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Abstract: The energy management strategy has a great influence on the fuel economy of hybrid electric
vehicles, and the equivalent consumption minimization strategy (ECMS) has proved to be a useful
tool for the real-time optimal control of Hybrid Electric Vehicles (HEVs). However, the adaptation of
the equivalent factor poses a major challenge in order to obtain optimal fuel consumption as well
as robustness to varying driving cycles. In this paper, an adaptive-ECMS based on driving pattern
recognition (DPR) is established for hybrid electric vehicles with continuously variable transmission.
The learning vector quantization (LVQ) neural network model was adopted for the on-line DPR
algorithm. The influence of the battery state of charge (SOC) on the optimal equivalent factor was
studied under different driving patterns. On this basis, a method of adaptation of the equivalent
factor was proposed by considering the type of driving pattern and the battery SOC. Besides that,
in order to enhance drivability, penalty terms were introduced to constrain frequent engine on/off

events and large variations of the continuously variable transmission (CVT) speed ratio. Simulation
results showed that the proposed method efficiently improved the equivalent fuel consumption with
charge-sustaining operations and also took into account driving comfort.

Keywords: hybrid electric vehicle; continuously variable transmission; driving pattern recognition;
adaptive-ECMS; learning vector quantization

1. Introduction

Hybrid electric vehicles adopt multiple power sources to drive vehicles to improve fuel economy
and reduce pollutant emissions. The energy management strategy (EMS) greatly impacts the fuel
economy by controlling the power distribution among the power sources [1,2].

Global optimization methods such as dynamic programming (DP), genetic algorithm (GA), and
simulated annealing (SA) are widely used to solve the optimal energy management problem over a
finite horizon [3–5]. Major disadvantages of these numerical methods are the computational burden
and the need to know the driving cycle in advance in order to calculate the required power at the wheels.
Therefore, it is not applicable in an actual controller. To tackle this problem, based on Pontryagin’s
minimum principle, Paganelli et al. [6] first proposed the equivalent consumption minimization
strategy (ECMS). The equivalent factor has a great influence on the results of ECMS and the constraint
on the battery state of charge (SOC), and it varies with different driving cycles. In order to enhance
robustness to varying driving cycles, Musardo et al. [7] proposed a method by adding an on-the-fly
algorithm for the estimation of the equivalent factor to the original ECMS framework, so that the
SOC is maintained within the boundaries and the fuel consumption is minimized. Ambuhl et al. [8]
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employed a penalty function, and the equivalent factor was continuously estimated as a function of
SOC deviations. In some studies, total fuel consumption was regarded as a function of the equivalent
factor, and the control parameters under optimal fuel economy could be calculated by using systematic
methods for given driving cycles [9,10]. In [11], the piecewise correction coefficient was used to
penalize SOC variations, which was updated by a period of historical driving data.

The abovementioned methods usually adopted fixed initial conditions while neglecting the
influence of complex driving conditions on the performance of the EMS, thus often leading to
suboptimal results. In order to improve the flexibility of the controller, it is necessary to periodically
recognize the driving pattern and update the control parameters accordingly [12]. Typically, a learning
vector quantization (LVQ) neural network model can be well suited for realizing the on-line driving
pattern recognition (DPR) through calculating the Euclidean distances [13]. In [14], based on the sample
database of several standard driving cycles, the representative feature parameters were obtained by
principal component analysis (PCA), and a real-time DPR algorithm was established by using an LVQ
neural network model. The optimized control parameters were then periodically updated according to
the driving pattern. A comprehensive review of DPR-based control algorithms can be found in [15].
In addition, the DPR algorithm can be incorporated into an adaptive-ECMS (A-ECMS) controller for
on-line estimation of the equivalent factor. In [16], an A-ECMS based on DPR was proposed, and a
reasonable time window of historical driving data for the DPR algorithm was determined. In [17],
the standard driving cycles were classified by K-means clustering, and the nominal equivalent factor
was periodically updated by a mean equivalent factor of the selected driving class. A similar method
can be found in [18], in which fuzzy rules were adopted for driving cycle classification, and each
driving pattern was represented by the optimal equivalent factor of a typical standard cycle in the
driving class. These methods have shown promising results for on-line implementation of the ECMS;
however, they ignore the influence of the SOC on the estimation of the equivalent factor. In fact, the
initial SOC and the subtle change of the equivalent factor are very sensitive to the SOC balance [19].
In this paper, a novel adaptation method of the equivalent factor is proposed by considering the type
of driving pattern and the battery SOC to improve fuel economy.

In real-time application of the optimization method, if the fuel economy is the only criterion,
results will lead to poor drivability [20,21]. Previous research on the multiobjective optimization of
fuel economy and drivability mainly focused on the frequent engine on and off events, gear shifting,
and improving the engine torque reserve [22–24]. Since the speed ratio changes continuously in a
continuously variable transmission (CVT), driving problems caused by an automatic transmission
can be avoided to a large extent. However, a large variation of the speed ratio will cause an abrupt
change of the speed at the CVT output shaft, resulting in negative dynamics [25]. Usually, an optimal
speed ratio trajectory can be obtained by using global optimization methods; then, the speed ratio is
controlled by a feedforward controller or static look-up tables [26]. In this paper, penalty terms are
incorporated into the cost function to enhance drivability.

The remainder of this paper is constructed as follows: in Section 2, a forward-facing model of a
typical CVT-based hybrid electric vehicle is established. In Section 3, toward the real-time application of
the A-ECMS, first, drivability problems caused by the single-criterion cost function for the CVT-based
hybrid electric vehicle (HEV) are analyzed, and penalty terms are incorporated into the cost function
to enhance drivability. Second, based on the real-time DPR algorithm, a novel adaptation method of
the equivalent factor is proposed. In Section 4, a random test cycle is used to validate the effectiveness
of the proposed method. Finally, conclusions are given in Section 5.

2. HEV Powertrain Modeling

2.1. Vehicle Configuration

The structure of the CVT-based parallel hybrid electric vehicle studied in this paper is shown in
Figure 1. In this system, an integrated starter/generator (ISG) is powered by a Li-ion battery pack
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and connected to the engine crankshaft through a disc clutch. The torque converter in a conventional
CVT is removed, and the clutch is installed inside the rotor of the ISG. An electric oil pump (EOP) is
employed in order to meet the pressure and flow demand of the CVT hydraulic system under electric
driving mode. Driving mode transition is realized by controlling the working state of the engine, ISG,
and clutch. The vehicle parameters are shown in Table 1.
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Table 1. Vehicle Parameters.

Parameter Value

Vehicle mass (kg) 1500
Engine placement (L) 1.5

Engine max. power (kW) 78
Integrated starter/generator (ISG) max. power (kW) 26

Battery energy capacity (Ah) 6
Electric oil pump (EOP) motor max. power (kW) 2.5

Speed ratio range of the continuously variable transmission (-) 0.44–2.43

2.2. Vehicle Model

According to physical causality principles, two different modeling approaches can be used:
forward- or backward-facing modeling. In the backward-facing model, the required torque at the
wheel is calculated backwards through the driveline until the outputs of the components in the
system are obtained. This method is usually adopted to design high-level control strategies. In the
forward-facing model, based on the feedback of the actual vehicle speed, a driver model is adopted
to generate the control signals of the acceleration and the brake pedals. These signals are received
by the vehicle control units (VCUs), and the optimal torque split is computed. Then, the energy
consumption of the power sources can be calculated. This method serves as the platform of design and
calibration of real-time control strategies. In this study, a forward-facing simulator was developed in
the Matlab/Simulink environment.

For the single-shaft parallel hybrid system described above, the power demand of the vehicle
is satisfied by the sum of the output power of the engine and the ISG, and the demanded power to
propel the vehicle can be calculated as

Preq =
(1

2
ρCDAv2 + mg(sinα+ fr cosα) + m

.
v
)
· v (1)

where ρ is the air density, CD is the drag coefficient of wind, A is the frontal area, m is the total mass of
the vehicle, α is the road slope, v is the vehicle speed, and fr is the rolling resistance coefficient.
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2.2.1. Engine

The engine was modeled as static look-up tables, and data were obtained through bench tests.
Fuel flow rate is a function of the engine speed and output torque:

.
m f (t) = f (TEng(t),ωEng(t)).

The engine output power can be calculated by

PEng = LHV ·
.

m f · ηEng (2)

where LHV is the lower heating value of the fuel, and ηEng is the mechanical efficiency of the engine.

2.2.2. ISG

A permanent magnet synchronous motor (PMSM) was adopted in this research, and the lumped
efficiency of the system was obtained through bench tests. The speed of the ISG is proportional to the
wheel speed and can be calculated as

ωISG = ωwh · iFD · iCVT (3)

where iCVT and iFD represent the speed ratio of the CVT and the final drive, respectively. The output
torque of the ISG is confined by the maximum torque available and the output power of the battery,
and the ISG output power can be calculated as

PISG = TISG ·ωISG · η
k
ISG(TISG,ωISG). (4)

when k = 1/ − 1, the ISG works as a generator/motor.

2.2.3. CVT

The CVT employs an electric oil pump to decouple the flow of the oil pump from the engine
speed, which can reduce the energy consumption of the oil pump better than a mechanical oil pump.
CVT mechanical efficiency is a function of the speed ratio, input speed, and torque:

ηCVT = f (ωin, Tin, iCVT). (5)

The required power by the EOP drive motor can be calculated as

PEOP,mot = Ppump,req/(ηpump · ηEOP,mot) (6)

where ηpump and ηEOP,mot represent the efficiencies of the oil pump and the drive motor, respectively.
PEOP,req is the power demand of the oil pump, which can be calculated as

Ppump = Phyd ·Qhyd/60 (7)

where Phyd is the required pressure of the hydraulic system, Qhyd is the flow of the hydraulic system,
determined by the flow demand for speed ratio control, cooling, lubrication, and leakage.

2.2.4. Battery

The battery is modeled as a static equivalent circuit as described in [19], which is considered as a
series structure of an ideal voltage source and internal resistance. The current can be calculated as

Ibat =
Uoc −

√
U2

oc − 4RintPbat

2Rint
(8)
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where Uoc and Rint represent the open circuit voltage and the internal resistance of the battery,
respectively, Pbat is the power of the battery and is determined by the sum of the power demand of the
ISG and the EOP drive motor. The value of Ibat is positive during discharging and negative during
charging. The battery SOC can be derived using ampere-hour integration:

SOC(t) = SOCinit −
1

Cnom

∫ t

0
Ibat(τ)dτ (9)

where SOCinit is the initial SOC, and Cnom is the nominated capacity of the battery pack.

3. A-ECMS Based on Driving Pattern Recognition

3.1. ECMS and SOC Management

The optimal control problem in terms of fuel economy can be stated as follows: for a given driving
cycle, find the optimal control sequence u∗ ∈ U in the admissible control set to minimize the total fuel
consumption:

J = φ f (x(t f )) +

∫ t f

t0

.
m f (x, u, t)dt (10)

s.t.


.
x(t) = f (x, u, t)

x(t0) = x0

x(t) ∈ X,∀t > 0
u(t) ∈ U,∀t > 0

(11)

where
.

m f is the fuel flow rate, and φ f (x(t f )) represents a constraint on the final state. For a CVT-based
HEV, the battery SOC is chosen as the only state variable, xt = SOC(t). The control variables are the
CVT speed ratio and the torque split factor between the engine and ISG motor:

u(t) =
{

iCVT(t)
SF(t)

}
. (12)

With respect to the real-time optimal control problem with state and control variable constraints,
according to Pontryagin’s minimum principle, for each time instant, the minimization of the cost
function (10) is equivalent to minimizing the following Hamiltonian function:

H(x, u,λ, t) =
.

m f (u(t), t) + λ(t) · S
.

OC(t) (13)

where S
.

OC(t) can be derived by Equation (9), andλ(t) is the adjoint state, defined by the Euler–Lagrange
equation:

.
λ(t) = −

∂H(x, u,λ, t)
∂x

. (14)

The instantaneous cost function is to minimize the sum of the fuel consumption of the engine and
the equivalent fuel consumption of the ISG, H =

.
m f (t) +

.
m f ,bat,eq(t). Define the equivalent factor s(t)

for balancing fuel and battery power consumption as

s(t) = −λ(t)
LHV

Cnom ·Uoc
. (15)

The equivalent fuel consumption can be calculated as

.
m f ,bat,eq(t) = s(t)

Pbat
LHV

. (16)
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Conmmonly, a pair of equivalent factors (schg, sdis) can be defined according to charge and discharge
of the battery, and a more accurate result of the fuel consumption can be expected. However, this also
leads to a bidimensional problem, which burdens the computational cost. In fact, research shows that
the performances are practically the same for ECMS with a pair and a unique equivalent factor [7].
In order to reduce the computational cost, a unique equivalent factor is used for the charging and
discharging of the battery [19,21]. In hybrid electric vehicles, battery SOC is controlled to change in a
certain range, so the influence of the SOC deviations on the battery parameters, such as open-circuit
voltage, internal resistance, and the charge/discharge efficiencies, is rather small; in other words,
the dependence of H on the state variable x can be neglected. Thus, in Equation (14),

.
λ(t) = 0, and the

equivalent factor s is a constant. For a given driving cycle, a shooting algorithm can be used to
determine the optimal equivalent factor sopt, so that the constraint on the final state can be fulfilled,
SOC(t f ) = SOC(t0). However, the optimal equivalent factor varies with different driving cycles.
In on-line applications, the equivalent factor needs to be continuously adjusted. By incorporating a
reference SOC, the equivalent factor can be calculated as

s(t) = snom · fp(SOC(t) − SOCre f ) (17)

where snom is the nominal equivalent factor, and fp is the penalty function to prevent the SOC from
large variations. Typically, a proportional-integral (PI) controller can be adopted to maintain the SOC
around the reference value. In this study, the following functions, as described in [27], were used for
SOC correction:

fp(SOC(t)) =

1−
( SOC(t) − SOCre f

SOCre f − SOCmin

)2n+1 · (1 + tanh(m · ISOC)) (18)

ISOC
(
kT) =0.01(SOCre f − SOC(t)) + 0.99ISOC(t− kT) (19)

where kT is the sampling time, and n and m are the tuning parameters for the P, I multipliers, respectively.
In this study, n = 4 and m = 5 were used in the penalty function. The P control was used to keep
the SOC in the confined boundary [SOCmin, SOCmax], and the I control was adopted to eliminate the
accumulated deviation of the SOC from the reference value.

3.2. Drivability Problems

In real-time applications, if the fuel economy is the only criterion, drivability problems may
arise. Typically, in a CVT-based HEV, the unconstrained control signals in Equation (13) will lead to
frequent engine on/off events and drastic fluctuations of the CVT speed ratio. An engine on/off event
often involves a driving mode transition; thus, excessive engine events will result in bad drivability.
Additionally, when an abrupt change in the speed ratio occurs, the dynamic characteristics of the
driveline will have a negative impact on the drivability. In engineering applications, CVT is usually
controlled to adjust engine operating points along the optimal operating line to ensure fuel economy.
The target speed ratio is a function of vehicle speed and engine output torque. Considering the
dynamic response of the hydraulic system, the rate of change of the speed ratio is usually confined
to a certain range [28]. As long as there is no sudden change in driving conditions, the speed ratio
will not fluctuate significantly. However, in an optimization method, the algorithm is designed to
select the best control policies that minimize fuel consumption, without considering the drivability
performance. So, it is possible to cause erratic control signals. Therefore, control policies that are
more representative of real-world driving behaviors and ensure good drivability are needed. In this
paper, penalty terms have been incorporated into the cost function to constrain the frequent engine



Appl. Sci. 2019, 9, 2074 7 of 15

on/off events and large variations in the rate of change of the CVT speed ratio. The Hamiltonian in
Equation (13) can be reformulated as

H =
.

m f (t) + α · IEE + β · (∆iCVT)
2 + s(t) ·

.
m f ,bat,eq(t) (20)

where α and β are the weighting factors, and IEE is an indicator function that equals 1 when an engine
on or off event take places. The speed ratio differences are quadratic in order to keep the penalty term
always positive and penalize large variations of the speed ratio. The Hamiltonian described above not
only minimizes instantaneous fuel consumption but also takes the drivability into account. Note that
the tuning of the weighting factors needs some trial and error depending on the desired outcomes.
Based on previous research [29], the weighting factors α = 0.3 and β = 1 were selected in this study.

3.3. The Adaptation of the Equivalent Factor

In the A-ECMS, the selection of the nominal equivalent factor has a great influence on the
estimation of the equivalent factor, which affects the minimization of fuel consumption and the final
state of the SOC. In Figure 2, SOC evaluations for different nominal equivalent factors for an initial
SOC of 65% under the Urban Dynamometer Driving Schedule (UDDS) are depicted. We can see that,
as the snom increases, the final SOC value increases and does not converge to the initial value. Since the
strategy is more inclined to constrain the use of battery power, this also leads to more fuel consumption,
as shown in Table 2. Therefore, in on-line implementations, the nominal equivalent factor needs to be
regularly updated according to different driving cycles.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 14 
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Figure 2. State of Charge (SOC) evaluations for different snom under the Urban Dynamometer Driving
Schedule (UDDS) cycle.

Table 2. Fuel Consumption and Final SOC for Different snom under UDDS.

Snom Fuel Consumption (g) Final SOC

3 362.2 0.58
3.2 384.4 0.64
3.4 428.5 0.74
3.5 436 0.754

3.3.1. Classification of the Driving Cycles

The extraction of feature parameters and clustering method of driving cycles was systematically
introduced in [30]. On this basis, 11 typical driving cycles were selected as the basic sample database.
The database was divided into four classes, namely, urban, suburban, and highway cycles, in which
the suburban driving was divided into suburban A and suburban B according to the distribution of
the optimal equivalent factors. The classification of driving cycles are shown in Table 3. Note that a
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sufficient number of samples was required to ensure the training effect of the LVQ neural network.
Moreover, in order to better reflect the characteristics of the standard cycles, a microtrip extraction
method [31] was used to collect the velocity information for statistical analysis. Later, the feature
vectors of each microtrip were imported as training sample data. Finally, the 11 standard cycles were
divided into 81 microtrips, which could ensure the recognition accuracy.

Table 3. Classification of the standard driving cycles.

CYC1 Urban CYC2 Suburban A CYC3 Suburban B CYC4 Highway

Manhattan
NYCC

UDDS
FTP

LA92

US06
CSHVR

WVUBUS

WVUINTER
HWFET

US06WHY

3.3.2. Driving Pattern Recognition Based on LVQ

An LVQ neural network model was constructed in the Matlab/Simulink environment, which
consisted of an input layer, a competition layer, and an output layer. The neural network was trained
under supervision and the competition layer weights were adjusted according to the learning results.
In this study, the LVQ1 algorithm was used, and the training process was as follows:

Step 1: Initialize the competition layer weights wi j and the learning rate η (η > 0).
Step 2: Send the input vector X = (x1, x2 · · · xR)

T into the input layer and calculate the Euclidean
distance of the input vector and the competition layer neurons.

Step 3: Select the closest compitition layer neuron (e.g., dm), then mark the correspnding linear
output layer neuron connected as Cm.

Step 4: If the category of the output layer neuron is consistent with that of the input layer,
the competition layer weights are updated according to Equation (21); otherwise, they are updated
according to Equation (22):

wi j,new = wi j,old + η(x−wi j,old) (21)

wi j,new = wi j,old − η(x−wi j,old). (22)

Eleven feature parameters were used as input neurons, including (1) average speed vm,
(2) maximum speed vmax, (3) maximum acceleration amax, (4) average acceleration am, (5) maximum
deceleration dmax, (6) average deceleration dm, (7) idle time ratio ridle, (8) acceleration time ratio racc,
(9) deceleration time ratio rb, (10) constant speed time ratio rc, and (11) idle times fidle. The competition
layer was defined as 20 neurons, and 4 output neurons represented 4 driving patterns. The training
result is shown in Figure 3. The learning rate was 0.001. After 42 iterations, the mean squared error
was reduced to less than 0.05.
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transtioning from one driving pattern to another and the vehicle speed dramatically changed, the 
recognition accuracy decreased, mainly because the feature vectors were relatively close and the 
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In order to verify the on-line DPR algorithm, a random combination of standard driving cycles
was used, as shown in Figure 4. Since the driving cycle is not known a priori, in this paper, we assumed
that the driving cycle did not change frequently. Thus, feature vectors extracted from 120 s of historical
data were used to predict the driving pattern for the next 10 s. It is worth noting that the length of
the recognition cycle has a great influence on the recognition accuracy. A long cycle will lead to poor
accuracy, while a short cycle will increase the computational burden and may also result in frequent
switching of the driving mode [16]. Due to the lack of historical data in the first 120 s at the beginning
of the driving cycle, a default pattern of urban driving was used. As shown in Figure 5, the algorithm
successfully recognized most of the driving patterns. However, at some points when transtioning from
one driving pattern to another and the vehicle speed dramatically changed, the recognition accuracy
decreased, mainly because the feature vectors were relatively close and the algorithm was sensitive to
changes in speed and acceleration.
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Figure 5. Real-time driving pattern recognition (DPR) verification.

3.3.3. Selection of the Nominal Equivalent Factor

In previous research, a fixed equivalent factor was used to represent each driving pattern [17,18],
which, however, ignored the influence of the SOC on the estimation of the equivalent factor. Because
of the complexity of driving conditions, when the type of driving pattern changes, the SOC does not
necessarily equal the corresponding initial SOC of the optimal equivalent factor, as shown in Figure 6.
At this point, the fixed equivalent factor will lead to inaccurate estimation of the equivalent factor
during the driving cycle.
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Figure 7. Initial SOC versus optimal equivalent factor under different driving patterns. (a) CYC1,
(b) CYC2, (c) CYC3, (d) CYC4.
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3.4. Implementation of the A-ECMS

The schematic diagram of the adaptive-ECMS strategy based on driving pattern recognition
is shown in Figure 8. Vehicle speed is fed back to the controller, and the DPR algorithm regularly
recognizes the driving pattern according to the feature vectors. Then, the adapter in the A-ECMS
controller updates the nominal equivalent factor according to the driving pattern and the current
battery SOC. Finally, the ECMS algorithm computes the optimal controls based on the real-time
equivalent factor and the torque request.
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Figure 8. Schematic diagram of the adaptive equivalent consumption minimization strategy (A-ECMS).

4. Simulation Results

In order to verify the effectiveness of the proposed method, simulation tests were conducted under
a test driving cycle, which was a random combination of six standard driving cycles: NurembergR36,
HL05, SC03, REP05, HWFET, and FTP. The velocity profile of the cycle and the result of the on-line DPR
are shown in Figure 9. The sampling time for the simulation was 0.1 s. Both the initial and the reference
SOCs were set to 0.7. For simplicity, the proposed adaptive-ECMS based on DPR is hereinafter referred
to as the “proposed method”.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 14 
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Figure 9. Velocity profile and the DPR result.

In this part, simulation results are demonstrated to verify the drivability improvements.
Comparison of the torque split factor is shown in Figure 10. When the weighting factor α = 0,
the engine on/off events took place as much as 828 times for the test cycle. After the constraint was
imposed, the frequency of changing of the torque split factor decreased to a large extent, which means
that less driving mode switching occurred, better drivability could be expected, and engine on/off

events dropped by 62.6%. Improvement of the CVT speed ratio signal is shown in Figure 11. When the
weighting factor β = 0, the fluctuation of the speed ratio was rather frequent and drastic. After the
constraint was imposed, the speed ratio signal was smoothed and more representative of real-world
driving behavior. Although the introduction of penalty terms inherently leads to extra fuel consumption,
for the test cycle, the equivalent fuel consumption only increased by 1.1%, which is fairly acceptable.
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Figure 11. Comparison of the CVT speed ratio.

To examine the fuel economy improvement of the proposed method, an adaptive-ECMS with a PI
controller and a DPR-algorithm-based A-ECMS as reported in [17] were calculated under test cycles
for comparison. For simplicity, the former is referred to as the “A-ECMS”, and the mean equivalent
factor of four driving patterns for an initial SOC of 0.7 was selected as the nominal equivalent factor.
The latter is referred to as the “DPR A-ECMS”, in which the nominal equivalent factor was periodically
updated only by the selected driving pattern. The off-line ECMS with an optimal equivalent factor
served as the benchmark for the on-line strategies.

In Figure 12, the optimal equivalent factor for the corresponding test cycle was 2.987, and the
equivalent factors for on-line strategies varied continuously with time and fluctuated around the
optimal equivalent factor. As can be seen from Figure 13, for the proposed method, the battery SOC
decreased at the beginning of the driving cycle, since the nominal equivalent factor was relatively
smaller, and the penalty for the use of battery power was smaller as a result. At about 1200 s, when
the HEV was in engine recharge mode, the vehicle speed suddenly decreased, and the battery SOC
increased to 0.9 due to the braking energy regeneration. At this time, the equivalent factor decreased
rapidly to penalize the output of the engine power, and the SOC was quickly controlled within the
target range. At the end of the test cycle, compared with the off-line ECMS, the SOC for on-line
strategies did not perfectly converge with the initial SOC; however, the proposed method showed
better robustness. Note that for A-ECMS, better fuel economy and SOC management can be expected
for a smaller nominal equivalent factor.
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The comparison of the cumulated fuel consumption and the final SOC is shown in Table 4. The fuel
consumption for the DPR A-ECMS was very close to that of the proposed method and off-line ECMS;
however, the constraint effect on the final state was relatively poor. Considering the correction of
the total fuel consumption at the end of the driving cycle, the actual fuel consumption will be even
higher. The propopsed method showed the most promising results compared with the other two
on-line strategies, and the performance was very close to that of the off-line ECMS with the optimal
equivalent factor.

Table 4. Comparison of the fuel consumption and final SOC.

Strategy Fuel Consumption (g) Final SOC Value

ECMS 4144 0.707
A-ECMS 4191 0.782

DPR A-ECMS 4160 0.636
Proposed Method 4157 0.71

5. Conclusions

In this paper, a real-time optimal control strategy for a CVT-based hybrid electric vehicle was
developed. In order to enhance drivability performance, penalty terms were incorporated into the
Hamiltonian to constrain frequent engine on/off events and large variations of the CVT speed ratio.
For the on-line estimation of the equivalent factor, an LVQ neural network model was adopted for
on-line recognition of the driving pattern. The influence of initial SOC on the optimal equivalent
factor was analyzed under different driving patterns. On that basis, a method of adaptation of the
equivalent factor was proposed by considering the driving pattern and the battery SOC. Simulation
results indicate that the use of the penalty function can effectively enhance drivability with very little
fuel overconsumption. Besides that, compared with traditional A-ECMS strategies, the proposed
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method has better fuel economy and robustness to varying driving cycles, and the result is close to that
of the off-line ECMS with an optimal equivalent factor.
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