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Abstract: With the development of microelectronic packaging and increasingly specific service
environment of solder joints, much stricter requirements have been placed on the properties of lead-free
solders. On account of small size effect and high surface energy, nanoparticles have been widely used
to improve the microstructure and properties of lead-free solders. Therefore, the composite solders
bearing nanoparticles have recently attracted wide attention. This article reviewed the recent research
on SnAgCu, SnBi, and SnZn composite solder alloys and introduced the effect of nanoparticles on their
microstructure, mechanical properties, wettability, and reliability. The mechanism of nanoparticles
strengthening was analyzed and summarized. In addition, the shortcomings and future development
trends of nanoparticle-reinforced lead-free solders were discussed, which is expected to provide some
theoretical reference for the application of these composite solder in 3D IC package.

Keywords: nanoparticle; composite lead-free solder; microstructure; mechanical properties;
wettability; reliability

1. Introduction

Under the drive of device miniaturization, high-density packaging technologies, such as ball
grid array (BGA), chip scale package (CSP), and wafer level packaging (WLP), have been applied in
the advanced electronical equipment, which decreases the joint size and calls for excellent property
of packaging materials [1]. To meet the actual requirement of electronic industries, packaging
materials for electronic devices are required to have not only perfect electrical conductivity, wettability,
and mechanical properties, but also low cost and high reliability. Traditional SnPb solders were widely
used in electronic packaging because of low cost and excellent performance. However, due to the
toxicity of lead, most countries have implemented a series of laws such as waste electrical and electronic
equipment (WEEE) and restriction of hazardous substances (RoHS), to restrict the use of lead in various
electronic and electrical products [2].

Electrically conductive adhesives (ECAs) and lead-free solders were considered as promising
alternatives of SnPb solders. ECAs, mainly composed of matrix polymer and conductive fillers,
offer numerous advantages such as environmental friendliness, lower processing temperature, and fine
pitch capability [3]. However, the application of ECAs is limited due to its lower thermal conductivity
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and electrical conductivity, poor mechanical properties, and low reliability [4]. Especially, ECAs can
hardly meet the requirements of three-dimension integrated circuits (3D ICs) packaging technology,
which easily produces high current density and Joule heating. Therefore, compared with ECAs,
the development of lead-free solder alloys with better reliability, thermal, and electrical properties to
replace SnPb solders has always been one of research focuses in the field of microelectronic joining.
Although the application of SnPb solder is limited, its excellent performance makes it a reference
standard for the development of new lead-free solders [5]. Nowadays, several Sn-based lead-free solder
alloys have been synthesized, such as SnAgCu, SnZn, and SnBi solder alloys. However, these lead-free
solders still have some shortages such as high melting point, poor wettability and reliability, and high
cost, which fail to meet the actual production needs. As a result, it is urgent that an effective way to
improve the performance of the solder alloys is found.

Currently, researchers mainly improve the performance of lead-free solders by microalloying and
nanoparticles strengthening. Microalloying is a method of improving the properties of the solder by
adding trace alloying elements to change the solder composition. The alloying elements can be mainly
divided into rare earth (RE) elements (Ce, La, Pr, Nd, etc.) [6,7] and other metal elements (Ga, In, Mg,
Ni, Ag, etc.) [8–11]. However, there are still some shortcomings in this method, which limits the widely
application of the lead-free solders containing minor alloying elements. For example, adding excessive
RE elements will result in the formation of Sn whisker on the surface of solder joints, causing premature
failure of electronic device [12,13].

Due to excellent physicochemical properties and size effects, nanoparticles play a significant role in
refining grains, increasing mechanical properties, and improving wettability of lead-free solder [14–19].
Therefore, more and more researchers are focused on the preparation and performance characterization
of the composite solders reinforced by various nanoparticles. Up to now, types of nanoparticles studied
extensively mainly includes metals (Cu, Ni, Mn, Co, etc.), oxides (La2O3, Fe2O3, TiO2, etc.), ceramic
(SiC, TiC, etc.), and carbon materials (carbon nanotubes (CNTs), graphene nanosheets (GNSs), etc.).

Although some research results have been achieved, there are still some deficiencies in the
strengthening effect of nanoparticles. For example, the effect of nanoparticles on the melting
characteristics of lead-free solder is not obvious [20–22]. Besides, there is no practical application of
the composite solders reinforced by nanoparticles in electronic industries because of its high cost and
complex preparation. Therefore, in order to comply with the trend of green development and meet
the requirements of the electronics industry for packaging materials, the influence of nanoparticles
doping on the microstructure and properties of lead-free solders was analyzed comprehensively,
which is expected to provide some theoretical reference for the development of high-performance
nanoparticle-reinforced lead-free solders.

2. SnAgCu-Based Solders

2.1. Microstructure

Adding trace La2O3 nanoparticles to SAC-305 solder could provide a large number of nucleation
sites to refine the microstructure of the composite solder. However, when the content exceeded 0.1 wt.%,
the nanoparticles would aggregate together, resulting in the formation of cracks and voids, as shown
in Figure 1 [23].

In the reflow process, a brittle interfacial layer is rapidly formed at the interface between the
molten solder and the substrate; meanwhile, the overgrowth of intermetallic compounds (IMCs) will
result in lower connecting strength of solder joints [24,25]. After multiple reflow, the coarsening of
the Cu6Sn5 layer occurs and the Cu3Sn layer is formed at the interface between the Cu6Sn5 layer
and the substrate, which decreases the reliability of the joints. Chan et al. [26] found that adding
Zn nanoparticles could decrease the growth rate of Cu6Sn5 and suppress the formation of Cu3Sn.
Research [27] found that the grain size of Cu6Sn5 IMC increased with the increasing reflow time, and
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TiO2 nanoparticles could effectively suppress the growth of the IMC layer by preventing the diffusion
of Cu and Sn atoms.
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Sn and IMCs, which significantly refined the microstructure of the composite solder by inhibiting the 
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Considering the effect of secondary phase particles on the migration of grain boundary during
grain growth, the total restraining force acting on the boundary can be expressed as follows:

F =
3 fγb

2r
(1)

where f is the volume fraction of secondary phase particles at grain boundary, γb is the interface energy
per unit area of grain boundary, and the r is the radius of secondary phase particles. It is obvious
that F is inversely proportional to r. Therefore, the γ-Fe2O3 nanoparticle with smaller size have a
better refining effect on β-Sn phase in SAC105–Fe2O3 composite solder, as shown in Figure 2 [28].
On account of high surface energy, the doped CNTs were easily adsorbed on the surface of β-Sn
and IMCs, which significantly refined the microstructure of the composite solder by inhibiting the
migration of grain boundaries [29].



Appl. Sci. 2019, 9, 2044 4 of 20

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 20 

  
(c) (d) 

  
(e) (f) 

Figure 1. Field emission scanning electron microscope (FESEM) image of SnAgCu–nano La2O3 
composite solder: (a) 0% La2O3; (b) 0.01% La2O3; (c) 0.03% La2O3; (d) 0.05% La2O3; (e) 0.1% La2O3; (f) 
high-resolution image of (e) [23]. 

In the reflow process, a brittle interfacial layer is rapidly formed at the interface between the 
molten solder and the substrate; meanwhile, the overgrowth of intermetallic compounds (IMCs) will 
result in lower connecting strength of solder joints [24,25]. After multiple reflow, the coarsening of 
the Cu6Sn5 layer occurs and the Cu3Sn layer is formed at the interface between the Cu6Sn5 layer and 
the substrate, which decreases the reliability of the joints. Chan et al. [26] found that adding Zn 
nanoparticles could decrease the growth rate of Cu6Sn5 and suppress the formation of Cu3Sn. 
Research [27] found that the grain size of Cu6Sn5 IMC increased with the increasing reflow time, and 
TiO2 nanoparticles could effectively suppress the growth of the IMC layer by preventing the diffusion 
of Cu and Sn atoms. 

Considering the effect of secondary phase particles on the migration of grain boundary during 
grain growth, the total restraining force acting on the boundary can be expressed as follows: 

b3fγ=
2r

F  (1)

where f is the volume fraction of secondary phase particles at grain boundary, γb is the interface 
energy per unit area of grain boundary, and the r is the radius of secondary phase particles. It is 
obvious that F is inversely proportional to r. Therefore, the γ-Fe2O3 nanoparticle with smaller size 
have a better refining effect on β-Sn phase in SAC105–Fe2O3 composite solder, as shown in Figure 2 
[28]. On account of high surface energy, the doped CNTs were easily adsorbed on the surface of β-
Sn and IMCs, which significantly refined the microstructure of the composite solder by inhibiting the 
migration of grain boundaries [29].  

  
(a) (b) Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 20 

  
(c) (d) 

Figure 2. Microstructure of the solders: (a) SAC105; (b) SAC105-nano Fe2O3 (20 nm); (c) SAC105-nano 
Fe2O3 (50 nm); (d) SAC105-nano Fe2O3 (200 nm) [28]. 

2.2. Mechanical Properties 

During operation, solder joints are subjected to the thermal-mechanical stress because of the 
temperature change and mismatch in the CTEs (coefficients of thermal expansion) of different 
materials. Therefore, high enough strength is required for the joints due to the accumulation of 
residual stress during operation caused by CETs mismatch [29]. The addition of minor Al 
nanoparticles into the SnAgCu solder could obviously refine Cu6Sn5, Ag3Sn IMCs, and eutectic 
microstructure, thus enhancing the mechanical properties of the solder. However, the mechanical 
properties of the solder would decrease once the content of Al nanoparticles exceeded 0.1 wt.%, as 
shown in Figure 3 [30]. Tang [31] found the fracture of some Sn0.3Ag0.7Cu as flowed solder joints 
presented brittle characteristic and some microcracks occurred. Owing to the growth of IMCs during 
reflow, a large stress was accumulated inside or around the IMC, which would result in local stress 
concentration and strength reduction in the tensile test. Since Mn nanoparticles addition could reduce 
the IMC thickness and reduce the accumulation of stress during reflow, the UTS of Mn-containing 
solder joints was improved. 

 
(a) 

 
(b) 

Figure 3. The mechanical properties of SAC105–xAl solder joints: (a) Tensile force; (b) shear force [30]. 

Compared with the original solder, the strength and hardness of the SnAgCu–nano TiO2 
composite solder were significantly improved because TiO2 particles could pin the movement of 
dislocations and grain boundaries. However, it is worth noting that the plasticity of the composite 
solder decreased to a certain extent and many holes were found at the Ag3Sn grain boundaries [32,33]. 
The mechanical properties of SnAgCu–nano La2O3 composite solder were greatly improved because 
the addition of La2O3 nanoparticles refined the microstructure and increased dislocation density by 
secondary phase strengthening [23]. 

Ag-GNSs nanoparticles were added into SnAgCu solder and the research result shows that 
compared with GNSs nanoparticles, the strengthening effect of Ag-GNSs nanoparticles is more 

Figure 2. Microstructure of the solders: (a) SAC105; (b) SAC105-nano Fe2O3 (20 nm); (c) SAC105-nano
Fe2O3 (50 nm); (d) SAC105-nano Fe2O3 (200 nm) [28].

2.2. Mechanical Properties

During operation, solder joints are subjected to the thermal-mechanical stress because of the
temperature change and mismatch in the CTEs (coefficients of thermal expansion) of different materials.
Therefore, high enough strength is required for the joints due to the accumulation of residual stress
during operation caused by CETs mismatch [29]. The addition of minor Al nanoparticles into the
SnAgCu solder could obviously refine Cu6Sn5, Ag3Sn IMCs, and eutectic microstructure, thus enhancing
the mechanical properties of the solder. However, the mechanical properties of the solder would
decrease once the content of Al nanoparticles exceeded 0.1 wt.%, as shown in Figure 3 [30]. Tang [31]
found the fracture of some Sn0.3Ag0.7Cu as flowed solder joints presented brittle characteristic and
some microcracks occurred. Owing to the growth of IMCs during reflow, a large stress was accumulated
inside or around the IMC, which would result in local stress concentration and strength reduction
in the tensile test. Since Mn nanoparticles addition could reduce the IMC thickness and reduce the
accumulation of stress during reflow, the UTS of Mn-containing solder joints was improved.
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Compared with the original solder, the strength and hardness of the SnAgCu–nano TiO2 composite
solder were significantly improved because TiO2 particles could pin the movement of dislocations and
grain boundaries. However, it is worth noting that the plasticity of the composite solder decreased to
a certain extent and many holes were found at the Ag3Sn grain boundaries [32,33]. The mechanical
properties of SnAgCu–nano La2O3 composite solder were greatly improved because the addition of
La2O3 nanoparticles refined the microstructure and increased dislocation density by secondary phase
strengthening [23].

Ag-GNSs nanoparticles were added into SnAgCu solder and the research result shows that
compared with GNSs nanoparticles, the strengthening effect of Ag-GNSs nanoparticles is more obvious
because Ag can react with Sn matrix to form Ag3Sn, which makes the distribution of Ag-GNSs in the
matrix more uniform and stable [34].

2.3. Wettability

Due to the high melting point, Ni nanoparticles addition can form a frame construction in the
solder joint, thereby promoting the spreading of the molten SnAgCu solder [35,36]. During the wetting
process, Ag nanoparticles in the composite flux gathered at the interface between the molten SnAgCu
solder and the Cu substrate, reducing the surface energy of the system and greatly increasing the
wetting force [37].

Absorption of Fe2O3 nanoparticles on the surface of the Cu substrate decreased the surface
tension of molten SnAgCu–nano Fe2O3 composite solder and thus the wettability of the solder
was improved [38]. Figure 4 shows the effect of α-Al2O3 nanoparticles on the spreading area of
Sn–0.3Ag–0.7 Cu solder; the maximum spreading area of the composite solder is 79 mm2 with 0.12 wt.%
Al2O3 nanoparticles addition [39]. The wettability of the composite solder increases because α-Al2O3

nanoparticles are easily adsorbed at the surface of Cu substrate and decrease the surface tension of
the solder. According to the Young equation, the contact angle increases when the surface tension is
reduced, resulting in a bigger spreading area; the schematic diagrams of the wetting and spreading
process is shown in Figure 5.
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Appropriate content of GNSs can significantly increase the spreading area of SnAgCu solder;
however, when the content exceeds 0.1 wt.%, GNSs tend to agglomerate and float onto the top of the
molten solder and, hence, the wettability of the composite solder decreases [40].
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Figure 5. Schematic diagram of the effect of Al2O3 nanoparticles on the wetting and spreading:
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2.4. Reliability

After high-temperature storage, the coarsening IMC layer of solders joint could be obtained,
which has been proven to be harmful to solder joints [41–43]. Competitive growth of Cu6Sn5 and
Cu3Sn layers reduces the mechanical properties of solder joints and increases the risk of fracture [44].
Zhao et al. [45] found the absorption of TiO2 nanoparticles on the surface of interfacial IMCs could
hinder the diffusion and reaction between Cu and Sn, so the formation and growth of IMCs was
inhibited. With 0.5 wt.% TiO2 nanoparticles addition, the activation energies of overall IMC layer
growth increased from 42.48 KJ/mol to 60.31 KJ/mol, which meant more energy was needed for elements
diffusion and IMCs growth [46]. TiC nanoparticles can also lower the growth rate of IMCs layer during
aging. One reason is that the particles can be adsorbed on the surface of IMCs and the other is that the
gathering of TiC particles at the interface decreases the concentration gradient of Sn. Consequently,
appropriate content of TiC nanoparticles effectively inhibited the growth of Cu6Sn5 and Cu3Sn layers
during aging, as shown in Figure 6 [47].
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The increasing current density in IC brings a deteriorative electromigration effect and the
improvement of EM resistance of solder joints gradually becomes a research focus in reliability
research [48,49]. CNTs will entangle with each other after adding it in the strengthening phase in
lead-free solder. Because of the excellent electrical conductivity of CNTs, the conductivity channel
formed by CNTs greatly decreases the current intensity of the solder matrix, which increases the service
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life of the solder joints [29,50,51]. After SAC-CNTs/Cu solder joints underwent aging at 100 ◦C and
a current density of 1.2 × 104 A/cm2 for 336 h, a Cu3Sn layer formed between the Cu6Sn5 layer and the
Cu substrate. The diffusion of Cu atoms from the solder matrix to the interface was impeded due to
the pinning effect of CNTs, therefore the thickness of Cu6Sn5 and Cu3Sn layers at both the anode side
and cathode side decreased with the increase of CNTs content [52].

Since lead-free solders are usually exposed to corrosion environments, it is important to improve
corrosion resistance of the solder for improving reliability and mechanical properties of solder joints [53].
Han [54] found that GNSs could significantly improve corrosion resistance of SAC solder and the
optimum content was 0.03 wt.%. Uniformly distributed GNSs increased the tortuosity of oxygen
diffusion pathway and inhibited the diffusion of oxygen in the solder, as illustrated in Figure 7.
Furthermore, the addition of GNSs refined the microstructure of the solder and the fine grains formed
the initial passivation film to inhibit further corrosion.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 20 
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3. SnBi-Based Solders

3.1. Microstructure

After adding Ni nanoparticles into SnBiAg solder, the Bi-rich phase and Ag3Sn IMC was refined
because the formation of Ni-Sn IMCs could act as nucleation sites and inhibit the grain growth [55].
With the addition of 0.4 wt.% Ag nanoparticles, a mass of dispersed nano-Ag3Sn particles formed,
which inhibited the grain growth and provided a refined microstructure [56]. It is worth noting that
refinement effect does not always increase with the decrease of nanoparticles dimension. Because of
small size and high surface energy, Ag nanoparticles with a size of 31 nm have a stronger tendency to
agglomerate to larger particles and cannot disperse in the solder matrix in comparison with those of
76 nm and 133 nm [57]. As a result, SnBi solder-doped 31 nm Ag nanoparticles presents larger grain
size and interphase spacing, as shown in Figure 8.

Liu et al. [58] has reported the influence of Cu nanoparticles on the microstructure of SnBi
nano-composite solder. The formation of Cu6Sn5 IMC phase was detected by analyzing XRD patterns
of SnBi-3Cu solder. During solidification, the Cu6Sn5 nanoparticles served as nucleation sites and
greatly increased the nucleation rate, which led to the grain refinement of the solder bulk. Wu et al. [59]
found that with 0.05 wt.% Cu6Sn5 nanoparticles addition, the grain refinement of SnBi–nano Cu6Sn5

composite solder reached the maximum. Smaller amount of Cu6Sn5 nanoparticles had no obvious
effect on the nucleation rate, however when the content was excessive, the agglomeration of Cu6Sn5

nanoparticles would weaken its refinement effect.
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Ni can react with SnBi solder matrix to form some stable intermetallic compounds such as Ni3Sn4

and Ni3Sn, thereby increasing the bonding force between Ni-CNTs and the matrix. As a result, Ni-CNTs
distribute more uniformly and become harder to agglomerate in comparison with pure CNTs [60,61].
Therefore, Ni-CNTs can effectively suppress the growth of interfacial IMCs because of their higher
stability in the solder joints during soldering.

3.2. Mechanical Properties

The formation of IMCs layer is the basis of fine bonding between the solder and substrate,
but the excessive growth of IMCs layer will reduce the reliability of interconnection and the lifetime of
electronic devices. Research [57] found Ag nanoparticles addition could suppress the growth of Cu-Sn
IMC and improve the shear strength of the solder joints by 18.9% after 180 min liquid reaction at 220 ◦C.
The improvement behavior can be explained by refinement strengthening, dispersion strengthening,
and absorption theory. Under external force, the deformation of the composite solder is dispersed to
smaller grains with different orientation, which suppressed the formation of cracks and increased the
ductility of the solder.

Wu et al. [62] reported that 0.05 wt.% Ni-CNTs could effectively increase the ultimate tensile
strength (UTS) of SnBi solder bulks and joints, as shown in Figure 9. What is more, the fracture
surface of SnBi-CNTs solder appeared more regular than the plain SnBi solder and CNTs were detected
pining at the grain boundaries in high magnification, which demonstrated that the grain growth was
suppressed, and the microstructure was refined by Ni-CNTs addition. However, excessive CNTs could
gradually translate the fracture modes from ductile fracture to brittle fracture and decrease the UTS
and elongation of the composite solder at the same time.
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It was found that the effect of GNSs on the fracture surface of SnBi solder was similar to that
of CNTs [63]. The phenomenon that GNSs embedded in the fractured solder bulk was investigated,
meaning strong bonding was formed between GNSs and the matrix. When the solder was under tensile
stress, GNSs would be pulled out from the matrix to reduce the stress concentration that appeared
in the crack tip. However, due to the restacking behavior of GNSs, the elongation of the composite
solders decreased when the content exceeded 0.01%. Wu et al. [64] used finite element modeling (FEM)
method to analyze the stress distribution at the interface of GNSs reinforced Sn58Bi0.7Zn solder joints
(after aging for 120 min) in the tensile test. The result showed that the GNSs addition changed the
maximum stress position from the Cu/IMC interface in undoped joints to the IMC/solder interface in
GNSs-doped joints, which indicated that the composite solder joints have better tensile properties.

3.3. Wettability

Adding BaTiO3 nanoparticles can reduce the surface tension between the liquid solder and
increase the fluidity of the molten solder, thereby increasing the spreading coefficient of SnBi solder
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greatly [65]. Compared with original SnBi solder, the spread area of SnBi–1Y2O3 composite solder on
the Cu substrate increased by 20% under the same experimental conditions, as shown in Figure 10 [66].
When the addition of Y2O3 exceeded 1 wt.%, the increasing viscosity of the molten solder inhibited its
flow and, hence, the wettability decreased.
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With the addition of 0.5 wt.% Ni nanoparticles, the contact angle of molten SnBiAg–Ni composite
solder on the Cu substrate decreased from 33.1◦ to 23.4◦ [55]. Due to extremely high surface activity,
Ni nanoparticles tended to gather at the molten SnBi/Cu surface, which lowered the surface tension
between the molten solder and the substrate and significantly promoted the spreading process.
Therefore, the wettability of SnBi solder bearing Ni nanoparticles was improved.

Sun et al. [67] reported that nano-Cu particles could react with Sn to form stable Cu6Sn5 IMC
during reflow, which inhibited the spreading of the molten solder. Therefore, the spread ratio (SR) value
of SnBi solder bearing Cu nanoparticles decreased with the increasing content of Cu nanoparticles.

3.4. Reliability

The reliability of SnBi solder joint is sensitive to the high-density current, which is much more
severe in the increasingly finer pitch of advanced electronical devices [68]. Compared with other
Sn-based solders, the Cu6Sn5 layer at the SnBi/Cu interface grows faster and the probability of cracks
formation increases under high-density current. The current also causes the migration and segregation
of Sn and Bi atoms in the solder, which results in the formation of Sn-rich layer and brittle Bi-rich layer
on the anode side and cathode side, respectively [69,70]. Numerous studies have shown that adding
nanoparticles can significantly improve the electromigration resistance of SnBi solders.

Chan et al. [71] reported that nano-Ag particles could react with Sn to form fine and dispersed
Ag3Sn particles, which refined the microstructure of the composite solder and hindered the migration
of Bi atoms. After adding 2 wt.% Ag nanoparticles, Bi atomic flux of Sn58Bi solder decreased from
7.43 × 1012 atoms/cm3 to 4.77 × 1012 atoms/cm3 under the current density of 5 × 103 A/cm2 at 303 K,
which meant SnBi-Ag solder joints have stronger EM resistance. Nano-Al2O3 particles tended to gather
at the surface of interfacial IMCs layer and inhibited the atomic migration in the solder joints under
the electro-thermal treatment, and thus, the EM resistance of the composite solder is significantly
improved [72].

The addition of nanoparticles also has an important influence of the corrosion resistance.
The corrosion rate can be calculated as:

R =
8.76× 107

× (M−Mt)

STρ
(2)
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where M and Mt represent the mass of sample before and after corrosion, S is the surface area of
sample, T is the corrosion time, and ρ is the density of sample [73]. Figure 11 [59] illustrates that
0.05 wt.% and 0.1 wt.% Cu6Sn5 nanoparticles obviously suppress the growth of corrosion rate, especially
in the first 10 days. The grain-refining effect of Cu6Sn5 nanoparticles results in more boundaries,
which can serve as corrosion barriers, thus improving the corrosion resistance of the composite solder.
A similar phenomenon was detected in the corrosion process of the SnBi–GNSs composite solder [63].
After corrosion of 400 h, Bi dendrites formed and less ditches existed at the gapping space of surface
microstructure with the addition of 0.05 wt.% GNSs. Besides, the corrosion rate of the SnBi-0.05GNSs
solder almost remained stable at 0.45 mm/y.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 20 
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4. SnZn-Based Solders

4.1. Microstructure

The matrix microstructure of the SnZn solder mainly consists of β-Sn phase and needle-shaped
α-Zn phase, in which the coarsening α-Zn phase greatly decreases the mechanical properties of SnZn
solder [74]. Besides, the existence of Zn-rich phase greatly reduces the oxidation resistance of the
SnZn solder, which limits the practical use of the SnZn solder. Different from other Sn-based solders,
the interfacial IMCs layer of the SnZn/Cu solder joint is mainly Cu5Zn8, which increases the risk of
fracture of solder joints during service due to its poor reliability [75].

It is generally known that soldering process parameters have a great influence on the microstructure
and properties of solder joints. Zhang et al. [76] found the thickness of Cu5Zn8 layer increased with
the reflow time and temperature, and the addition of Ni and Ag nanoparticles could effectively
suppress the IMC growth behavior. Besides, with the addition of Ni nanoparticles, the grain growth of
needle-shaped α-Zn phase could also be inhibited because Zn-Ni IMCs and Ni nanoparticles increased
the heterogeneous nucleation sites, as shown in Figure 12 [77]. Due to high surface energy and large
special surface area, Al2O3 nanoparticles can also provide nucleation sites during the solidification
process of the solder. So, it can not only inhibit the coarsening of dendrite Sn-Zn eutectic structure,
but also refine the microstructure of the composite solder [78].

The gathering of ZrO2 nanoparticles at the phase boundaries decreased surface energy of the
boundaries and inhibited the growth of Zn-rich phase [79]. Therefore, the average grain size and
spacing of Zn-rich phase were significantly reduced by the addition of ZrO2 nanoparticles, as shown
in Table 1. It was also reported that the addition of ZrO2 changed the thickness and composition of
interfacial IMCs in SnZn-ZrO2/Cu solder joints. Due to the refining effect of ZrO2 nanoparticles, less
Zn atoms could migrate from the solder bulk to the interface to form Cu5Zn8 layer while the migration
of Cu atoms became easier, resulting in the increased thickness of Cu6Sn5 layer. A small addition of
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ZnO nanoparticles can significantly decrease the sizes of the β-Sn dendrites [80]. The refinement can be
attributed to the absorption of ZnO on the grain surface, which reduces the growth rate of β-Sn grains.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 20 

 
Figure 11. Corrosion rate of SnBi–xnano Cu6Sn5 composite solder: x = 0%, 0.03%, 0.05%, 0.1% [59]. 

4. SnZn-Based Solders 

4.1. Microstructure 

The matrix microstructure of the SnZn solder mainly consists of β-Sn phase and needle-shaped 
α-Zn phase, in which the coarsening α-Zn phase greatly decreases the mechanical properties of SnZn 
solder [74]. Besides, the existence of Zn-rich phase greatly reduces the oxidation resistance of the 
SnZn solder, which limits the practical use of the SnZn solder. Different from other Sn-based solders, 
the interfacial IMCs layer of the SnZn/Cu solder joint is mainly Cu5Zn8, which increases the risk of 
fracture of solder joints during service due to its poor reliability [75]. 

It is generally known that soldering process parameters have a great influence on the 
microstructure and properties of solder joints. Zhang et al. [76] found the thickness of Cu5Zn8 layer 
increased with the reflow time and temperature, and the addition of Ni and Ag nanoparticles could 
effectively suppress the IMC growth behavior. Besides, with the addition of Ni nanoparticles, the 
grain growth of needle-shaped α-Zn phase could also be inhibited because Zn-Ni IMCs and Ni 
nanoparticles increased the heterogeneous nucleation sites, as shown in Figure 12 [77]. Due to high 
surface energy and large special surface area, Al2O3 nanoparticles can also provide nucleation sites 
during the solidification process of the solder. So, it can not only inhibit the coarsening of dendrite 
Sn-Zn eutectic structure, but also refine the microstructure of the composite solder [78]. 

  
(a) (b) 

  
(c) (d) 
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Table 1. Grain size and spacing of Zn-rich phase in the SnZnBi–xZrO2 solder.

Solder Maximal Size
(µm)

Minimal Size
(µm)

Average
Size (µm)

Average Spacing
(µm)

SnZnBi 10.5 1.2 4.6 ± 0.09 2.2 ± 0.1
SnZnBi–0.25ZrO2 2.5 0.5 1.5 ± 0.1 1.3 ± 0.04
SnZnBi–0.5ZrO2 6.6 0.4 2.8 ± 0.3 1.1 ± 0.06
SnZnBi–1ZrO2 8.3 0.6 3.4 ± 0.5 2.1 ± 0.08

4.2. Mechanical Properties

The addition of 1.0 wt.% Sb nanoparticles greatly increased the tensile strength and decreased the
elongation of the composite solder, as shown in Figure 13 [81]. The formation of ε-Sb3Zn4 not only
reduced the amount of Zn atoms to form Zn-rich phase, but also acted as nucleation sites, making the
distribution of Zn-rich phase more uniform. Thus, the tensile properties of the SnZn–nano Sb3Zn4

composite solder were improved. However, the microstructure of the solder matrix deteriorated when
excessive Sb was added, resulting in the decrease of the tensile strength. It was reported that Al2O3

nanoparticles have a similar effect on the mechanical properties of SnZn solders [78].
Zhang et al. [82] found Ag nanoparticles could react with Sn atoms to form spherical-shaped Ag3Sn

IMC phase, which refined the solder matrix and improved the mechanical properties. SnZn solder joints
showed a typical brittle fracture, while SnZn-Ag solder joints presented dimple failure morphologies
because of the refining effect of Ag nanoparticles. Due to the pinning effect and dispersion strengthening
of ZnO, the sliding of grain boundaries was retarded and the tensile creep properties of the composite
were improved [80].
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In summary, Table 2 lists the mechanical properties of some lead-free solders bearing nanoparticles.
As seen from the table, SnBi-based solders present higher strength and carbon nanomaterials
(CNTs, GNSs) have great influence of the composite solders. In general, the addition of nanoparticles
improves the tensile strength of the solders, but simultaneously reduces the elongation due to their
strong restriction effect on the movements of dislocation. Therefore, the optimum content should be
further determined by comprehensive comparison of mechanical properties and other performance
such as wettability and reliability.

Table 2. The mechanical properties of nanoparticle-reinforced lead-free solders.

Solders UTS (MPa) Elongation (%) Microhardness References

Sn3.0Ag0.5Cu 46.0 29.5 / [83]
Sn0.3Ag-0.5Cu/0.1Mn 56.5 / / [31]
Sn3.5Ag0.25Cu/1TiO2 70.1 25.2 18.5 HV [32]

Sn3.0Ag0.5Cu/0.05La2O3 79.0 14.1 13 HV [23]
Sn3.0Ag0.5Cu/0.03GNSs 50.3 23.5 / [83]
3Sn3.0Ag0.5Cu/0.1GNSs 50.7 21.5 / [83]

Sn3.0Ag0.5Cu/0.2Ni-GNSs 58.4 / 14.6 HV [84]
Sn3.0Ag0.5Cu/0.05Ag-GNSs 50.1 14.7 / [85]

Sn3.8Ag0.7Cu/1CNTs 56.7 24.4 / [86]
Sn58Bi 81 21 0.30 GPa [63]

Sn58Bi/0.01GNSs 84 32 0.26 GPa [63]
Sn58Bi/0.1GNSs 93 17 0.41 GPa [63]
Sn58Bi/0.03CNTs 94.2 21.7 / [60]

Sn9Zn 41.0 43.4 13.6 BHN [87]
Sn9Zn/1.0Ag 43.6 19.4 16 BHN [87]
Sn9Zn/1.0Sb 53.6 21.6 15.9 BHN [81]

Sn9Zn/1.0Al2O3 43.4 44.9 27 HV [78]

4.3. Wettability

The SnZn solder has a poor wettability due to its poor oxidation resistance, which decreases
the reliability of the solder joints. Figure 14 [88] shows that the addition of ZrC nanoparticles has
a significant impact on the wettability of the SnZn solder. Compared with the plain SnZn solder,
the spreading area of the SnZn–0.06 ZrC composite solder could be increased from 143.64 mm2

to 190.92 mm2. However, when the content is excessive, ZrC nanoparticles would agglomerate at
the surface of the molten solder, which inhibited the wetting and spreading of the liquid solder on
Cu substrate.
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Figure 14. Spreading area of SnZn–xZrC (x = 0, 0.03, 0.06, 0.09, 0.12) composite solders [88].

Generally, the larger the width of wetting ring is, the better wettability the solder has. Figure 15
illustrates that with the addition of Al2O3 nanoparticles, the spreading area and the width of
precursor film increased [89]. Therefore, the wettability was improved by adding small amount of
Al2O3 nanoparticles.
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4.4. Reliability

During aging and reflow, the thickness of brittle Cu5Zn8 interfacial layer increases with time,
which brings a great threat to the reliability of SnZn solders. Some research reported that RE addition
could suppress the coarsening of Cu5Zn8 IMC, but it would also result in spontaneous growth of Sn
whiskers and finally lead to the potential failure of electronics devices [90]. Research [91] shows that
Ni nanoparticles can effectively increase the shear load of the solder joints due its grain refinement.

The practical use of SnZn solders is limited because the existence of Zn-rich phase greatly reduces
the oxidation resistance of the SnZn solder [92]. Under high temperature and humidity conditions,
water vapor and oxygen oxidized both the surface microstructure and Zn-rich phase in the solder
matrix, resulting in volume expansion and the increase of internal stress, which easily induces cracks
along Sn grain boundaries. Chan et al. [91] found the addition of Ni nanoparticles could aid the
formation of IMCs in the grain boundaries, so the penetration of H2O and O2 was inhibited as well as
the formation of ZnO. It is also reported that Ag nanoparticles increased the thermal and humidity
stability of the SnZn-based solder alloy [76]. As shown in Figure 16, the oxidation of Zn-rich phase
was significantly inhibited with the addition of Ni and Ag nanoparticles.
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5. Conclusions

Although lots of research results have been achieved in nanoparticle-reinforced lead-free
solder, there are still several shortages existing in the application of the composite solder.
Firstly, nanoparticle-reinforced lead-free solders remain in the experimental research stage and hardly
replace the SnPb solder to meet the requirement of electronic package industries. Secondly, compared
with microalloying, the amount of research on nanoparticle-reinforced lead-free solders is still relatively
less and the influence mechanism of nanoparticles on the reliability of the composite solders in various
service environments is insufficient. What is more, the preparation process of nanoparticle-reinforced
composite solder is complex and the cost is high, which limits its industrial application. To further
improve the properties of nanoparticle-reinforced lead-free solders, future development trends can be
carried out in the following aspects:

1. With the development of electronic devices towards miniaturization and high performance,
stricter requirements have been put forward for the reliability of lead-free solders. The current
research mainly focuses on the effect of thermal stress and current stress on the performance of
the solders. However, more and more electronic devices are applied to harsh environments such
as cryogenic temperatures [93,94] and irradiation [95]. Therefore, research on the reliability of the
solder bearing nanoparticles in these harsh environments will become a hot spot in this subject.

2. It has been proven that the coupling effects of RE and nanoparticles can further refine the
microstructure and improve the mechanical properties of lead-free solders [96]. Thus, the combined
addition of RE and nanoparticles may become a new reinforcement method to improve the
performance of the solders.

3. Due to small tendency of agglomeration and fine physical and chemical properties, carbon-based
nanomaterials can effectively improve the microstructure of lead-free solders and improve the
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properties [97,98]. Consequently, the development of new carbon-based nanomaterial-reinforced
solders with better performance may become a new direction for the future research.

4. At present, lead-free solders bearing nanoparticles are mainly fabricated by mechanical mixing of
the solder particles and nanoparticles. It is claimed that the nanoparticle-reinforced lead-free
solders can also be directly prepared by adding nanoparticles though flux doping [37,99] and
in-situ formation [100]. Therefore, exploring new preparation methods with simpler processes
and low cost attracts wide attention from researchers.
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