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Abstract: In this paper, we propose a numerical approach to simulate the degree of coherence (DOC)
of a partially coherent beam (PCB) with a Schell-model correlator in any transverse plane during
propagation. The approach is applicable for PCBs whose initial intensity distribution and DOC
distribution are non-Gaussian functions, even for beams for which it is impossible to obtain an
analytical expression for the cross-spectral density (CSD) function. Based on our approach, numerical
examples for the distribution of the DOC of two types of PCBs are presented. One type is the partially
coherent Hermite–Gaussian beam. The simulation results of the DOC agree well with those calculated
from the analytical formula. The other type of PCB is the one for which it is impossible to obtain
an analytical expression of CSD. The evolution of the DOC with the propagation distance and in
the far field is studied in detail. Our numerical approach may find potential applications in optical
encryption and information transfer.

Keywords: partially coherent beam; degree of coherence; numerical approach; free-space propagation

1. Introduction

Over the past decades, partially coherent beams (PCBs) have attracted wide attention due to
their important applications, such as particle trapping/manipulation, wide-field optical coherence
tomography, laser material processing, optical metrology, 3D imaging and, so on [1–9]. Generally, PCBs
are characterized by the so-called cross-spectral density (CSD) function in the space–frequency domain
or mutual coherence function (MCF) in the space–time domain, and the coherence characteristics of
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PCBs are described by the degree of coherence (DOC) which can be obtained from the CSD function
or the MCF. It is known that the DOC plays a central role in determining the beam propagation
characteristics, image resolution, and effects of interaction with matter [10–14]. However, most studies
are focused on the PCBs whose DOCs are of Gaussian function because it is a hard task to devise a
physically realizable CSD function with arbitrary DOC. Recently, Gori and co-workers proposed a
sufficient condition for mathematically devising a genuine CSD function [15,16]. Since then, researchers
have turned their attention to study PCBs with special DOCs (non-Gaussian function) [17–21]. Owing to
their special DOCs, these beams exhibit peculiar propagation features even in free space. For example,
a non-uniformly correlated (NUC) beam displays “self-focusing” and lateral shift of intensity maxima
during free-space propagation [17]. The multi-Gaussian-correlated beam and Laguerre–Gaussian
(LG)-correlated beam will produce a flat-topped beam profile and ring-shaped beam profile in the far
field, respectively [18,19]. In addition, the DOCs may carry the information of the beam itself or of
the object with which the PCBs interact [22]. For example, by measuring the far-field DOC [23], the
azimuthal and radial mode orders of a partially coherent LGpl beam can be determined. In [14], the
authors point out that, when a PCB is obstructed by an opaque obstacle, its DOC can self-reconstruct.
In addition, several methods have been proposed to experimentally generate the prescribed DOC
of a PCB, for example by using a spatial light modulator, intra-cavity modulation and a deformable
mirror, etc. [24–27]. However, the aforementioned studies are confined to PCBs whose initial intensity
distributions have a Gaussian function.

On the other hand, PCBs with both initial non-Gaussian beam profiles and DOCs have also
received considerable attention in recent years [28–34]. In the following text, we use the term general
PCBs (GPCBs) to include a class of PCBs with non-Gaussian amplitudes and DOCs. Through controlling
the DOCs and beam profiles in the source plane simultaneously, GPCBs can generate a far-field beam
array with controllable forms [32,33], and the profile of each beamlet in the array is also adjustable,
making them ideal sources for particle trapping and manipulation. Nevertheless, in these studies, the
evolution properties of the DOC during propagation were neglected. Though other studies [35,36]
presented the reciprocity relation between the initial beam profile and the DOC in the far filed, this is
only applicable for special kinds of GPCBs, known as quasi-homogeneous beams. In such beams, the
variation of the DOCs with the spatial point r is much faster than that of intensity distribution with r.
Up to now, only few papers have dealt with the evolution of the DOCs during GPCBs passage through
free space or paraxial optical systems, especially for those beams whose DOCs or initial intensity
distributions are impossible to obtain using an analytical expression.

In this paper, we propose a numerical approach for calculating the DOC of a GPCB in any
transverse plane perpendicular to the propagation axis during propagation in free space or paraxial
optical systems. In this approach, we introduce white noises [37–39] into the convolution approach [40]
to generate speckle patterns in any transverse plane of propagation. Then, the DOC is retrieved
from the fourth-order correlation function of the speckle patterns. On the basis of this approach,
we investigate the effects of source intensity distribution and coherence width on the DOC during
propagation in free space through several numerical examples.

2. Theory

Let us consider a scalar, quasi-monochromatic, and statistically stationary optical beam,
propagating along the z-direction. In the space–frequency domain, the second-order statistics of such
GPCB are typically characterized by the CSD function W(ρ1,ρ2, z) =

〈
E∗(ρ1, z)E(ρ2, z)

〉
, where E

denotes the random electric field, ρ1 and ρ2 are two arbitrary position vectors in the transverse plane,
the asterisk is the complex conjugate, and the angular brackets is the ensemble average over the field
fluctuations. Assume that the GPCB we consider is a Schell-model beam whose DOC function is only
dependent on the separation of two points. In this situation, the CSD function in the source plane (z =

0) can be written as [15,16]
W0(r1, r2) = τ0(r1)τ

∗

0(r2)µ0(r1 − r2), (1)
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where r1 and r2 are two arbitrary position vectors in the source plane, τ0 is a complex amplitude
function, and µ0 is the DOC function. For a physically realizable CSD function, the DOC can be
alternatively represented the following integral form [19]

µ0(r1 − r2) =

∫
Ws(v1, v2) exp[−i2π(r1 − r2) · v]d2v, (2)

with
Ws(v1, v2) =

√
p(v1)

√
p(v2)δ(v1 − v2). (3)

The function p(v) in Equation (3) must be non-negative for any v to ensure that the CSD is genuine;
δ denotes the Dirac function. In order to introduce our numerical approach, we rewrite the δ function
in the follow form

δ(v1 − v2) =
〈
Cn(v1)C∗n(v2)

〉
, (4)

where Cn(v) (n = 1, 2, 3, . . . ) denotes the random complex function whose probability density functions
of amplitude and phase of Cn obey the negative exponent and uniform distribution, respectively [39].
The angular bracket denotes the ensemble average. Here, Cn(v) can be viewed as the field of the
white noise.

By substituting Equation (4) into Equations (1)–(3) and after some mathematical operations,
Equation (1) turns out to be

W0(r1, r2) =
〈
Tn0(r1)T∗n0(r2)

〉
≈

1
N

N∑
n0=1

Tn0(r1)T∗n0(r2), (5)

with
Tn0(ri) = τ0(ri) × FT

[√
p(ri)Cn(ri)

]
, i = 1, 2. (6)

where FT stands for the symbol of Fourier transform, Tn0 (r) (n = 1, 2, 3 . . . ) denotes the instantaneous
electric fields, each of which represents one realization of a GPCB. In Equation (5), we use the
incoherent superposition of instantaneous random realizations instead of ensemble averaging over the
random fields, since we assume the beam is statistically stationary. If the number of realizations N
is large enough, the incoherent realization superposition is a good approximation. The first term τ0

in Equation (6) is the complex amplitude, as we described above, and the second term contains the
information of the DOC of the source. To synthesize the realization of Tn0 (r) numerically, one can use
commercial software such as MATLAB to generate the random complex function Cn and then take the
Fourier transform of the product of the function Cn and the square root of the p(v) function. Finally, one
instantaneous electric filed is acquired by multiplying the Fourier result by the function τ0. Note that
the DOC is determined by the function p(v) in the simulation. Once each instantaneous electric field in
the source plane is known, the relation between such fields in the source plane and in the output plane
passing through a paraxial ABCD optical system is linked to the Collins integral formula, given by

Tnz(ρ) =
(
−

i
λB

)∫
Tn0(r) exp

[
ik
2B

(
Ar2
− 2ρ · r + Dρ2

)]
d2r, (7)

where k = 2π/λ is the wavenumber associated with λ, which is the wavelength of the light, and ρ

denotes the arbitrary position vector in the output plane. A, B, D are the elements of the transfer matrix
of an optical system. On Substituting Equation (6) into (7), we obtain the expression

Tnz(ρ) =
(
−

i
λB

)
exp

(
ikDρ2

2B

)∫
FT

[√
p(r)Cn(r)

]
τ0(r) exp

(
ikAr2

2B

)
× exp

(
ikρ·r

B

)
d2r. (8)
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After some rearrangement, Equation (8) can be written in the simple convolution form

Tnz(ρ) =
(
−

i
λB

)
exp

(
ikDρ2

2B

)(√
pCn

)
⊗ Ũ

(
−

ρ

λB

)
, (9)

where Ũ is the inverse Fourier transform of the new defined function U(r) = τ0(r) exp
(
ikAr2/2B

)
,

and ⊗ denotes the convolution symbol. Equation (9) establishes the relation of an instantaneous field
between the source plane and the output plane with the convolution form, which is the main result of
this paper. It provides one convenient way to simulate the second-order statistics of a GPCB in the
output plane.

Here, we describe the method for numerical simulating the instantaneous electric field Tnz(ρ)

using MATLAB. It follows from Equation (9) that the key point is to calculate the convolution term(√
pCn

)
⊗ Ũ. According to the convolution theorem, such term can be expressed as F−1

T

[
U × FT

(√
pCn

)]
,

where F−1
T denotes the symbol for inverse Fourier transform. The operations for the F−1

T and FT in
MATLAB are based on the fast Fourier transform (FFT) algorithm. In numerical simulation, each
realization of any function is represented as a matrix with N1 × N1 number of elements. We first
assume the function U has the physical dimensions L × L, where L is the length of the coordinate. The
corresponding coordinate r = (x, y) for x or y is from −L/2 to L/2 with step L/N1. In order to match the
coordinate (x, y), the function p (related to the DOC) must sample in the spatial frequency domain
having dimensions N1/L ×N1/L, and the corresponding coordinate fx or fy is from −N1/2L to N1/2L, with
step 1/L [41]. The random complex function Cn is generated by [randn(N1) + i × randn(N1)]/sqrt(2),
where randn(N1) is the build-in function returning the N1 × N1 matrix consisting of random numbers
of normal distribution. Then, the Fourier transform function

√
pCn is multiplied by the function U,

and, finally, Tnz(ρ) is obtained by multiplying the inverse transform of the above results U × FT

(√
pCn

)
by the coefficient before the convolution shown in Equation (9). The corresponding coordinates for ρx

or ρy in the out plane will be from −λBN1/2L to λBN1/2L, with step λB/L [41].
According to Equation (9), the average spectral density is calculated by the following formula

Sz(ρ) =
N∑

n=1

Snz(ρ)/N, (10)

where Snz(ρ) = T∗nz(ρ)Tnz(ρ) is the instantaneous spectral density (one realization).
In order to evaluate the DOC, we first calculate the normalized intensity correlation (fourth-order

correlation function) between points ρ1 and ρ2, i.e.,

g(2)(ρ1,ρ2) =

N∑
n=1

Snz(ρ1)Snz(ρ2)

NSz(ρ1)Sz(ρ2)
. (11)

By applying the Gaussian moment theorem [1], the modulus of square of the DOC can be extracted
from the normalized intensity correlation function, given by∣∣∣µz(ρ1,ρ2)

∣∣∣2 = g(2)(ρ1,ρ2) − 1. (12)

It follows from Equation (12) that one can numerically calculate the DOC in the output plane from
the normalized intensity correlation function. Note that Equation (12) is only valid for the GPCBs with
a Schell-model type. Hence, the DOC is only a function of the separation of two points ρ1 and ρ2, i.e.,
µz(ρ1,ρ2) = µz(ρ2 − ρ1).
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3. Simulation Results

In this section, to demonstrate the validity for the numerical approach, we first compare the results
for the DOC obtained with our numerical approach with those derived from an analytical expression.
Then, we present numerical examples for the evolution of the DOC with the propagation distance,
using our numerical method. In this numerical case, it is impossible to obtain the analytical expression
of the GPCB during propagation. In the following simulation, the number of elements N1 × N1 and N
are chosen to be 512 × 512 and 104, respectively. Under this circumstance, it takes about 3.7 min for each
plot. The computer is from Dell, Texas, USA, whose configurations used in the simulation are i7-8700
CPU @ 3.2GHz and 16GB RAM. Here, we want to stress that the advantage of our numerical approach
is that it can deal with partially coherent beams that cannot be described by an analytical expression.

In order to demonstrate the validity of our simulation method, a typical Schell-model beam,
named a partially coherent elegant Hermite–Gaussian (PCEHG) beam [42], is used to compare the
evolution of DOC from the analytical results with that from the simulation results. The CSD function
of the PCEHG beam in the source plane is expressed as

W0(r1, r2) = τ0(r1)τ∗0(r2)µ0(r1 − r2)

= Hn
( x1
ω0

)
Hm

( y1
ω0

)
Hn

( x2
ω0

)
Hm

( y2
ω0

)
× exp

(
−

r2
1+r2

2
ω2

0

)
exp

(
−
|r1−r2 |

2

2σ2
g

)
.

(13)

Hn is the Hermite polynomial of order n, ω0 and σg are the beam waist size and the transverse
coherence width, respectively. The analytical expression for the CSD function of the PCEHG beam at
distance z in free-space propagation can be found in [42] (see Equation (17) in [42], where the elements
of the transfer matrix are A = 1, B = z, and D = 1). Figure 1a1–e1 illustrates the evolution of the modulus
of the square of the DOC with the propagation distance in free space calculated from the analytical
formula. The beam parameters in the calculation are chosen to be n = 2, m = 0, λ = 532nm, ω0 = 1 mm,
and σg = 1 mm. For comparison, the corresponding results attained by our numerical approach are
shown in Figure 1a2–e2. It can be seen that the simulation results agree reasonably well with those
obtained from the analytical formula, implying that our method is valid and effective in simulating the
evolution of the DOC during propagation.
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Figure 1. Evolution of the square of the modulus of the degree of coherence of the partially coherent
elegant Hermite–Gaussian beam with the propagation distance in free space. (a1–e1) Results obtained
from the analytical formula; (a2–e2) the corresponding results obtained using our numerical approach.

As we state in Section 2, the advantage of the numerical approach is that it can deal with the
evolution of the DOC of a GPCB whose CSD function during propagation is impossible to acquire
by an analytical expression. In the following example, we assume that the function p(v) (Fourier
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transform of the DOC) is a soccer pattern, as shown in Figure 2a; the corresponding modulus of the
square of the DOC is plotted in Figure 2c. The initial amplitude function τ0 we choose is the elegant
Hermite–Gaussian distribution, as follows

τ0(x, y) = Hn(x/ω0)Hm(y/ω0) exp
[
−

(
x2 + y2

)
/ω2

0

]
. (14)
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Figure 2. (a) Soccer pattern as a function of p(v); (b) intensity distribution I0 = |τ0|
2 of the

Hermite–Gaussian beam with n = 2, m = 0 in the source plane; (c) modulus of the square of the
source degree of coherence, (d) modulus of the square of the Fourier transform of I0. The Fourier
transform was performed by FFT in MATLAB.

Figure 2b,d presents the source intensity distribution of such GPCB and its modulus of the square
of the Fourier transform, respectively. The relevant parameters are set as n = 2, m = 0, ω0 = 1mm, and
λ = 532nm. If the source beam is assumed to be a quasi-homogeneous planar source [1,35,36], then,
Figure 2d can be treated as the modulus of the square of the DOC in the far field.

Before presenting the simulation results, we want to determine the relationship between the
initial coherence width and the size of the soccer pattern. As stated in [1,10,43], the source transverse
coherence width is inversely proportional to the size of the function of p. Here, we assume that the
transverse coherence width is δ0 = 1/l where l denotes the size of the distribution of p(v) (radius of the
soccer).

Figure 3 presents the simulation results of the DOC of the GPCB with different initial coherence
width at several propagation distances. The parameters used in the simulation are n = 2, m = 0,
ω0 = 1 mm, and λ = 532 nm. One can see that the DOC pattern can keep the profile similar to that in
the source plane (see in Figure 2c), in a range from z = 0 to certain propagation distances, but this range
is closely dependent on the initial coherence width. When the coherence width is large (δ0 = 0.64 nm),
the DOC can keep its profile invariant at about 0.7 m (see Figure 3a3–c3]. In the case of δ0 = 0.32 nm,
the profile of the DOC changes much faster compared to that in the case for δ0 = 0.64 nm and evolves
into a shape similar to that in the far field at distance z = 1.0 m (see Figures 2d and 3d1).
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Figure 3. Evolution of the modulus of the square of the degree of coherence of a general partially
coherent beam with three different initial transverse coherences propagating in free space. The values
of the initial coherence width δ0 in the first (a1–d1), second (a2–d2), and third (a3–d3) rows are 0.32 mm,
0.48 mm, and 0.64 mm, respectively. With the increase of δ0, the degree of coherence distribution
remains invariant for a longer distance.

Let us now turn our attention on the influence of the initial coherence width on the DOC pattern
of such GPCB in the far field. Figure 4a–c shows our numerical simulations of the DOC distributions
at propagation distance z = 1000 m (far field) with different values of coherence width. The simulation
parameters are the same as those used in Figure 3. For the case of δ0 = 0.32 nm (see Figure 4a), the
DOC pattern is similar to that shown in Figure 2d, implying that the beam can be be considered as a
quasi-homogeneous beam whose DOC in the far field is the Fourier transform of the source intensity
distribution, independent of the DOC in the source plane. As the initial coherence width increases,
the effects of the source DOC gradually appear. In this situation, the DOC pattern is determined by
both the intensity distribution and the DOC function in the source plane. As the coherence width
increases, the area of the side lobes becomes large. The enlargement of the side lobes in Figure 4b,c can
be explained by the fact that, as the coherence width increases, the globe coherence in our calculation
area, which is 2.0 mm × 2.0 mm, increases. As a result, the side lobes are enlarged in the high-coherence
case (see in Figure 4b,c) compared with the low-coherence case (see in Figure 4a). It is also found that
the distributions of the DOC in Figure 4 are left–right asymmetric, which may be caused by the fact
that the p function (related to the DOC) has a slight left–right asymmetry, as shown in Figure 2a. To
confirm our results, we choose as a circular function a p function, which is exactly circularly symmetric.
The expression for a circular function is given by

p(v) =
{

1, |v| ≤ l
0, |v| > l

(15)

where l is the radius of soccer defined previously. Figure 4d–f presents the corresponding numerical
simulations of the DOC distributions at distance z = 1000 with the corresponding coherence width.
The p function is shown in Equation (15). One can see that the intensities of the side lobes in the left
side and the right side are the same.
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Figure 4. Density plots of the modulus of the square of the degree of coherence of a general partially
coherent beam at a propagation distance z = 1000 m, with the initial coherence width δ0 = 0.32 mm in
(a,d), δ0 = 2.35 mm in (b,e), and δ0 = 4.8 mm in (c,f). The p function used in (a–c) is the soccer patter
shown in Figure 2a, and the p function used in (d–f) is the circular function shown in Equation (15).

4. Conclusions

In summary, we have introduced a numerical approach to calculate the DOC distribution of
a Schell-model type GPCB in any transverse plane perpendicular to the propagation axis during
free-space propagation. This method first represents the GPCB as a sequence of random electric fields
by introducing white noises into it. In this representation, each realization of random fields obeys the
propagation law described by Huygens–Fresnel integral formula. Then, we use a convolution approach
to obtain the corresponding realization of random fields in the output plane. At last, the information
on DOC is acquired through evaluating the fourth-order correlation function of random fields in
the output plane. The prominent advantage of this numerical approach is that it can conveniently
calculate the DOC of any partially coherent Schell-mode beam, even when it is impossible to obtain
using analytical expressions for the CSD function. Two numerical examples of the evolution of DOCs
for two types of GPCBs with propagation distance were investigated in detail. One demonstrated
that our approach is valid, by comparing our results with those obtained with the analytical formula.
The other example showed the influence of the initial field amplitude and correlation function on the
evolution of the DOC. The analytical formula for the CSD function cannot be applied to the beam
in the second example. Our method can also deal with the DOC of a GPCB propagation through a
paraxial ABCD optical system or atmospheric turbulence. We believe that this numerical approach
may find applications in optical communication and optical encryption.
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