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Abstract: By applying the Wavelet Relevance Vector Machine (WRVM) method, this research proposes
the loose zone of roadway surrounding rock prediction. Based on the theory of relevance vector
machine (RVM), the wavelet function is introduced to replace the original Gauss function as the model
kernel function to form the WRVM. Five factors affecting the loose zone of roadway surrounding rock
are selected as the model input, and the prediction model of the loose zone of roadway surrounding
rock based on WRVM is established. By using cross-validation method, the kernel parameters of three
kinds of wavelet relevance vector machines (RVMs) are calculated. By comparing and analyzing the
root mean square (RMS) error of the test results of each predictive model, the advantages and accuracy
of the model are verified. In practical engineering applications, the average relative prediction errors
of the Mexican relevance vector machine, the Morlet relevance vector machine and the difference
of Gaussian (DOG) relevance vector machine models are accordingly 4.581%, 4.586% and 4.575%.
The square correlation coefficient of the predicted samples is 0.95 > 0.9, which further verifies the
accuracy and reliability of the proposed method.

Keywords: relevant vector machine (RVM); wavelet relevance vector machine (WRVM); wavelet
kernel function; loose zone of roadway surrounding rock; prediction model

1. Introduction

A surrounding rock loose zone refers to the stress redistribution of surrounding rock after
excavation and the stress variation in surrounding rock, which leads to stress concentration. When
the stress value exceeds the strength limit or yield limit, the roadway surrounding rock mass breaks
up and forms a certain range of rupture area [1]. For many years, rock bolts are commonly used to
enhance the stability of surrounding rock [2–5]. However, rock bolts are subjected to the loose zone
of pre-load [6–8] or corrosion [9–11] and may fail [12]. The thickness determination of loose zone is
not only a significant factor for the roadway surrounding rock’s stability, but also an important basis
for the design of roadway support. Therefore, the accurate determination for the thickness of loose
zone of roadway surrounding rock makes a great difference to improve the stability of underground
engineering rock mass [13–16].

With the development of structural health monitoring [17–19], the methods to determine the
loose zone thickness of roadway surrounding rock generally include acoustic wave test, numerical
simulation and, support vector machine prediction [20,21]. The acoustic wave test method [22] can
directly and accurately determine the range of loose zone, however the field operation is cumbersome
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and the cost is high. The numerical simulation method [23] is low cost and easy to realize. Nevertheless,
it is obviously affected by the parameters of surrounding rock, and the result sometime has a large
margin of error. Due to the nonlinearity of loose zone for surrounding rock and uncertainty of state and
parameter measurement, the prediction of surrounding rock loose zone can be regarded as a typical
complex and fuzziness problem. In recent decades, various intelligent methods, such as artificial neural
network (ANN) [24–26], fuzzy logic [27–29], genetic algorithm (GA) [30,31], wavelet packet analysis
(WPA) [32–34], supporting vector machine (SVM) [35–37], among others [38–40], have been developed
to deal with nonlinearities and uncertainties. The support vector machine prediction method [41] can
solve the problems of nonlinearity and small samples, and has achieved some success in the prediction
of roadway surrounding rock loose zone. Nevertheless, the prediction accuracy and generalization
ability of the model are affected by parameters.

Relevant vector machine (RVM) [42–46] is a sparse probability model alike support vector machine
(SVM) proposed by Tipping in 2001. Its training process is based on Bayesian framework [47,48]. RVM
can be used for regression estimation and prediction to obtain the distribution of predicted values.
It not only has excellent nonlinear fitting and generalization ability, but also makes up for the defect
that SVM needs to estimate regularization parameters and cannot get the prediction results based
on probability [49,50]. RVM combines the advantages of core-based method and Bayesian theory,
and establishes the relationship between a group of input vectors and its required output. Therefore,
the selection of kernel functions plays an important role in RVM achieving good performance.

In practical applications, the commonly used kernels are Gauss kernels and polynomial kernels [51],
however they cannot generate a complete set of bases in a space (such as square integrable space) by
translation. The incomplete base will result in RVM not approaching any objective function in the
kernel space. Wavelet is a function approximation tool in square integrable space [52,53]. Wavelet
kernel function has been applied to SVM function approximation, which effectively improves the
accuracy of the model [51]. Wavelet technology has great potential in dealing with approximation
and classification of non-stationary signals [54,55]. Wavelet function is a group of bases [56], which
can approximate any function. Therefore, this paper has combined wavelet technology with RVM,
namely wavelet relevant vector machine (WRVM), and applied it to prediction of surrounding rock
loosening zone of roadway. The feasibility and effectiveness of this method can be verified by practical
engineering cases.

The paper is structured as follows: Section 2 shows the conception of the RVM and WRVM and the
reasoning process of WRVM. Section 3 presents the key steps of the prediction model of surrounding
rock loose zone using wavelet relevance vector machine. Section 4 compares the accuracy of the
prediction models of SVM, RVM and WRVM, and predicts the loose zone of surrounding rock of
15 roadways by using the prediction model of WRVM. Section 5 concludes the paper.

2. Wavelet Relevance Vector Machine

RVM can be used for regression estimation and prediction to obtain the distribution of predicted
values. It not only has excellent nonlinear fitting and generalization ability, but also makes up for the
defect that SVM needs to estimate regularization parameters and cannot get the prediction results
based on probability.

2.1. Relevant Vector Machine

The training sampling test is given by {xi, ti}
n
i=1, xi ∈ Rd, ti ∈ R. The RVM model output is

defined as [57],

y(x,ω) =
n∑

i=1

ωiK
(
x, xi

)
+ω0 (1)
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In the formula, n is the number of sample, ωi the weight of the model, K(x, xi) the kernel function,
the sample matching non-zero ωi is called the relevance vector. The Figure 1 illustrates the RVM
architecture model.
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Figure 1. The architecture of a relevant vector machine (RVM).

RVM inherits SVM modeling using structural risk minimization which has good generalization
capability. However, SVM cannot give the confidence range. In order to make up for the defect that
SVM cannot get the prediction results based on probability, RVM needs to learn the model in the
Bayesian framework.

Assuming that the training samples are independent and contain Gauss noise with variance σ2,
the training sample’ likelihood function is expressed in the following [58–60]:

p
(
t
∣∣∣ω, σ2

)
=

n∏
i=1

p
(
ti
∣∣∣ω, σ2

)
=

(
2πσ2

)−n/2
exp

{
−

1
2σ2 t−Φω2

}
(2)

where

t = (t1, · · · , tn)
T,ω = (ω0, · · · ,ωn)

T, Φn×(n+1) = [φ(x1),φ(x2), · · ·φ(xn)]
T

φ(xi) = φi = [1, K(xi, x1), . . . , K(xi, xn)]
T.

According to the structural risk minimization, if the weights are not constrained, the direct
maximization Equation (2) will cause serious over-fitting. To enhance the model’s generalization
capability, the definition of the distribution of Gaussian prior probability for each weight value is made
by RVM [60,61],

p(ω|α ) =
n∏

i=0

N
(
0,α−1

i

)
(3)

where α is a parameter determining the prior distribution of weights ω.
According to the prior probability and likelihood distribution, the distribution of posterior

probability by calculating the weights using Bayesian criterion is as follows [48,59],

p
(
ω
∣∣∣t,α, σ2

)
=

p
(
t
∣∣∣ω, σ2

)
p(ω|α )

p
(
t
∣∣∣α, σ2

) = N
(
µ,

∑)
(4)

where the mean value µ = σ−2 ∑
ΦTt, the covariance µ = σ−2 ∑

ΦTt, A =diag(α0,α1, · · · ,αl), when
α→∞,µi = 0 .
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Therefore, the weights estimation is decided by the mean µ of the weight’s posterior distribution,
and the uncertainty of optimal weight value

∑
can be applied to express the uncertainty of model

prediction. To evaluate the model weights, the optimal value of the super-parameter must be estimated
first. Based on the Bayesian framework, the likelihood distribution of hyper parameters is calculated
as follows,

p
(
t
∣∣∣α, σ2

)
=

∫
p
(
t
∣∣∣ω, σ2

)
p(ω|α )dω = N(0, C) (5)

where the covariance C =σ2I+ΦA−1ΦT.
The marginal likelihood derivative of log αi is set to 0, the αi updating formula is shown in

the following:

αnew
i =

γi

µ2
i

(6)

where γi = 1− αi
∑

ii,
∑

ii refers to the diagonal element of a matrix
∑

. The achievement of sparsity
is made because most parameters αi are evaluated as quite large values, so the basic functions are
accordingly pruned by enforcing their weights to 0. During the progression of optimization, the vectors
associated with the residual non-zero weights from the training set are called relevance vectors
(RV) [48].

In addition, the marginal likelihood derivative of log σ2 is set to zero, the σ2 update formula
is given: (

σ2
)new

=
t−Φµ2

n−
n∑

i=0
γi

(7)

By maximizing the hyper parametric likelihood distribution, its optimal value αMP, σ2
MP can be

found. For the new observed data x∗ prediction is applied to calculate the predictive distribution:

p
(
t∗
∣∣∣t,αMP, σ2

MP
)
=

∫
p
(
t∗
∣∣∣ω, σ2

MP
)
p
(
ω
∣∣∣t,αMP, σ2

MP
)
dω = N

(
µ∗, σ2

∗

)
(8)

where, µ∗ = µTφ(x∗) is the model predictive value, σ2
∗ = σ2MP+φ(x∗)

T ∑
φ(x∗) the predictive model’s

variance information, and the predictive interval can be given by [µ∗ − σ∗,µ∗ + σ∗].

2.2. Wavelet Kernel Function

RVM transforms the input space into a high-dimensional space through the pre-selected kernel
function while realizing data linearization in this space. In square integrable space, besides the inner
product kernel form K(x, x′) = K(〈x, x′〉), there are translation invariant kernels K(x, x′) = K(x− x′)
for kernels K(x, x′).

Assuming that ϕ(x) is a wavelet generating function, the translation invariant form of the wavelet
kernel function can be constructed as [51,54]:

K(x, x′) =
d∏

i=1

ϕ

(
xi − x′i

a

)
(9)

In the formula, d is the input vector dimension, and a refers to the scaling factor of the wavelet
kernel function which is a constant that needs to be optimized. In the following section, several
commonly used wavelet generating functions and their kernels are given.
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(1) The Mexican hat wavelet generating function is ϕ(x) =
(
1− x2

)
exp

(
−

x2

2

)
, and the corresponding

Mexican hat wavelet kernel function is given:

K(x, x′) =
d∏

i=1

1− (xi − x′i)
2

a2

 exp

− (xi − x′i)
2

2a2

 (10)

(2) The Morlet wavelet generating function is ϕ(x) = cos(1.75x) × exp
(
−

x2

2

)
, and the corresponding

Morlet wavelet kernel function is:

K(x, x′) =
d∏

i=1

cos
[
1.75

xi − x′i
a

]
exp

− (xi − x′i)
2

2a2

 (11)

(3) The DOG wavelet generating function is ϕ(x) = exp
(
−

x2

2

)
−

1
2 exp

(
−

x2

8

)
, and the matching DOG

wavelet kernel function is:

K(x, x′) =
d∏

i=1

exp

− (xi − x′i)
2

2a2

− 1
2

exp

− (xi − x′i)
2

8a2


 (12)

2.3. Wavelet Relevance Vector Machine

The architecture model of WRVM is similar to that of standard RVM. As illustrated in Figure 1,
their major difference lies in the nonlinear mapping method and kernel function. A brief overview of
the reasoning process of WRVM is given, as shown in Figure 2.Appl. Sci. 2019,x x FOR PEER REVIEW 6 of 17 
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2.4. Fitting Quality Estimation

To compare the model’s generalization capability, three measurements are introduced to test the
capability of model fitting data and prediction [62], specifically as follows:

(1) Root mean square error (RMSE)

RMSE =

√√√√ n∑
i=1

(ti − µ∗i)
2

n
(13)

(2) Relative prediction error (RPE)

RPE =

n∑
i=1

∣∣∣ti − µ∗i
∣∣∣

n∑
i=1
|ti|

(14)

(3) Square correlation coefficient R2

R2 = 1−
SSR
SSY

(15)

where SSR is the residual squares’ sum, and SSY is the response variable squares’ sum.

3. Establishment of Predictive Model for Loose Zone of Surrounding Rock in Roadway

According to the theory of WRVM, a predictive model of loose zone of surrounding rock in
roadway using WRVM has been established. As shown in Figure 3, the concrete steps are:

(1) Determining input and output. Predicting the roadway surrounding rock loose zone, the main
factors having an impact on the thickness of roadway surrounding rock loose zone are selected as the
evaluation index, that is, the input of the prediction model (i = 1,2... D). The thickness of loose zone is
the output of the prediction model Y.

(2) Preprocessing sample data. In order to eliminate the influence of inconsistent evaluation index
dimension on data analysis, it needs to standardize the samples, that is, to divide the statistical data by
the standard deviation of the data after zero-mean. It is to ensure that the mean value of each statistical
data after processing is 0 and the variance is 1.

(3) Establishing the thickness prediction model of loose zone. The use of the cross-validation
method [63] for the optimization of the kernel function parameters. The commonly used cross-validation
methods include leave-out method, K-fold cross-validation and leave-one validation. Leave-out method
was applied in this study to randomly separate the training samples into two parts. The first part is
applied as training set to train the model. Another is used as validation set to validate the parameters
and model. Therefore, the core parameters which render the smallest verification set RMS error can be
selected. Using all training samples, the predictive model of roadway surrounding rock loose zone
using WRVM has been established.

(4) Predicting loose zone thickness based on the model. Equation (6) can be used to predict the
thickness of the loose zone after establishing the prediction model of the main factors and the loose
zone thickness of roadway surrounding rock. Among them, µ∗ is the model predictive value, σ2

∗ the
variance information of the current predictive value.

(5) Analyzing model accuracy. After establishing the prediction model of surrounding rock loose
zone, the accuracy of the model is evaluated by Equations (11)–(13).
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Figure 3. Prediction model of surrounding rock loose circle in roadway.

4. Application Analysis

4.1. Selection of Main Influencing Factors

There are many factors making a difference to the thickness of loose zone. The complex relationship
between them often shows strong nonlinearity. Currently, there is no universal mathematical model.
Based on the relevant literature [64,65] and the principles of simplicity, independence and accessibility,
the influence of in situ stress on the size of loose zone is reflected by roadway burial depth, and the
influence of roadway span and roadway section area on the size of loose zone is reflected by the
geometric size and shape of roadway. Five indexes are used to predict the thickness of loose zone.

(1) Depth of roadway. The thickness of roadway surrounding rock loose zone increases with the
roadway burial depth.

(2) Span of roadway. The thickness of roadway surrounding rock loose zone increases with the
roadway span.

(3) Strength of surrounding rock. The difficulty of resisting failure of surrounding rock can be
reflected by the surrounding rock strength, and the thickness of loose zone is inversely proportional to
the surrounding rock strength. The strength of surrounding rock can be described by selected rock
uniaxial compressive strength Rc.

(4) Development degree of surrounding rock joints. Joints are small fracture structures with no
significant displacement on both sides of rock mass after stress fracture. The greater the degree of joint
development, the greater the thickness of loosening zone.

(5) Sectional area of roadway. The size of roadway section also makes a difference to the thickness
of loose zone which is proportional to the roadway section area.
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4.2. Sample Selection

The surrounding rock loose zones of some mines in China have been counted [66,67]. The statistical
data is shown in Table 1. Five indexes affecting the thickness of surrounding rock loose zone are
taken as input vectors, and the thickness of surrounding rock loose zone is taken as output vectors.
A prediction model of surrounding rock loosening zone based on WRVM has been established. Sample
sets 1–40 of data were selected as training data, and sample sets 41–55 were used as prediction data.

Table 1. Statistics of surrounding rock loose zones in mines.

N
Input Output

Depth (m) Span/(m) Sectional Area (m2) Strength (Mpa) Development Degree Thickness (m)

1 362 2.6 6.8 62.4 2 0.6
2 660 4.4 14.6 12.5 5 2.2
3 384 3.5 11.5 8.5 3 1.2
4 150 3.6 11.7 14.6 2 0.6
5 178 2.6 6.4 23.8 3 1.2
6 510 3.2 7.3 12.6 4 1.6
7 420 3.6 10.3 14.3 3 1.1
8 450 3.4 7.8 9.1 5 2
9 236 3 7.5 14.3 3 1.2

10 470 4 12.6 10.1 5 2.2
11 467 3.4 9.6 10.1 4 1.8
12 490 3.7 8.9 12.5 4 1.5
13 450 3.6 10.8 13.3 4 1.6
14 244 3.4 8.2 11.2 3 1
15 460 3.2 9.7 101.6 1 0.4
16 373 2.5 6.3 14.6 2 0.9
17 310 2.8 7.1 13.8 3 1.2
18 125 2.8 7.1 13.3 2 0.7
19 392 2.8 6.9 14.5 2 0.8
20 249 3.4 8.2 16.8 3 1
21 140 3.6 10.3 13.4 2 0.5
22 345 3 7.6 65 2 0.7
23 315 2.8 7.1 11.2 3 1.1
24 550 3.4 9.4 12.5 5 2.1
25 410 3.2 7.2 13.3 3 1.1
26 420 3.2 9.2 9.1 4 1.7
27 340 3.2 9.2 19.8 3 1.3
28 340 3.2 9.6 32.2 2 0.7
29 420 3.7 8.9 9.1 4 1.4
30 370 3.5 8.3 10.5 3 1
31 428 3.6 11.7 16.5 3 1.2
32 465 4 12.6 9.5 4 1.6
33 403 2.9 7.2 12.6 3 1.3
34 689 3 7.6 15.1 4 1.8
35 450 3 7.6 11.2 3 1.2
36 410 3.6 11.7 13.3 4 1.4
37 348 3.2 9.2 7.5 3 1.2
38 357 3.2 8.5 10.5 3 1.1
39 276 2.6 6.6 15.9 2 0.8
40 280 2.8 7.1 12.7 2 0.8
41 321 2.6 6.6 13.3 3 1.1
42 665 4.4 14.6 10.9 4 1.7
43 350 3.2 8.5 10.5 3 1.2
44 321 2.6 6.6 9.2 3 1.2
45 340 3 7.6 73.6 2 0.8
46 470 3.6 11.2 9.1 5 2.1
47 231 3 7.5 18.3 2 0.7
48 125 3.4 9.8 13.3 3 1
49 296 3.4 7.8 22.4 4 1.4
50 435 2.8 7.2 15.2 3 1.2
51 343 3.2 9.6 32.2 2 0.7
52 525 3.2 7.3 15.8 4 1.6
53 264 3.2 9.2 11.2 3 1.1
54 292 3.4 7.8 12.5 4 1.4
55 362 2.6 6.8 58 2 0.8

Note: The development degree of surrounding rock joints is represented by 1, 2, 3, 4 and 5 joints which are very
underdeveloped, underdeveloped, moderately developed, relatively developed and developed, respectively.
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4.3. Kernel Function Parameter Determination

Cross-validation is a commonly used method to select the optimal parameters. By using
cross-validation method, 28 groups of training set were randomly selected in the first 40 groups,
and the remaining 12 groups were used as the validation set. The model was established by setting
different parameters of the kernel function to validate the kernel function parameters. Through six
cross validations, the RMS error of validation set under different kernel parameters is shown in Figure 4.
According to the results of six cross validations, the optimal value of the model core parameters is
chosen when the root mean square error is the smallest. According to the calculation results, the kernel
parameters of Gauss-RVM are 12.5, and those of the Mexican relevance vector machine, the Morlet
relevance vector machine, the and DOG relevance vector machine are 20, 22.5 and 12.5, respectively.
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The experimental results of root mean square (RMS) errors of support vector machine (SVM),
relevance vector machine (Gauss-RVM), wavelet relevance vector machine (Mexican relevance vector
machine, Morlet relevance vector machine and DOG relevance vector machine) are compared,
as illustrated in Table 2.

Table 2. Comparison of RMS errors.

Model SVM Gauss-RVM Mexican-RVM Morlet-RVM DOG-RVM

RMS error 0.1780 0.1025 0.1020 0.1021 0.0998

By analyzing Table 2, all three WRVMs have good modeling robustness, and the modeling accuracy
is better than the other two methods.

4.4. Result Analysis

Between the 41 to 55 groups of samples selected as test data, the predictive results of the loose
zone can be calculated by inputting the data into the prediction model of the surrounding rock loose
zone using WRVM. The average relative prediction errors of support vector machine (SVM), relevance
vector machine (Gauss-RVM), wavelet relevance vector machine (Mexican relevance vector machine,
Morlet relevance vector machine and DOG relevance vector machine) models are illustrated in Table 3.
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Table 3. Average relative prediction errors of each model.

Model SVM Gauss-RVM Mexican-RVM Morlet-RVM DOG-RVM

Average relative
prediction errors 8.739% 4.624% 4.581% 4.586% 4.575%

Table 3 shows that the average relative prediction errors of the Mexican relevance vector machine,
the Morlet relevance vector machine, and the DOG relevance vector machine models are accordingly
4.581%, 4.586% and 4.575%. WRVM has higher accuracy than SVM and RVM. It shows that the
model has achieved some accuracy and reliability in practical engineering applications. Taking the
Mexican-RVM forecasting model as an example, the results of training sample modeling were analyzed
as illustrated in Figure 5, the model forecasting results in Figure 6, model forecasting results in Figure 7,
and model forecasting error results in Figure 8.
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Figure 5 shows that the prediction model of WRVM trained with 40 sets of data has a good fitting
effect. There are five relevance vectors. The number of relevance vectors is reasonable. They reflect the
core characteristics of the data.

Figure 6 shows the predicted sample’s target value and predictive value and prediction upper and
lower bound and also gives the interval information of the predicted value based on probability, which
increases the reliability of the predicted results and provides more decision support for the prediction
of the surrounding rock loosening zone in engineering practice.

The paper further analyzed the fitting effect between the predicted results and the real values.
The complex relevance coefficient R of the predicted samples is 0.97613, and the fitting effect is shown
in Figure 7. The square correlation coefficient is 0.95 > 0.9, which further demonstrates that the fitting
results of the prediction results are better. From Figure 8, it can be seen that only two roadways have a
prediction error of more than 10%. In general, the predicted result has high reliability.
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The results of SVM prediction model are shown in Figure 9, the results of relevance vector machine
prediction model are shown in Figure 10, and the calculation efficiency of each prediction model is
shown in Table 4. Through further comparative analysis, it is found that the accuracy and reliability of
the wavelet correlation vector machine prediction model are better.
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Table 4. Computational efficiency of each model.

Model SVM RVM WRVM

Running time 3.729 s 1.435 s 0.776 s

5. Conclusions

Based on the theory of RVM, the wavelet function was introduced to replace the original Gauss
function as the model kernel function. Five factors affecting the loose zone of roadway surrounding
rock have been selected as the model input. The predictive model of the loose zone of roadway
surrounding rock using WRVM was established. Mean square error, relative prediction error and
square correlation coefficient were introduced to estimate the model accuracy. The major findings for
the paper are listed below.
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(1) By applying cross-validation, the kernel parameters of were respectively calculated to be 20,
22.5 and 12.5. By comparing the RMS error of the experimental results of SVM, Gauss-RVM and
WRVM, the advantages and accuracy of the proposed WRVM model are verified.

(2) In practical engineering applications, the average relative prediction errors of three WRVMs
models are accordingly 4.581%, 4.586% and 4.575%. The probability intervals of prediction values were
given. The square correlation coefficient of prediction samples is 0.95 > 0.9, which further verifies the
accuracy and reliability of the predictive model of roadway surrounding rock loose zone using the
proposed WRVM.
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Funding: The research got the support of the National Natural Science Foundation of China (No. 51574183)
and Open Fund of Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering of China
(No. 2018A09).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wang, R.; Deng, X.H.; Meng, Y.Y.; Yuan, D.Y.; Xia, D.H. Case Study of Modified H–B Strength Criterion in
Discrimination of Surrounding Rock Loose Circle. KSCE J. Civ. Eng. 2019, 23, 1395–1406. [CrossRef]

2. Li, F.; Quan, X.; Jia, Y.; Wang, B.; Zhang, G.; Chen, S. The experimental study of the temperature effect on the
interfacial properties of fully grouted rock bolt. Appl. Sci. 2017, 7, 327. [CrossRef]

3. Luo, M.; Li, W.; Wang, B.; Fu, Q.; Song, G. Measurement of the length of installed rock bolt based on stress
wave reflection by using a giant magneto strictive (GMS) actuator and a PZT sensor. Sensors 2017, 17, 444.
[CrossRef] [PubMed]

4. Ho, S.C.M.; Li, W.; Wang, B.; Song, G. A load measuring anchor plate for rock bolt using fiber optic sensor.
Smart Mater. Struct. 2017, 26, 057003. [CrossRef]

5. Wang, B.; Huo, L.; Chen, D.; Li, W.; Song, G. Impedance-based pre-stress monitoring of rock bolts using a
piezoceramic-based smart washer—A feasibility study. Sensors 2017, 17, 250. [CrossRef]

6. Lu, A.; Xu, J.; Liu, H. Effect of a preload force on anchor system frequency. Int. J. Min. Sci. Technol. 2013, 23,
135–138. [CrossRef]

7. Huo, L.; Wang, B.; Chen, D.; Song, G. Monitoring of pre-load on rock bolt using piezoceramic-transducer
enabled time reversal method. Sensors 2017, 17, 2467. [CrossRef]

8. Kong, Q.; Zhu, J.; Ho, S.C.M.; Song, G. Tapping and listening: A new approach to bolt looseness monitoring.
Smart Mater. Struct. 2018, 27, 07LT02. [CrossRef]

9. Jiang, S.H.; Li, D.Q.; Zhang, L.M.; Zhou, C.B. Time-dependent system reliability of anchored rock slopes
considering rock bolt corrosion effect. Eng. Geol. 2014, 175, 1–8. [CrossRef]

10. Peng, J.; Hu, S.; Zhang, J.; Cai, C.S.; Li, L.Y. Influence of cracks on chloride diffusivity in concrete: A five-phase
mesoscale model approach. Constr. Build. Mater. 2019, 197, 587–596. [CrossRef]

11. Vandermaat, D.; Saydam, S.; Hagan, P.C.; Crosky, A.G. Examination of rock bolt stress corrosion cracking
utilizing full size rock bolts in a controlled mine environment. Int. J. Rock Mech. Min. Sci. 2016, 81, 86–95.
[CrossRef]

12. Craig, P.; Serkan, S.; Hagan, P.; Hebblewhite, B.; Vandermaat, D.; Crosky, A.; Elias, E. Investigations into the
corrosive environments contributing to premature failure of Australian coal mine rock bolts. Int. J. Min. Sci.
Technol. 2016, 26, 59–64. [CrossRef]

13. Guo, X.F.; Zhao, Z.Q.; Gao, X.; Wu, X.Y.; Ma, N.J. Analytical solutions for characteristic radii of circular
roadway surrounding rock plastic zone and their application. Int. J. Min. Sci. Technol. 2018, 29, 263–272.
[CrossRef]

14. Hao, Z.Y.; Lin, B.Q.; Gao, Y.B.; Cheng, Y.Y. Establishment and application of drilling sealing model in the
spherical grouting mode based on the loosing-circle theory. Int. J. Min. Sci. Technol. 2012, 22, 895–898. [CrossRef]

http://dx.doi.org/10.1007/s12205-019-1055-5
http://dx.doi.org/10.3390/app7040327
http://dx.doi.org/10.3390/s17030444
http://www.ncbi.nlm.nih.gov/pubmed/28241503
http://dx.doi.org/10.1088/1361-665X/aa6ae8
http://dx.doi.org/10.3390/s17020250
http://dx.doi.org/10.1016/j.ijmst.2013.03.003
http://dx.doi.org/10.3390/s17112467
http://dx.doi.org/10.1088/1361-665X/aac962
http://dx.doi.org/10.1016/j.enggeo.2014.03.011
http://dx.doi.org/10.1016/j.conbuildmat.2018.11.208
http://dx.doi.org/10.1016/j.ijrmms.2015.11.007
http://dx.doi.org/10.1016/j.ijmst.2015.11.011
http://dx.doi.org/10.1016/j.ijmst.2018.10.002
http://dx.doi.org/10.1016/j.ijmst.2012.12.004


Appl. Sci. 2019, 9, 2064 14 of 16

15. Liu, Y.; Ye, Y.C.; Wang, Q.H.; Liu, X.Y. Stability Prediction Model of Roadway Surrounding Rock Based on
Concept Lattice Reduction and a Symmetric Alpha Stable Distribution Probability Neural Network. Appl. Sci.
2018, 8, 2164. [CrossRef]

16. Song, G.; Li, W.; Wang, B.; Ho, S.C.M. A review of rock bolt monitoring using smart sensors. Sensors 2017,
17, 776. [CrossRef]

17. Song, G.; Wang, C.; Wang, B. Structural health monitoring (SHM) of civil structures. Appl. Sci. 2017, 7, 789.
[CrossRef]

18. Kong, Q.; Robert, R.H.; Silva, P.; Mo, Y.L. Cyclic crack monitoring of a reinforced concrete column under
simulated pseudo-dynamic loading using piezoceramic-based smart aggregates. Appl. Sci. 2016, 6, 341.
[CrossRef]

19. Yi, C.; Lv, Y.; Xiao, H.; Huang, T.; You, G. Multisensory signal denoising based on matching synchro squeezing
wavelet transform for mechanical fault condition assessment. Meas. Sci. Technol. 2018, 29, 045104. [CrossRef]

20. Huang, Y.; Kou, J.S.; Fang, H.B.; Li, M.L.; Liang, Y. Research on Determination Loose Zone of Surrounding
Rock in Highway Tunnel. Appl. Mech. Mater. 2015, 724, 185–191. [CrossRef]

21. Cui, F.Z.; Xue, H.J.; He, T.Y.; Li, T.T.; Zuo, J.J.; Guan, X. Research on Loose Circle Test of Deep Broken
Roadway. Appl. Mech. Mater. 2014, 638, 904–907. [CrossRef]

22. Wang, F.; Liu, Z.; An, C. Sonic wave testing technique for surrounding rock loose circle. In Proceedings of
the International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011.

23. Xia, H.B.; Xu, Y.; Zhang, Y.J. Numerical Simulation and Experimental Analysis of Roadway Surrounding;
Rock Loose Circle under Blasting Vibration. In Proceedings of the Fourth International Conference on Digital
Manufacturing & Automation, Qingdao, China, 29–30 June 2013.

24. Ming, X.; Yongxing, Z.; Ke, Y. Prediction of limit bearing capacity of bolt using artificial neural networks.
Chinese. J. Rock Mech. Eng. 2002, 21, 755–758.

25. Wang, H.; Song, G. Innovative NARX recurrent neural network model for ultra-thin shape memory alloy
wire. Neurocomputing 2014, 134, 289–295. [CrossRef]

26. Mai, H.; Song, G.; Liao, X. Adaptive online inverse control of a shape memory alloy wire actuator using a
dynamic neural network. Smart Mater. Struct. 2012, 22, 015001. [CrossRef]

27. Wang, B.; Mo, C.; He, C.; Yan, Q. Fuzzy synthetic evaluation of the long-term health of tunnel structures.
Appl. Sci. 2017, 7, 203. [CrossRef]

28. Li, L.; Song, G.; Ou, J. Adaptive fuzzy sliding mode based active vibration control of a smart beam with mass
uncertainty. Struct. Control Health Monitor. 2011, 18, 40–52. [CrossRef]

29. Gu, H.; Song, G.; Malki, H. Chattering-free fuzzy adaptive robust sliding-mode vibration control of a smart
flexible beam. Smart Mater. Struct. 2008, 17, 035007. [CrossRef]

30. Vardakos, S.; Gutierrez, M.; Xia, C. Parameter identification in numerical modeling of tunneling using the
Differential Evolution Genetic Algorithm (DEGA). Tunn. Undergr. Space Technol. 2012, 28, 109–123. [CrossRef]

31. Luyu, L.; Song, G.; Jinping, O. A Genetic Algorithm-based Two-phase Design for Optimal Placement of
Semi-active Dampers for Nonlinear Benchmark Structure. J. Vib. Control 2010, 16, 1379–1392.

32. Yang, W.; Kong, Q.; Ho, S.C.M.; Mo, Y.L.; Song, G. Real-Time Monitoring of Soil Compaction Using
Piezoceramic-Based Embeddable Transducers and Wavelet Packet Analysis. IEEE Access 2018, 6, 5208–5214.
[CrossRef]

33. Jiang, T.; Kong, Q.; Patil, D.; Luo, Z.; Huo, L.; Song, G. Detection of debonding between fiber reinforced
polymer bar and concrete structure using piezoceramic transducers and wavelet packet analysis. IEEE Sens. J.
2017, 17, 1992–1998. [CrossRef]

34. Lee, I.M.; Han, S.I.; Kim, H.J.; Yu, J.D.; Min, B.K.; Lee, J.S. Evaluation of rock bolt integrity using Fourier and
wavelet transforms. Tunn. Undergr. Space Technol. 2012, 28, 304–314. [CrossRef]

35. Zhao, H.; Li, S.; Ru, Z. Adaptive reliability analysis based on a support vector machine and its application to
rock engineering. Appl. Math. Model. 2017, 44, 508–522. [CrossRef]

36. Zhao, X.; Li, W.; Zhou, L.; Song, G.; Ba, Q.; Ho, S.C.M.; Ou, J. Application of support vector machine for
pattern classification of active thermometry-based pipeline scour monitoring. Struct. Control Health Monit.
2015, 22, 903–918. [CrossRef]

37. Li, S.; Zhao, H.; Ru, Z.; Sun, Q. Probabilistic back analysis based on Bayesian and multi-output support
vector machine for a high cut rock slope. Eng. Geol. 2016, 203, 178–190. [CrossRef]

http://dx.doi.org/10.3390/app8112164
http://dx.doi.org/10.3390/s17040776
http://dx.doi.org/10.3390/app7080789
http://dx.doi.org/10.3390/app6110341
http://dx.doi.org/10.1088/1361-6501/aaa50a
http://dx.doi.org/10.4028/www.scientific.net/AMM.724.185
http://dx.doi.org/10.4028/www.scientific.net/AMM.638-640.904
http://dx.doi.org/10.1016/j.neucom.2013.09.050
http://dx.doi.org/10.1088/0964-1726/22/1/015001
http://dx.doi.org/10.3390/app7020203
http://dx.doi.org/10.1002/stc.356
http://dx.doi.org/10.1088/0964-1726/17/3/035007
http://dx.doi.org/10.1016/j.tust.2011.10.003
http://dx.doi.org/10.1109/ACCESS.2018.2790902
http://dx.doi.org/10.1109/JSEN.2017.2660301
http://dx.doi.org/10.1016/j.tust.2011.11.009
http://dx.doi.org/10.1016/j.apm.2017.02.020
http://dx.doi.org/10.1002/stc.1724
http://dx.doi.org/10.1016/j.enggeo.2015.11.004


Appl. Sci. 2019, 9, 2064 15 of 16

38. Singh, T.N.; Verma, A.K. Comparative analysis of intelligent algorithms to correlate strength and petrographic
properties of some schistose rocks. Eng. Comput. 2012, 28, 1–12. [CrossRef]

39. Liu, C.; Zhou, D.; Wang, Z.; Yang, D.; Song, G. Damage Detection of Refractory Based on Principle Component
Analysis and Gaussian Mixture Model. Complexity 2018. [CrossRef]

40. Yi, T.H.; Li, H.N.; Song, G.; Zhang, X.D. Optimal sensor placement for health monitoring of high-rise structure
using adaptive monkey algorithm. Struct. Control Health Monit. 2015, 22, 667–681. [CrossRef]

41. Zhou, J.; Li, X.B. Evaluating the Thickness of Broken Rock Zone for Deep Roadways using Nonlinear SVMs
and Multiple Linear Regression Model. Procedia Eng. 2011, 26, 972–981. [CrossRef]

42. Mehrotra, H.; Singh, R.; Vatsa, M.; Majhi, B. Incremental granular relevance vector machine: A case study in
multimodal biometrics. Pattern Recognit. 2016, 56, 63–76. [CrossRef]

43. He, S.M.; Xiao, L.; Wang, Y.L.; Liu, X.G.; Yang, C.H.; Lu, J.G.; Gui, W.H.; Sun, Y.X. A novel fault diagnosis
method based on optimal relevance vector machine. Neurocomputing 2017, 267, 651–663. [CrossRef]

44. Wang, Y.; Wang, P.F.; Ding, K. Pattern recognition using relevant vector machine in optical fiber vibration
sensing system. Appl. Soft Comput. 2019, 7, 5886–5895. [CrossRef]

45. Habeeb, A.; Jale, T. Relevance vector machines modeling of nonstationary ground motion coherency. Soil
Dyn. Earthq. Eng. 2019, 120, 262–272.

46. Samagassi, S.; Khamlichi, A.; Driouach, A.; Jacquelin, E. Reconstruction of multiple impact forces by wavelet
relevance vector machine approach. J. Sound Vib. 2015, 359, 56–67. [CrossRef]

47. Tipping, M.E. The relevance Vector Machine. Adv. Neural Inf. Process. Syst. 2000, 12, 652–658.
48. Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001,

3, 211–244.
49. He, F.; Xu, J.W.; Li, M.; Yang, J.H. Product quality modelling and prediction based on wavelet relevance

vector machines. Chemom. Intell. Lab. Syst. 2013, 121, 33–41.
50. Wang, F.; Gou, B.; Qin, Y. Modeling tunneling-induced ground surface settlement development using a

wavelet smooth relevance vector machine. Comput. Geotech. 2013, 54, 125–132. [CrossRef]
51. Schölkopf, B. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; The MIT

Press: London, UK, 2001.
52. Li, D.; Liang, Y.; Feng, Q.; Song, G. Load monitoring of the pin-connected structure based on wavelet packet

analysis using piezoceramic transducers. Measurement 2018, 122, 638–647. [CrossRef]
53. Xu, B.; Li, B.; Song, G. Active Debonding Detection for Large Rectangular CFSTs Based on Wavelet Packet

Energy Spectrum with Piezoceramics. ASCE J. Struct. Eng. 2013, 139, 1435–1443. [CrossRef]
54. Zhang, L.; Zhou, W.D.; Jiao, L.C. Wavelet support vector machine. IEEE Trans. Syst. Man Cybern Part B 2004,

34, 34. [CrossRef]
55. Xu, Y.; Luo, M.; Li, T.; Song, G. ECG Signal De-noising and Baseline Wander Correction Based on CEEMDAN

and Wavelet Threshold. Sensors 2017, 17, 2754. [CrossRef] [PubMed]
56. Chen, G.C.G.; Dudek, G. Auto-correlation wavelet support vector machine and its applications to regression.

In Proceedings of the 2nd Canadian Conference on Computer and Robot Vision, Victoria, BC, Canada,
9–11 May 2005.

57. Dimitris, T.; Aristidis, L.; Nikolaos, G. Incremental relevance vector machine with kernel learning. In Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 301–312.

58. Yuan, J.; Bo, L.F.; Wang, K. Adaptive spherical Gaussian kernel in sparse Bayesian learning framework for
nonlinear regression. Expert Syst. Appl. 2009, 36, 3982–3989. [CrossRef]

59. Candela, J.Q. Learning with Uncertainty Gaussian Processes and Relevance Vector Machines. Ph.D. Thesis,
Technical University of Denmark, Lyngby, Denmark, 2004.

60. Yuan, J.; Wang, K.S.; Yu, T.; Fang, M.L. Integrating relevance vector machines and genetic algorithms for
optimization of seed-separating process. Eng. Appl. Artif. Intell. 2007, 20, 970–979. [CrossRef]

61. Nikolaev, N.; Tino, P. Sequential relevance vector machine learning from time series. In Proceedings of
the International Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005;
pp. 1303–1313.

62. Kim, K.; Lee, J.M.; Lee, I.B. A novel multivariate regression approach based on kernel partial least squares
with orthogonal signal correction. Chemom. Intell. Lab. Syst. 2005, 79, 22–30. [CrossRef]

63. Xu, L.; Fu, H.Y.; Goodarzi, M.; Cai, C.B.; Yin, Q.B.; Wu, Y.; Tang, B.C.; She, Y.B. Stochastic cross validation.
Chemom. Intell. Lab. Syst. 2018, 175, 74–81. [CrossRef]

http://dx.doi.org/10.1007/s00366-011-0210-5
http://dx.doi.org/10.1155/2018/7356189
http://dx.doi.org/10.1002/stc.1708
http://dx.doi.org/10.1016/j.proeng.2011.11.2264
http://dx.doi.org/10.1016/j.patcog.2015.11.013
http://dx.doi.org/10.1016/j.neucom.2017.06.024
http://dx.doi.org/10.1109/ACCESS.2018.2889699
http://dx.doi.org/10.1016/j.jsv.2015.08.014
http://dx.doi.org/10.1016/j.compgeo.2013.07.004
http://dx.doi.org/10.1016/j.measurement.2017.11.014
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000632
http://dx.doi.org/10.1109/TSMCB.2003.811113
http://dx.doi.org/10.3390/s17122754
http://www.ncbi.nlm.nih.gov/pubmed/29182591
http://dx.doi.org/10.1016/j.eswa.2008.02.055
http://dx.doi.org/10.1016/j.engappai.2007.01.002
http://dx.doi.org/10.1016/j.chemolab.2005.03.003
http://dx.doi.org/10.1016/j.chemolab.2018.02.008


Appl. Sci. 2019, 9, 2064 16 of 16

64. Zhang, P.; Wang, Y.; Qin, G. Fuzzy Damage Analysis of the Seismic Response of a Long-Distance Pipeline
under a Coupling Multi-Influence Domain. Energies 2019, 12, 62. [CrossRef]

65. Qiu, D.H.; Li, S.C.; Zhang, L.W.; Xue, Y.G. Application of GA-SVM in classification of surrounding rock
based on model reliability examination. Min. Sci. Technol. 2010, 20, 428–433. [CrossRef]

66. Shi, S.S.; Li, S.C.; Li, L.P.; Zhou, Z.Q.; Wang, J. Advance optimized classification and application of
surrounding rock based on fuzzy analytic hierarchy process and Tunnel Seismic Prediction. Autom. Constr.
2014, 37, 217–222. [CrossRef]

67. Zhu, Z.J.; Zhang, H.W.; Chen, Y. Prediction model of loosening zones around roadway based on MPSOSVM.
Comput. Eng. Appl. 2014, 50, 1–5.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/en12010062
http://dx.doi.org/10.1016/S1674-5264(09)60221-0
http://dx.doi.org/10.1016/j.autcon.2013.08.019
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Wavelet Relevance Vector Machine 
	Relevant Vector Machine 
	Wavelet Kernel Function 
	Wavelet Relevance Vector Machine 
	Fitting Quality Estimation 

	Establishment of Predictive Model for Loose Zone of Surrounding Rock in Roadway 
	Application Analysis 
	Selection of Main Influencing Factors 
	Sample Selection 
	Kernel Function Parameter Determination 
	Result Analysis 

	Conclusions 
	References

