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Abstract: Highways built on soft clay subgrade are more prone to subsidence due to the geotechnical
characteristics of soft clay. Monitoring ground movements in this area is significant for understanding
the deformation dynamics and reducing maintenance cost as well. In this paper, small baseline
subset synthetic aperture radar interferometry (SBAS-InSAR) technique is exploited to obtain and
investigate the time series ground surface deformation after the construction of a road embankment
over soft clay settlement. Considering the important effect of temporal deformation models on the
final accuracy of estimated deformation, both the linear velocity model and seasonal deformation
model are utilized to conduct the comparative investigation of deformation time series. Two highways
in Fuoshan, China—G1501 Guangzhou Belt Highway and Lungui Highway—were selected as the
test area. Thirteen TerraSAR-X images acquired from October 2014 to November 2015 were analyzed.
Comparative study based on two groups of analyses generated from the two models for both
highways were conducted. Consequently, several feature points distributed near the two highways
were analyzed in detail to understand the temporal evolution of the settlement. In order to evaluate
the reliability of our measurements, the residual phase was analyzed to assess the modelling accuracy
of the two models. In addition, leveling data were also used to validate the experimental results.
Our measurements suggest that the seasonal model is more suitable for the test highways, with an
accuracy of ±3 mm with respect to the leveling results.

Keywords: InSAR; soft clay; time series; deformation; seasonal model

1. Introduction

Long-term monitoring of highways built on soft clay settlement after the construction of road
embankments plays a significant role in preventing the long-term damage and economic losses induced
from long-term subsidence and ensuring the project quality of highways [1]. In China, a large number
of highways are built on soft clay under complicated geotechnical conditions, such as roads crossing
agricultural paddies, lake areas, or valleys. Due to the geotechnical characteristics of large natural
moisture content, high compressibility, low intensity, and unconsolidated structure, soft clay is more
prone to ground subsidence under the action of traffic load. The stability control of soft clay subgrade
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has become one of the major technical challenges in the field of subgrade engineering [2]. G1501 and
Lungui Highway are two examples of highways built on soft clay located in Fuoshan, Guangdong
Province, China. Both highways play an important role in local transportation. Therefore, long-term
temporal-spatial deformation monitoring of those highways is imperative and significant to understand
the dynamics of ground movements and prevent potential traffic problems.

Traditional deformation monitoring methods, such as Leveling and GPS, have been proven to be
highly precise and have been widely applied in highway deformation monitoring [3]. However, those
methods have significant deficiencies of limited spatial coverage and expensive consumption of time
and manpower, thus they are avoided in the application of deformation estimation for linear ribbon
infrastructures including highways. Small baseline subset synthetic aperture radar interferometry
(SBAS-InSAR) is an advanced InSAR technology proposed by Berardino and Lanari [4,5], which can
obtain time series deformation results through extracting and processing the high coherence points in
multi-scene differential interferometric images through a least squares method [6–8]. It can suppress
temporal-spatial decorrelation of the traditional differential InSAR (D-InSAR) technology [9,10] and has
been widely applied in ground movements detection and deformation investigation induced by surface
subsidence [11–13], volcanic eruption [14], glacier drift [15,16], earthquakes [17], and landslides [18–20].

Modeling the functional relationship between the deformation phase components and unknown
parameters is a vital step in SBAS processing. Earlier study revealed that an accurate and reliable
deformation model can not only improve the accuracy of deformation estimation, but also control
the residual phase within an entire phase range, which affects the estimation of deformation
parameters [21,22]. Considering this, in order to obtain more precise and reasonable deformation time
series and better interpret the final time series subsidence, we conducted a comparative study based on
two groups of analyses using traditional linear velocity model and seasonal model for both highways.
SBAS-InSAR processing with 13 TerraSAR X images acquired from October 2014 to November 2015 is
applied to obtain the unwrapped interferograms.

2. Methodology

2.1. SBAS-InSAR Technology Based on the Linear Model

The basic principle of SBAS-InSAR technology is to generate time series deformation based on
a least square method, with the deformation maps generated by multi-single D-InSAR as the input
observation dataset [23,24]. Firstly, as N + 1 SAR images obtained at dates (t0, . . . , tn), covering the

same area, M interferometric pairs can be produced following the inequality N
2 ≤M ≤ N(N−1)

2 . Then,
one SAR image can be selected as the super master image. The unwrapped phase at pixel (x, r) in the
jth interferogram with the time period from dates tA to tB(tB > tA), can be expressed as [25]

δφ j(x, r) = φB(x, r) −φA(x, r)

≈
4π
λ [d(tB, x, r) − d(tA, x, r)] + 4π

λ
B⊥ j∆z(x,r)

r jsinθ j
+ ∆φ j

APS(tB, tA, x, r) + ∆φ j
res(x, r)

(1)

where j ∈ (1, . . . , M) is the order number of interferometric pairs. M is the total number of interferometric
pairs. (x, r) defines the SAR coordinates along range and azimuth direction, respectively. λ is the
radar wavelength (3.2 mm for X-band TerraSAR-X data); d(tB, x, r) and d(tA, x, r) are line-of-sight (LOS)
cumulative deformation, referred to as low-pass (LP) deformation component, at dates tA and tB,
respectively. B⊥ j is the spatial baseline and ∆z represents the DEM residuals. r j represents the center

range between the sensor and ground point. ∆φ j
APS is the phase contribution related to atmospheric

delay. ∆φ j
res is the residual phase, including phase noise, orbit error, and high-pass (HP) deformation

component [22].
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If the linear model is utilized to model the functional relationship between deformation and
settlement rate, d in Equation (1) can be expressed as

d(tB, x, r) − d(tA, x, r) =
q∑

j=p+1

v j
(
t j − t j−1

)
(2)

where p and q represent the index of master image at date tA and slave image at date tB, respectively,
for i-th interferometric pair. The unknown parameters here include elevation corrections ∆z and linear
rates v j over different periods, which can be estimated through a least squares method. Obviously,
the coefficient matrix of Equation (2) is a singular matrix. In order to solve the singular mathematical
problem, a singular value decomposition (SVD) algorithm is used here [26]. The linear rates of
each temporal unit can be estimated through the SVD algorithm. Consequently, the deformational
component can be obtained by integrating the velocity of each period, and the final time series
deformation results can be obtained [27–29].

2.2. Seasonal Model

In the seasonal model, the LP deformation is treated as a summary of linear and periodic
components, which has been widely used to estimate the displacement affected obviously by seasonal
effects (i.e., frozen soil) [30]. The LP deformation component in Equation (1) can be written as [31]:

d(t, x, r) = α1(x, r)t + α2(x, r) sin
(2π

T
t
)
+ α3(x, r) cos

(2π
T

t
)

(3)

where t is the cumulative time related to the reference time and T represents 365 days for a year.
α1, α2, α3 are the unknown deformation parameters. The differential interferometric phase can be
expressed as:

φ j(x, r) = α1(tB − tA) + α2(x, r)
(
sin

(
2π
T tB

)
− sin

(
2π
T tA

))
+α3(x, r)

(
cos

(
2π
T tB

)
− cos

(
2π
T tA

))
+ 4π

λ
B⊥ j∆z(x,r)

r jsinθ j
+ ∆φ j,res(x, r)

(4)

The unknown parameters here include α1, α2, α3 and elevation corrections ∆z, which are treated
as constant coefficients over all temporal periods and can be estimated through a least square method,
as discussed above. Consequently, the LP deformation of all the high coherence points can be obtained
according to Equation (3) [32]. The HP deformation component is obtained by spatial-temporal filtering
of residual phase component ∆φ j,res, thus the time series deformation of all the high coherent points can
be obtained [33,34]. The experimental flow based on SBAS and the two models is shown in Figure 1.
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Figure 1. Experimental flow of small baseline subset synthetic aperture radar interferometry
(SBAS-InSAR) based on two models.

3. Experiment

3.1. Study Area

Two highways in Fuoshan, Guangdong Province, namely Lungui Highway and G1501 Guangzhou
belt highway, built on soft clay subgrade, are selected as test structures (Figure 2). Lungui Highway,
as the significant transportation hub, connects G321 highway in the north and West Jiuhongqi Road
in the south. With a total length of approximately 12 km, Lungui Highway is one of the three major
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south-north transportation lines in Fuoshan. Its main road was opened to traffic in October 2014,
constructed under the first-class highway standard and the urban roads standard. The subgrade was
designed to be 60 m in width, with soft clay being the primary rock-soil substrate along the route.
G1501 Highway, located in Shunde District, Fuoshan, is the south second ring part of the Guangzhou
belt highway and was opened to traffic in 2010. The standard of two-way six-lane expressway with
design of 100 km/h is adopted for the whole route. The total length of the route is about 49.33 km.
Connected to the Guangzhou North stretch of Beijing-Zhuhai Expressway, G1501 Highway is a key
transportation line diverting large traffic load from Guangzhou city transportation and strengthening
the connection of surrounding urban agglomerations. According to the design criterion of these test
highways, the permissible vertical post-construction subsidence is 30 cm/yr for regular road segment,
20 cm/yr for culvert, and 10 cm/yr for bridges connections. According to the statistics of Fuoshan
Transportation Bureau, the passengers flow volume of Shunde District, where the highways are located,
is up to 2018.31 million people per kilometer, whereas the freights’ flow using the test highways is
approximately 654.64 million tons per kilometer in 2014. The huge traffic flow indicates the significant
traffic situation of those two highways.

Both highways are located in delta alluvial plain, characterized by the presence of flat and
low-lying surface of liquefiable sandy soil and underlying bedrock of granites and clay sand. The
main geological component of the soft clay along the routes comprises muddy clay and silty clay,
with characteristics of soft-plastic behavior. Due to the geotechnical characteristics of high natural
moisture content, high compressibility, and low mechanical strength, the engineering properties of
soft clay are extremely poor. Especially under the action of vibration load, soft clay is prone to
engineering geological problems such as transverse slip, uneven settlement, and creep, accordingly
imposing serious problems on the stability of subgrade and structures. Figure 2c shows the distribution
of the water system around Lungui Highway and G1501 Highway. We can see the test highways
are surrounded by three main rivers—Shunde, Tanzhou and Ronggui Channel, providing adequate
underground water supply to the area. Due to the fast flow rate, Ronggui and Shunde Branch Channel
play an important role in the underground aquifer in this area. The water level and volume in this area
are greatly affected by precipitation and tide, according to the hydrological materials of this area.
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Figure 2. Study area featured at different scales: (a) Optical image. The red rectangle defines the spatial
coverage of the TerraSAR-X images in our experiment; (b,c) Highway region of interest outlined in red
solid lines; (d) Location in China.

3.2. SAR Acquisitions and Data Processing

A total of 13 repeat-pass TerraSAR X-band Stripmap descending images, provided by the German
Aerospace Center, have been collected in this study. Their acquisition period covered from 27 October
2014 to 27 November 2015. The parameters of these TerraSAR-X images are listed in Table 1. The pixel
spacing of selected images is 2.198 m along range direction, and 1.965 m along azimuth direction.
Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) with 30 m spatial resolution
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provided by National Aeronautics and Space Administration (NASA) is utilized as external topographic
data [35].

Table 1. List of the interferometric pairs and their parameters with image number 6 as the master (orbit
no.119).

Image No. Acquisition Dates
(yyyy/mm/dd)

Normal
Baseline (m)

Temporal
Baseline (days)

0 2014/10/27 −126.22 242
1 2014/11/18 48.62 220
2 2015/01/01 122.99 176
3 2015/02/14 −10.34 132
4 2015/03/08 15.94 110
5 2015/05/13 −148.94 44
6 2015/06/26 0 0
7 2015/08/09 −27.10 44
8 2015/08/31 57.39 66
9 2015/09/22 −130.33 88

10 2015/10/14 −36.83 110
11 2015/11/05 −111.08 132
12 2015/11/27 111.41 154

The interferometric processing work was accomplished by SARscape 5.2 software. The spatial and
temporal baseline thresholds were set to be 130 m and 365 days, respectively. A total of 60 candidate
interferometric pairs were generated for both tested highways. Figure 3 shows temporal baseline (x axis)
and perpendicular baseline (y axis) of each selected time-adjacent interferometric pair. To remove the
topographic phases, SRTM DEM was used to simulate interferometric phases subtracted from these
interferograms. In order to maintain the resolution of highways, no multi-looking was conducted.
Goldstein filter was utilized to further suppress the atmospheric phase. In addition, the interferograms
were unwrapped with the minimum cost flow (MCF) method [4,36]. To improve the quality of coherent
points, we used the triple threshold algorithm (the amplitude deviation index, the average coherence
value, and intensity value) to detect the high coherence points automatically [37]. The coherence
threshold of 0.6 and the amplitude deviation index of 0.4 was adopted to ensure a reliable distribution
of high coherence candidates. The average coherence maps for the two test highways are shown in
Figure 4. The lighter the color is, the higher the coherence is. From Figure 4, we can see that higher
coherence is found in urban areas, mainly higher than 0.9. After the coherent points selection, a total of
27,465 and 83,528 candidates were extracted for Lungui Highway and G1501 Highway respectively.
After deleting low-quality interferometric pairs (i.e., with worse unwrapping phase, large orbit error
and atmospheric delay), 42 high quality interferometric pairs for Lungui Highway and 49 for G1501
Highway were generated.
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Figure 3. Spatial and temporal baselines of the interferometric pairs. (x axis represents the temporal
baseline, y axis represents the perpendicular baseline, and the yellow solid point represents the selected
master image in our data stack) (a) Lungui Highway; (b) G1501 Highway.
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4. Results and Discussion

4.1. Lungui Highway

Figure 5 shows the linear velocities comparison between the linear model and seasonal model.
Figure 5a illustrates the mean value of all the temporal deformation velocities between every two
time-adjacent SAR acquisitions obtained from the linear model. For comparison, the corresponding
linear average velocity for the seasonal model is calculated through the LP deformation components
acquired, according to Equation (3). As shown in Figure 5, linear model and seasonal model results
show good agreement in spatial distribution, with the color ranging from light green to orange, and
deformation rates generally ranging from −35 mm/yr to 5 mm/yr. It can be seen that the fast subsiding
points densely distribute in the lower left corner and the upper right part for both models, with the
velocity mainly ranging from −25 mm/yr to −45 mm/yr. The maximum deformation rate is up to
−39 mm/yr for the linear model. The main difference between the two images are two areas (see the
area within solid rectangle A,B in Figure 5a). The maximum subsidence rate detected at subsidence
bowl A is −38 mm/yr from the linear model, whereas it is only −24 mm/yr from the seasonal model.
In contrast, at the subsidence bowl B, the linear model shows smaller area, whereas the subsidence rate
of the seasonal model is more serious, with a maximum value up to −45 mm/yr.
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Table 2. Comparison of experimental results between the linear model and seasonal model.

Deformation
Model

Subsidence
Increasing Period

(yyyy/mm/dd)

Subsidence
Decreasing Period

(yyyy/mm/dd)

Maximum
Subsidence

(mm)

Maximum
Fluctuation

(mm)

Linear
model

2014/11/18–2015/08/31
2015/11/05–2015/11/27 2015/08/31–2015/11/05 −71

(2015/08/31) 67

Seasonal model 2014/11/18–2015/06/26
2015/09/22–2015/11/27 2015/06/26–2015/09/22 −66

(2015/06/26) 62
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Figure 6. Time series deformation of Lungui Highway based on the linear model (referenced to
27 October 2014).

Figures 6 and 7 show the time series deformation generated from the linear model and seasonal
model, respectively. From the spatial distribution, the results of the linear model and seasonal model
are consistent, with two main obvious subsidence bowls in the upper right and lower left of the
area, respectively. From the temporal variation, we can see both the results show serious fluctuation.
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The quantitative comparison of each highest oscillation, including subsidence increasing, subsidence
decreasing period, the maximum subsidence, and fluctuations, are shown in Table 2. For the result of
the linear model, the subsidence was increasing from 18 November 2014 to 31 August 2015, whereas a
decreasing trend occurred from 22 September 2015. The peak subsidence occurred at 31 August 2015,
with a magnitude of −71 mm. The overall deformation mainly distributes within the range of −20
to 0 mm. For the result of the seasonal model, similar subsiding increasing trend can be found until
25 June 2015. However, from 26 June 2015 to.22 September 2015, the seasonal results showed an obvious
jump in subsidence reduction, with the maximum subsidence recovery of 32 mm. From October 2014
to November 2015, another subsiding period started. The key reason for this temporal periodical
variation is supposed to be related to the local hydrogeological conditions discussed as follows.

From Figure 2c, we can see the densely distributed ponds along this route (small dark rectangles).
Most of those areas are breeding ponds, near Ronggui Channel and Shunde Branch Channel. According
to the in situ investigation, the ground water of the test area can be mainly divided into four layers:
The first layer is stagnant water contained in the filled soil layer, receiving recharge from meteoric
water, surface river water, and breeding ponds, and discharging by evaporation; both the second
and third layer are porewater with the characteristic of pressure-bearing, contained in the fine sand
layers. It receives the recharge of vertical river and lateral permeability water; the fourth ground
water layer is bedrock fracture water with very low water flow, contained in three rock layers under
the ground surface of the test highway. As the in situ survey shows, the shallow groundwater has a
certain hydraulic connection with the surface stream, thus the groundwater level is highly affected by
season. According to the hydrological materials of this area, the maximum variation of upper side
groundwater level is up to 1 meter. Figure 8 demonstrates the simulated groundwater mechanical
structure of this area.

Appl. Sci. 2019, 4, x FOR PEER REVIEW 9 of 20 

quantitative comparison of each highest oscillation, including subsidence increasing, subsidence 
decreasing period, the maximum subsidence, and fluctuations, are shown in Table 2. For the result 
of the linear model, the subsidence was increasing from 18 November 2014 to 31 August 2015, 
whereas a decreasing trend occurred from 22 September 2015. The peak subsidence occurred at 31 
August 2015, with a magnitude of −71 mm. The overall deformation mainly distributes within the 
range of −20 to 0 mm. For the result of the seasonal model, similar subsiding increasing trend can be 
found until 25 June 2015. However, from 26 June 2015 to.22 September 2015, the seasonal results 
showed an obvious jump in subsidence reduction, with the maximum subsidence recovery of 32 mm. 
From October 2014 to November 2015, another subsiding period started. The key reason for this 
temporal periodical variation is supposed to be related to the local hydrogeological conditions 
discussed as follows. 

From Figure 2c, we can see the densely distributed ponds along this route (small dark 
rectangles). Most of those areas are breeding ponds, near Ronggui Channel and Shunde Branch 
Channel. According to the in situ investigation, the ground water of the test area can be mainly 
divided into four layers: The first layer is stagnant water contained in the filled soil layer, receiving 
recharge from meteoric water, surface river water, and breeding ponds, and discharging by 
evaporation; both the second and third layer are porewater with the characteristic of pressure-
bearing, contained in the fine sand layers. It receives the recharge of vertical river and lateral 
permeability water; the fourth ground water layer is bedrock fracture water with very low water 
flow, contained in three rock layers under the ground surface of the test highway. As the in situ 
survey shows, the shallow groundwater has a certain hydraulic connection with the surface stream, 
thus the groundwater level is highly affected by season. According to the hydrological materials of 
this area, the maximum variation of upper side groundwater level is up to 1 meter. Figure 8 
demonstrates the simulated groundwater mechanical structure of this area. 

 

Figure 7. Time series deformation of Lungui Highway based on the seasonal model (referenced to 27 
October 2014). 

Aquifer is the main body of saturated rock in the shallow soft clay layer, where water can flow 
easily. All of aquifers are permeable. The storage of flowing water in the aquifer is greatly affected 
by season [38,39]. Groundwater flows through aquifers at a rate of 50 feet or inches per century 
(depending on the permeability). However, regardless of the speed, water will eventually be released 
or left in an aquifer. Each aquifer has a recharge and discharge area, respectively, and the amount of 
water stored in the aquifer reflects the altitude of its groundwater level. If the water inrush quantity 
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27 October 2014).

Aquifer is the main body of saturated rock in the shallow soft clay layer, where water can flow
easily. All of aquifers are permeable. The storage of flowing water in the aquifer is greatly affected by
season [38,39]. Groundwater flows through aquifers at a rate of 50 feet or inches per century (depending
on the permeability). However, regardless of the speed, water will eventually be released or left in an
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aquifer. Each aquifer has a recharge and discharge area, respectively, and the amount of water stored in
the aquifer reflects the altitude of its groundwater level. If the water inrush quantity is lower than the
natural displacement, the groundwater level and the storage of aquifers will decrease [40,41]. The water
level of an aquifer is usually highly sensitive to seasonal recharge, so it usually decreases in summer
or in dry years [42,43]. In summer, high temperature promotes the evaporation of flowing water in
the shallow aquifer, thus leads to the decreasing of aquifer volume. In contrast, as the temperatures
drop gradually in winter, the evaporation of flowing water in the shallow aquifer is suppressed, thus
the subsiding decreasing phenomenon is supposed to occur. As Figure 8 shows, from June 2015, the
temperature starts to drop gradually, with an accumulated decrease of 10◦C until December. Another
important reason for this seasonal deformation variation is supposed to be related to the increasing
rainfall during June to December. According to the precipitation records of Fuoshan (see Figure 9),
affected by the combined upper trough and bottom vortex, increasing rainfall appeared since 27 June
2015. The average rainfall amount is 127.3 mm in Fuoshan city, with 100–250 mm at 65% automatic
stations recorded, and 250 mm at Shunde automatic station. Due to the increase of rainfall, both water
amount in the shallow aquifer and the discharge in nearby water system are significantly increased
correspondingly. With accelerated flow speed, ground water in the aquifer of soft clay expanded due
to the impact of precipitation and supply from the surrounding water system, consequently inducing
considerable uplift phenomena.
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In order to further analyze the time series variation characteristics of high coherence point
deformation, three feature points A, B and C (their positions are shown in Figure 9) are selected to be
analyzed. As shown in Figure 9, point A is located at the junction of Lungui Road and Junye Road.
From the comparison, we can see that seasonal model results show generally periodic variation trend,
with accumulated peak subsidence of −49 mm in Jun 2015 (Figure 10a). However, from June 2015 to
October 2015, significant uplift of 36 mm occurred on this point. As shown in our aforementioned
analysis, with the increase of rainfall, the underground water quantity increased considerably, thus
inducing the uplift phenomena. Comparatively, similar periodic deformation trend is detected from
the linear model results. The difference is that the peak subsidence occurred in August 2015 and
the cumulative deformation reached up to −32 mm, with a lower maximum fluctuation of 17 mm
compared to that of seasonal model. In August and November 2015, a slight jump occurred, with the
jump range of about 22 mm. Point B is located in residential areas at the junction of West Xinliang Road
and South Fuoshan First Ring Extension Line. Point C is located next to Shunde Branch Channel and
Anlite Bridge. From Figure 10b,c, we can see the deformation trends at both point B and C perform
similar variations, with a typical periodic evolution characteristic. From the seasonal model results, the
accumulated maximum subsidence on point B is up to −38mm and the maximum seasonal fluctuation
is 23 mm.



Appl. Sci. 2019, 9, 2038 11 of 20

Appl. Sci. 2019, 4, x FOR PEER REVIEW 11 of 20 

 
Figure 9. Locations of typical feature points A, B, C. (a) Deformation map over period of 27 October 
2014 to 27 November 2015 in SAR coordinate system. (b), (c), (d) Locations of Point A, C (Levelling 
point K4) and B in Google Maps, respectively. 

 
Figure 10. Time series deformation on point A, B, C in Lungui Highway. (x axis defines the acquisition 
data of TerraSAR-X images, y axis defines the deformation values) (a) Point A; (b) Point B; (c) Point 
C (K4). 

In order to show more clearly the distribution of each deformation magnitudes in Lungui 
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the quantitative analysis, 80% of coherent points are within the range of −30 to 0 mm for linear model, 
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Figure 10. Time series deformation on point A, B, C in Lungui Highway. (x axis defines the acquisition
data of TerraSAR-X images, y axis defines the deformation values) (a) Point A; (b) Point B; (c) Point C (K4).

In order to show more clearly the distribution of each deformation magnitudes in Lungui
Highway, the quantitative comparison of the deformation magnitude distribution is specially selected
for illustration over the period of 27 October 2014 to 27 November 2015 (Figure 11). From the
quantitative analysis, 80% of coherent points are within the range of −30 to 0 mm for linear model,
whereas 77 % are for the seasonal model.
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Figure 11. The magnitude distribution of settlement points in Lungui Road from 27 October 2014 to
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coherence points).

4.2. G1501 Highway

During our data processing for the G1501 Highway area, unexpected orbital errors appeared in
most interferograms. As shown in Figure 12, the original generated deformation map is obviously
disturbed with orbital signal (the fringes ranging from green to red color in Figure 12b). The second-order
polynomial fitting method is used here to remove the orbital error. As shown in Figure 12c, after
simulating and deleting the linear orbital error component, the deformation signal has been extracted,
with several obvious subsiding areas [44].
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Figure 13. The average velocity maps over G1501 Highway generated by two models. (a) Linear model
result; (b) Seasonal model result.

Figure 13 shows the average linear velocities comparison for two models over G1051 Highway.
As shown in Figure 13, the linear model and seasonal model demonstrate good agreement in spatial
distribution, with the deformation velocity generally ranging from −27 to −8 mm/yr and the color
ranging from light green to orange yellow. The large subsidence points are mainly concentrated in the
upper left and bottom right part of the images, with the maximum velocity up to −63 mm/yr detected
from linear model and −57 mm/yr from seasonal model.
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Figure 15. Time series deformation of G1501 Highway based on seasonal model (referenced to
27 October 2014).

The time series deformation results of G1051 area obtained by the linear model and seasonal model
are shown in Figures 14 and 15, respectively. From Figure 14, no obvious discipline of the temporal
deformation variation can be found, and the temporal evolution over this stretch of highway performed
relatively smoothly. From January 2015 to August 2015, the subsidence is slightly increasing, whereas
from August 2015 to November 2015, the subsidence showed a slowly decreasing fluctuation, with the
maximum cumulative deformation of −65mm in August 2015. In contrast, the results generated by the
seasonal model showed a more obvious periodic fluctuation. The subsidence gradually increased from
December 2014 to June 2015, with the peak value of −67 mm in June 2015, and began decreasing from
June 2015. The maximum recovery of subsidence is 21 mm. Since G1501 Highway is under similar
geotechnical environment with Lungui Highway, the reasons for this typical seasonal variation are
supposed to be related to the hydrogeological conditions and climate factors including precipitation
and temperature. From the spatial distribution, deformation generated by both models are generally
consistent, with the obvious subsiding bowls distributed in the middle and lower parts of the map.

Figure 17 demonstrates the time series deformation of feature point D and E (the corresponding
locations in deformation map and Google Maps are shown in Figure 16). Point D was located at the
junction of N59 rural road and G1501 Highway. From Figure 16 we can see that the linear model results
show a slow subsiding with slight fluctuations, whereas the seasonal model result presents obvious
periodic variations. In June 2015, the maximum cumulative deformation of −48mm occurred. Similar
characteristics can be found at point E, as shown in Figure 17b. For the periods of February 2015 to
June 2015 and October 2015 to November 2015, the deformation was gradually increasing, with the
maximum magnitude of −32mm. From June to October 2015, apparent subsidence recovery occurred.
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As shown in Figure 16, both point D and E were located in the suburbs, with fish ponds surrounding
them. The increase of rainfall and decrease of temperature may suppress the subsiding of soft clay.
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4.3. Accuracy Assessment

In order to verify the reliability of the results obtained through two models, we calculated the
residual phase for all the coherent points. The average residual phase for each interferogram is shown
in Figure 18. The overall magnitude of the residual phase for both cases is less than 1 rad, indicating
both the linear model and seasonal model have good accuracy for time series deformation modeling,
thus are reliable in the application of deformation monitoring in soft clay subgrade areas. For Lungui
Highway, the root mean square (RMS) of the residual phase obtained by seasonal model is 1.8 rad,
whereas the linear model is 2.1 rad, with a 14% improvement. For G1501, the mean square root of
the residual phase acquired by seasonal model is 2.7 rad, whereas the linear model is 3.4 rad, with
a 20% improvement. Both figures reveal that the seasonal model shows better modelling accuracy.
Correspondingly, the seasonal model is more highly recommended for test highways in this paper.
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In addition, ground leveling measurements over the period of October 2014 to March 2015 were
collected to estimate the external accuracy of our experiment. The location of leveling point K4 is
shown in Figure 9. Figure 19 shows the time series results generated by both models at K4 compared
to that of leveling. It can be obviously seen that both models show good consistency with the leveling
measurements, indicating the SBAS technology is feasible for time series deformation monitoring of
highways built on soft clay subgrade. The root mean square error (RMSE) for linear model results is
estimated to be ±4mm, whereas, for seasonal model, this is ±3 mm. From our quantitative comparison,
the accuracy of the seasonal model is slightly higher than that of the linear model. Considering both
the accuracy evaluated through the residual phase and the comparison with leveling measurements,
the seasonal model is more highly recommended here for time series investigation in our case study.
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Figure 19. Time series deformation results compared with leveling measurements on K4 (the location
is shown in Figure 9).

5. Conclusion

A case study based on SBAS-InSAR technology and TerraSAR X imaginary is presented to
investigate the long-term deformation for highways built on soft clay subgrade after the road
construction over a 13-month period from October 2014 to November 2015. A comparative study of
the linear model and seasonal model were conducted. The deformation parameters and corresponding
time series deformation were estimated for both models on the two highways, respectively.

After our comparative analysis, similar spatial distribution of subsidence and temporal seasonal
fluctuation can be found in both models. The main difference between the two groups of measurements
generated by the two models is that the maximum subsidence occurred in August 2015 through the
linear model, whereas, in June 2015, through the seasonal model. According to the seasonal model
measurements, the most obvious subsidence was up to −65 mm, whereas the subsidence recovery
effect in November 2015, with magnitude, accumulated to 23 mm. The reasons suggested for this
seasonal effect are related to the hydrogeological conditions and external climatic factors, including
temperature and precipitation. We also conducted concrete deformation monitoring and analysis over
typical ground features.

To assess the accuracy for the two groups of case study measurements, residual phase and
ground leveling deformation are utilized to evaluate the modeling and external accuracy, respectively.
Compared to the linear model, the RMS of residual phase for the seasonal model was improved with
14% and 20% for Lungui Highway and G1501 Highway, respectively. The external accuracy evaluated
by leveling measurements was improved from ±4 mm to ±3 mm for Lungui Highway. Consequently,
seasonal model is more highly recommended in our case study.

The major deficiency of this case is that only limited leveling measurements are available. The two
models utilized in this experiment are pure mathematical empirical models, without specific physical
parameters. Future study will focus on time series deformation modelling, considering concrete inner
and external coefficients, such as temperature, humidity, and rheological parameters.
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