27

3.27

× 10−9. (18)
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Piezoelectric stress constant matrix (X-Direction polarized):

e =



e33

e31

e31

e15

e15


=



15.1
−5.2
−5.2

12.7

12.7


. (19)

2.3. FEM Model of ACLD Patches

A pipeline with ACLD patch is modeled by the modeling sub-module in the preprocessing of
ANSYS, and the three-dimensional model of each layer structure is obtained by the CYLIND command.
The geometric model is shown in Figure 4. The uppermost layer is a piezoelectric constraint layer; the
middle layer is a viscoelastic layer; and the third one is the upper surface of a pipeline. The properties
of each layer are shown in Table 2.
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The adjacent surfaces of each layer structure are bonded to make it a whole using the bonding
command in ANSYS while giving different material properties to different bodies. The force and
deformation transfer between the layers can correspond with the actual situation. The meshing method
is carried out by sweeping command: the unit size is 0.001 mm. The finite element model shown in
Figure 5 consists of 60,034 nodes and 18,013 units.
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The viscoelastic layer and the pipeline are modeled using a Solid186 unit, which is a
three-dimensional solid structure with 20 nodes (each node have three translational degrees of
freedom UX, UY, UZ). Since the piezoelectric constraint layer is an electromechanical device, the unit
type must support the piezoelectric coupling analysis. The unit types that support coupled field
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analysis in ANSYS are Plane13, Solid5, Solid98 and so on. The Solid5 unit can be used to analyze
electric fields, magnetic fields, piezoelectric fields, structural fields, thermal fields and to form limited
coupling between fields. The Solid5 unit has 8 nodes while each node has 6 degrees of freedom. In this
research, 4 degrees of freedom are used, which are the translational degrees of freedom in the X, Y, and
Z axis (UX, UY, UZ) and VOLT degree of freedom.

Fixed constraints are applied at both ends of the pipeline. The upper and lower surfaces of the
piezoelectric constraint layer need to be applied with a voltage. Through the node coupling command,
the minimum node number is obtained. Then a voltage of 50 V is applied on the node. The boundary
conditions are shown in Figures 6 and 7.
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When the base of the installed pipeline vibrates, the vibration energy is transmitted to the pipeline
through the support. When the vibration frequency of the base is close to the modal frequency of the
pipeline, a large vibration of the tubular body is caused. The finite element analysis software is used to
analyze the transient response of the pipeline with the ACLD patches at the root, and the response of
the intermediate node of the pipeline is considered when different voltages are applied. The damping
performance of the ACLD patches is investigated.

By using a sinusoidal excitation of the piping system and extracting its frequency domain
response, the loss factor η or damping ratio ζ of the piping system can be identified using the half power
bandwidth method. The structural damping of the pipeline can be regarded as Rayleigh damping,

C = αM + βK, (20)

where, α and β are the Rayleigh damping coefficients and meet the equation below with the damping
ratio ζ of the pipeline.

α
2×ω0

+
βω0

2
= ζ, (21)

The Rayleigh damping coefficient calculated by Equation (21) is: α = 14.903, β = 2.4× 10−6.
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The selected pipeline structural parameters and material parameters are as Tables 1 and 3. The basic
excitation is applied to the entire pipeline structure, using a constant acceleration amplitude excitation,
a = 0.2 × g × sin(2×π× 375× t), the voltage on piezoelectric constraint layer is U = 0 V, and the
pipeline is fixed at both ends to constrain all node degrees of the end face of the pipeline. The integral
time step is ∆t = 0.000125s. The first load is a step load, and the subsequent loads are gradient loads.
The acceleration response curve of the node near the middle of the tube in the time domain is shown in
Figure 8. The applied excitation frequency is close to the first-order natural frequency of the pipeline at
the fixed boundary of both ends, thus resulting in the resonance of the pipeline.
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2.4. Experimental Validation of Active Constraint Layer Damping Treatment

The vibration control of the pipeline is implemented by the ACLD patches. The structural
parameters and control parameters of the active constraint layer damping will significantly affect the
vibration control effect. To verify the vibration damping performance of the active constraint layer
damping, a vibration control platform is set up as shown in Figure 9. The control system mainly
consists of a vibration control part and a vibration monitoring part.
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A diagram of a vibration control platform for a pipeline with ACLD patches is shown in Figure 10.



Appl. Sci. 2019, 9, 2094 10 of 18

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 18 

A diagram of a vibration control platform for a pipeline with ACLD patches is shown in Figure 
10. 

Controller

Signal 
collector

ACLD 
patches

Host 
computer

Voltage 
amplifier

Vibrostand 

Pipe

 

Figure 10. Diagram of experiment platform. 

The hardware of the vibration control platform mainly includes the following equipment: 

1. Vibrostand: Provide a sinusoidal excitation for the pipeline. Output excitation frequency range: 
5 to 5000 Hz. 

2. Sensors: The sensors used in this paper include acceleration sensors and piezoelectric ceramic 
sensors. 

3. Signal collector: (1) The voltage acquisition and output module comprise 16 voltage input 
channels and 2 output channels, wherein the input channel is used for feedback vibration 
response of the pipeline, the output channel is used for outputting control signals through the 
controller; (2) The acceleration acquisition module has 8 acceleration input channels to monitor 
the vibration of the pipeline. 

4. Controller: The controller is used as a lower computer to run the control program. The input 
vibration signal is computed to obtain the control voltage signal. The controller is a National 
Instruments PXI controller. 

5. Voltage amplifier: Amplify the control voltage signal outputted by the controller. The voltage 
amplification factor can be up to 15 times. The voltage signal input range is 0–10 V, and the no-
load full-scale bandwidth is 1000 Hz. 

The software the vibration control platform includes: vibration monitoring software and control 
software. The function of the vibration monitoring software is to collect, process, display and save 
the vibration response data of the pipeline. The vibration control software functions are: signal 
acquisition, signal filtering, signal processing, overload protection and signal output. 

Vibration monitoring software mainly consists of channel parameter setting, acceleration data 
acquisition, strain data acquisition and data storage. The channel name, sensor sensitivity, and 
sampling frequency of the data acquisition need to be set in the channel parameter setting part. The 
data acquisition part displays the time and frequency domain of the collected data. The data storage 
part names and saves the collected data files. Hardware timing single-point sampling is used as the 
voltage sampling mode. The hardware timing single-point sampling enables continuous sampling or 
sample generation. Unbuffered hardware timing sampling can eliminate the time delay caused by 
data buffering. 

The vibration control software mainly consists of channel parameter, sampling frequency 
setting, data filtering, control waveform adjustment, overload protection and data display. The 
voltage input/output channel name and the channel sampling frequency need to be set in the channel 
parameters setting part. Since the piezoelectric material is used as the sensor to collect the voltage, 

Figure 10. Diagram of experiment platform.

The hardware of the vibration control platform mainly includes the following equipment:

1. Vibrostand: Provide a sinusoidal excitation for the pipeline. Output excitation frequency range: 5
to 5000 Hz.

2. Sensors: The sensors used in this paper include acceleration sensors and piezoelectric ceramic
sensors.

3. Signal collector: (1) The voltage acquisition and output module comprise 16 voltage input channels
and 2 output channels, wherein the input channel is used for feedback vibration response of the
pipeline, the output channel is used for outputting control signals through the controller; (2) The
acceleration acquisition module has 8 acceleration input channels to monitor the vibration of
the pipeline.

4. Controller: The controller is used as a lower computer to run the control program. The input
vibration signal is computed to obtain the control voltage signal. The controller is a National
Instruments PXI controller.

5. Voltage amplifier: Amplify the control voltage signal outputted by the controller. The voltage
amplification factor can be up to 15 times. The voltage signal input range is 0–10 V, and the
no-load full-scale bandwidth is 1000 Hz.

The software the vibration control platform includes: vibration monitoring software and control
software. The function of the vibration monitoring software is to collect, process, display and save the
vibration response data of the pipeline. The vibration control software functions are: signal acquisition,
signal filtering, signal processing, overload protection and signal output.

Vibration monitoring software mainly consists of channel parameter setting, acceleration data
acquisition, strain data acquisition and data storage. The channel name, sensor sensitivity, and sampling
frequency of the data acquisition need to be set in the channel parameter setting part. The data acquisition
part displays the time and frequency domain of the collected data. The data storage part names and
saves the collected data files. Hardware timing single-point sampling is used as the voltage sampling
mode. The hardware timing single-point sampling enables continuous sampling or sample generation.
Unbuffered hardware timing sampling can eliminate the time delay caused by data buffering.

The vibration control software mainly consists of channel parameter, sampling frequency setting,
data filtering, control waveform adjustment, overload protection and data display. The voltage
input/output channel name and the channel sampling frequency need to be set in the channel
parameters setting part. Since the piezoelectric material is used as the sensor to collect the voltage,
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there is a common signal interference, so the collected data needs to be filtered. A waveform chart is
set on the front panel to display the collected data.

As is shown in Figure 11, the ACLD patches is adhered to the middle and root surface of the
pipeline, the piezoelectric sensor is adhered to the middle surface of the pipeline and is opposite to the
ACLD patches. Two ends of the pipeline are clamped through the fixed support.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 18 

there is a common signal interference, so the collected data needs to be filtered. A waveform chart is 
set on the front panel to display the collected data. 

As is shown in Figure 11, the ACLD patches is adhered to the middle and root surface of the 
pipeline, the piezoelectric sensor is adhered to the middle surface of the pipeline and is opposite to 
the ACLD patches. Two ends of the pipeline are clamped through the fixed support. 

ACLD patches

 
Figure 11. Layout of ACLD patches. 

3. Results and Discussion 

3.1. Influences on Shear Force Transmitted by Active Constraint Layer Damping 

According to the theoretical model in Section 2.1, when the frequency of the voltage applied to the 
ACLD is 375 Hz, the influence curve of the control voltage and the shear modulus of viscoelastic layer 
on the shear force transmitted by viscoelastic layer is shown in Figures 12 and 13. With the increase of 
the voltage amplitude and the shear modulus of the viscoelastic layer, the shear force transmitted by 
the viscoelastic layer increases linearly. 

Voltage 

Sh
ea

r f
or

ce

 
Figure 12. Influence of voltage on shear force. 

 Shear modulus

Sh
ea

r f
or

ce

 
Figure 13. Influence of the shear modulus on shear force. 

Figure 11. Layout of ACLD patches.

3. Results and Discussion

3.1. Influences on Shear Force Transmitted by Active Constraint Layer Damping

According to the theoretical model in Section 2.1, when the frequency of the voltage applied to the
ACLD is 375 Hz, the influence curve of the control voltage and the shear modulus of viscoelastic layer
on the shear force transmitted by viscoelastic layer is shown in Figures 12 and 13. With the increase of
the voltage amplitude and the shear modulus of the viscoelastic layer, the shear force transmitted by
the viscoelastic layer increases linearly.
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It can be derived from Equation (10) that the shear force FS transmitted by viscoelastic layer is
related to the piezoelectric constant and size of the piezoelectric constraint layer. The driving force of
the damping of the active constraint layer is affected by the elastic modulus of the viscoelastic layer
and its thickness. Therefore, in the process of structural design, to improve the driving force of the
active constraint layer damping, the width and length of the active constraint layer can be increased,
the thickness of the viscoelastic layer should be reduced, and the shear modulus of the viscoelastic
layer should be increased.

3.2. Results of the FEM-Based Damping Characteristics Analysis

A fixed constraint is applied at both ends of the finite element model of the active constrained
layer damping pipeline, and all nodes on both sides are selected to constrain all degrees of freedom of
the node. As shown in Table 4, through the modal analysis of the pipeline with ACLD treatment, the
first three natural frequencies and mode of vibration of the pipeline are obtained. The first three modes
of the pipeline of ACLD patches are bending, which is the same with for vibration mode of ordinary
hydraulic pipelines.

Table 4. Natural frequency of pipeline with ACLD patches.

Order of the Modals First Second Third

Natural frequency (Hz) 375.8 1049.2 1967.3
Mode of vibration Bending Bending Bending

Figure 14 shows the effect of shear modulus of different viscoelastic materials on the natural
frequency and modal loss factor of the pipeline. The shear modulus of the viscoelastic layer varies in
105–1010. As can be seen from the figure, the natural frequency does not change with the change of the
shear modulus; the loss factor varies greatly, especially the first and third orders. The loss factor shows
a peak at 108.
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Figure 15 shows the effect of the viscoelastic layer thickness on the natural frequency and loss
factor. As can be seen from the figure, as the thickness of the viscoelastic layer increases, the natural
frequency changes a small amount. The first-order loss factor and the third-order loss factor of the
pipeline both show a peak when the thickness of viscoelastic layer reaches 0.75 mm.
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3.3. Results of the FEM-Based Control Parameters Analysis

When the first-order bending vibration occurs in the pipeline with fixed support at both ends, the
stress on both ends of the pipeline is large, and failure will occur after a long period of time. Therefore,
it is considered that the ACLD patches are adhered to the place where the stress at the root of the pipe
reaches the maximum and its damping effect is evaluated. Different control voltages are applied on the
piezoelectric constraint layer to compare the damping performance of the ACLD patches. A constant
acceleration excitation of 0.2 g is applied on the pipeline, the acceleration response near the middle
node of the pipeline is extracted, and the results are shown in Figure 16.
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As can be seen from the above figure, when different control voltages are applied, the damping
effect of the ACLD patches will change. With the increase of the control voltage, the damping effect
becomes more obvious, as is shown in Table 5.

The above results show that with the increase of the control voltage, the acceleration response
decreases gradually. When the control voltage reaches 50 V, the acceleration response value decreases
by 56.93%; However, as the voltage increases, the acceleration response that can be reduced per unit
voltage becomes smaller. That is, under certain conditions, the effect of ACLD patches on vibration
reduction is limited.
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Table 5. Amplitude of acceleration response under different control voltages.

Control
Voltages

Amplitude of
Acceleration (g)

Droop
Rate (%)

Droop in Per Unit
Voltage (g/10 V)

0 V 29.8 0 NA
10 V 26.08 12.65 3.77
20 V 22.42 24.77 3.61
30 V 19.07 36.00 3.35
40 V 16.12 45.90 2.95
50 V 13.85 53.52 2.27

3.4. Measurement of Vibration Response under Different Excitations

Under the excitation of which the acceleration amplitudes are 0.1 g, 0.2 g and 0.3 g respectively,
a control voltage of 50 V is applied to the surface of ACLD patches. The excitation frequency of
the vibration is the first-order natural frequency of the pipeline. The vibration responses of the
pipeline under different excitation is collected by an acceleration sensor and is shown in Figures 17–19,
respectively. The amplitude of acceleration responses under different excitations are shown in Table 6.
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Table 6. Amplitude of the acceleration response under different excitations.

Amplitude of
Excitations (g)

Amplitude of
Acceleration Before

Vibration Control (g)

Acceleration
Amplitude After
Vibration Control (g)

Droop
Rate

0.1 6.581 2.755 58.14%
0.2 13.26 7.514 37.18%
0.3 18.38 12.28 33.19%

The vibration control responses of the pipeline under different excitations shows that as the
amplitude of the excitation increases, the peak value of the resonance response of the pipeline gradually
increases. When the same control voltage is applied to the surface of the ACLD patches, the vibration
control effect is gradually reduced. When the excitation is 0.1 g, the resonance peak of the pipeline can
be decreased by 58.14%. When the base excitation is 0.3 g, the resonance peak of the pipeline can be
decreased by 33.19%. Therefore, it is necessary to realize that the damping effect of the ACLD patches
is limited under certain conditions due to the limitation of the hardware and control strategy.

To investigate the influence of the piezoelectric material on the vibration control effect, a control
voltage is applied to different numbers of piezoelectric ceramics. The excitation amplitude is 0.3 g and
the amplitude of voltage is 50 V. The vibration control response curve shown in Figure 20 is obtained.
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of ACLD patches.

Figure 20 shows that under the different number of ACLD patches, the performance of vibration
control is different. With the increase of the number of ACLD patches, the amplitude of vibration
acceleration response decreases gradually.
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4. Conclusions

Through experimentally and theoretically analysis, the following conclusions can be drawn:

(1) The force analysis of the pipeline with ACLD patches under the harmonic voltage shows that
the driving force is correlated with the piezoelectric constant of the active constraint layer, the
control voltage, the shear modulus and thickness of the viscoelastic layer. The driving force
transmitted by the viscoelastic layer increases as the shear modulus increases or the thickness
decreases, but the modal loss factor of the system exhibits a peak when the shear modulus reaches
108 or the thickness reaches 0.75 mm for the VEM used in this research. Therefore, the optimal
viscoelastic layer shear modulus and thickness can be selected to obtain the best performance of
ACLD treatment.

(2) Through the finite element analysis and experiment, the effectiveness of the ACLD patches for
the vibration control of the pipeline is verified, and the damping effect reaches up to the highest
being 58.14% when the amplitude of excitations is 0.1 g and decline with the growth of the
excitation amplitude. The structure parameters and control parameters of the ACLD patches
have a significant influence on the damping performance. The damping effect increases with the
increase of the control voltage and coverage area.

(3) Under the given excitation, it is effective to increase the coverage area of the ACLD patches and
improve the amplitude of the control voltage to get a better vibration control effect. However, as
the voltage increases, the acceleration response that can be reduced per unit voltage becomes
smaller under the same excitation. Also, as the amplitude of the excitation increases, the control
effect under the same voltage is gradually reduced. That is, under certain conditions, the effect of
ACLD patches on vibration control is limited.

The research on the vibration control of aero pipeline system using ACLD treatment needs further
study, mainly in the following aspects:

(1) Due to limited time and energy, there is a lack of more in-depth research on research issues, and
some theoretical and applied issues need further analysis. For example, the effects of pulsating
pressure on vibration in actual conditions are not considered in the paper during the modeling
and experimentation steps.

(2) In the ACLD structure, the constitutive relationship of viscoelastic materials is greatly affected
by the ambient temperature and vibration frequency. Therefore, the search for a reasonable
description of the constitutive relationship of viscoelastic materials still needs to be studied.

(3) The research on the control method of ACLD structure is still insufficient. The PID control
currently used is too simple. Therefore, it is necessary to develop and study more suitable control
methods, especially robust control, adaptive control and intelligent control, to overcome and
solve the uncertainty and change affecting the model.
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