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Featured Application: Machine translation is a subfield of artificial intelligence that investigates
transformation of text in the source language into its equivalent in the target language.
Neural Machine Translation (NMT) is a recently-proposed framework for translation application
based on sequence-to-sequence models: a large neural network is used to translate the source
language sequence into the target language sequence. After years of development, NMT has
produced richer translation results than ever over various language pairs, becoming a new machine
translation model with great potential. As described in this paper, we present a corpus augmentation
method. The method has two variations: one is for all language pairs and the other for the
Chinese-Japanese language pair. The method generates pseudo-parallel sentence pairs to extend
the original parallel corpus. This paper describes the results obtained in the Japanese-Chinese
and Chinese-Japanese translation with the ASPEC-JC (Asian Scientific Paper Excerpt Corpus,
Japanese-Chinese) corpus, which substantially improved the translation performance. We also
supply code that can reproduce our proposed method.

Abstract: The translation quality of Neural Machine Translation (NMT) systems depends strongly on
the training data size. Sufficient amounts of parallel data are, however, not available for many language
pairs. This paper presents a corpus augmentation method, which has two variations: one is for all
language pairs, and the other is for the Chinese-Japanese language pair. The method uses both source
and target sentences of the existing parallel corpus and generates multiple pseudo-parallel sentence
pairs from a long parallel sentence pair containing punctuation marks as follows: (1) split the sentence
pair into parallel partial sentences; (2) back-translate the target partial sentences; and (3) replace each
partial sentence in the source sentence with the back-translated target partial sentence to generate
pseudo-source sentences. The word alignment information, which is used to determine the split points,
is modified with “shared Chinese character rates” in segments of the sentence pairs. The experiment
results of the Japanese-Chinese and Chinese-Japanese translation with ASPEC-JC (Asian Scientific Paper
Excerpt Corpus, Japanese-Chinese) show that the method substantially improves translation performance.
We also supply the code (see Supplementary Materials) that can reproduce our proposed method.
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Japanese-Chinese translation; LSTM; neural machine translation; sentence segmentation
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1. Introduction

In recent years, Neural Machine Translation (NMT) has made remarkable achievements [1]. Actually,
NMT has achieved good results with large-scale parallel corpora. However, in low-resource languages or
domain-defined translation tasks, the parallel corpus is small. Accordingly, the translation performance
is severely constrained [2]. Communication during a crisis must be multilingual, and multilingual
crisis communications is enabled through translation; in addition, low-resource languages need to be
translated [3]. Therefore, studies of NMT under the condition of a low-resource language corpus have
high practical value.

Firat et al. [4] used attention mechanisms in several language pairs for NMT and improved the
translation performance of other low-resource language pairs by transferring parameters from the used
attention mechanisms of the trained NMT models. This method greatly improved the translation
performance of low-resource language pairs. However, all experiments were in European language
pairs. Language pairs that have markedly different linguistic structures were not included.

Zero-shot translation is a translation mechanism that uses a single NMT engine to translate between
multiple languages, even such low-resource languages for which no direct parallel data were provided
during training. This type of multi-language method for NMT was mainly proposed by Google [5].
Lakew et al. [6] proposed a simple iterative training procedure that leverages a duality of translations
directly generated by the system for the zero-shot directions. Mattoni et al. [7] focused on languages with
sparse training data.

The use of a pivot language for low-resource language pairs can also be effective for NMT. For example,
given three languages A, B, and C, if no direct parallel corpora exist between A and C, but parallel corpora
between A and B and between B and C do exist, then B is useful as a pivot language to achieve translation
from A to C. Based on this work, the “teacher–student” framework [8], maximum likelihood estimation
method Zheng et al. [9], and joint training method Cheng et al. [10] have also been proposed. Expanding the
size of the training data (parallel corpus) is also an effective way to improve the translation performance for
NMT in low-resource language pairs. Sennrich et al. [11] proposed a method that generates pseudo-parallel
data with monolingual data and back-translation.

In this paper, we propose a method to augment a parallel corpus by sentence segmentation and
synthesis. This method has two variations: one is for all language pairs, and the other is for the
Chinese-Japanese language pair. Our method splits long sentence pairs (properly speaking, sentence
pairs that contain punctuation marks) in the corpus into parallel partial sentence pairs, back-translates
the target partial sentences, then synthesizes pseudo-parallel sentence pairs by combining the source
partial sentences and the back-translated target partial sentences to expand the corpus size. The method
uses the word alignment information of each parallel sentence pair to produce parallel partial sentence
pairs. One variation of the method modifies the alignment information with common Chinese character
information of the Chinese and Japanese segments. The Chinese language is written with traditional or
simplified Chinese characters. In this paper, we consider only simplified Chinese.

In our experiments, we used Luong’s NMT system as the base system [12]. It follows an
encoder–decoder architecture with global attention. In our case, we chose character-level NMT as
the baseline, also because character-level NMT between Japanese and Chinese has better translation
performance than word-level NMT.

The main contributions of this paper are the following. We show that we can improve the NMT
system’s translation performance by mixing generated pseudo-parallel sentence pairs into training data
with no monolingual data and without changing the neural network architecture. This process makes our
approach applicable to different NMT architectures.
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In the remainder of this article, Section 2 presents the related work of this paper. Section 3 gives
a brief explanation of the architecture of the NMT and ASPEC-JCcorpus that we are using as the base
system. Section 4 describes the proposed method of how to segment long sentences into partial sentences
of the corpus and to generate pseudo-parallel sentence pairs to augment the original corpus. Section 5
reports the experimental framework and the results obtained from Japanese-Chinese and Chinese-Japanese
translation experiments (with ASPEC-JC [13]) that improve the translation performance. Finally, Section 6
concludes with the discussion of the contributions of this paper.

2. Related Work

Several methods have been proposed to expand parallel corpora so far.
The parallel corpus can be constructed quickly using the back-translation method with monolingual

target data [11]. Sennrich et al. [14] showed that even simply duplicating the monolingual target
data and using them as the source data were sufficient to realize some benefits. The pseudo-parallel
corpus can be constructed using this copy method; i.e., the target language sentences are copied as the
corresponding source language sentences [15], demonstrating that even poor translations can be beneficial.
Data augmentation for low-frequency words has also been proven an effective method [16].

For back-translation methods, the idea of back-translation dates back to statistical machine translation,
where it has been used for semi-supervised learning [17]. Gwinnup et al. [18] implemented their
NMT system by iteratively applying back-translation. Lample et al. [19] explored the use of generated
back-translated data, aided by denoising with a language model trained on the target side. The translation
performance can also be improved by iterative back-translation in both high-resource and low-resource
scenarios [20]. A more refined idea of back-translation is the dual learning approach of He et al. [21],
which integrates training on parallel data and training on monolingual data via round-tripping.

The work of Park et al. [22] presented an analysis of models trained only with synthetic data. In their
work, they trained NMT models with parallel corpora composed of (1) synthetic data in the source-side
only, (2) synthetic data in the target-side only, and (3) a mixture of parallel sentences of which either the
source-side or the target-side was synthetic.

Karakanta et al. [23] used back-translated data to improve MT for low-resource languages. They took
advantage of the similarities between a high-resource language and a low-resource language in order
to transform the high-resource language data into data similar to the low-resource language using
transliteration. The transliteration models were trained on transliteration pairs extracted from Wikipedia
article titles. Then, they automatically back-translated monolingual low-resource language data with the
models trained on the transliterated high-resource language data and used the resulting parallel corpus to
train their final models.

3. Neural Machine Translation and ASPEC-JC Corpus

3.1. Neural Machine Translation

For this research, we follow the NMT architecture by Luong et al. [12], which implements as a global
attentional encoder–decoder neural network with Long Short-Term Memory (LSTM). However, it is
noteworthy that our proposed method is not specific to this architecture.

The encoder is a bi-directional recurrent neural network with LSTM units that reads an input sequence
x = (x1, . . . , xm) and calculates a forward sequence of hidden states (

−→
h 1, . . . ,

−→
h m) and a backward

sequence (
←−
h 1, . . . ,

←−
h m). The hidden states

−→
hj and

←−
h j are concatenated to obtain annotation vector hj.

The decoder is a recurrent neural network with LSTM units. It predicts a target sequence
y = (y1, . . . , yn). Every word (or character in the case of character-level NMT) yi is predicted based
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on a recurrent hidden state si, the previously predicted word (or character) yi−1, and a context vector ci.
Here, ci is computed as the weighted sum of the annotations hj. Finally, the weight of each annotation hj is
computed through an alignment (or attention) model αij, which models the probability that yi is aligned
to xj.

The NMT architecture was used at the character level in our experiments. The Chinese language was
written using (simplified or traditional) Chinese characters, which are basically logograms. The Japanese
writing system also uses kanji (adopted Chinese characters) along with syllabic kana. Several thousand
Chinese characters are in regular use in both languages. Therefore, training models for those languages
at the character level could be done more effectively than with a few million kinds of words at the word
level. In addition, because the parameters to be trained are far fewer than at the word level, the training
and translation time of experiment can probably be kept shorter.

3.2. ASPEC-JC Corpus

We conducted experiments with the ASPEC-JC corpus, which was constructed by manually
translating Japanese scientific papers into Chinese [13]. The Japanese scientific papers are either the
property of JST (Japan Science and Technology Agency) or stored in J-STAGE (Japan’s largest electronic
journal platform for academic societies).

ASPEC-JC is comprised of four parts: training data (672,315 sentence pairs), development data
(2090 sentence pairs), development-test data (2148 sentence pairs), and test data (2107 sentence pairs) with
the assumption that it would be used for machine translation research. ASPEC-JC includes both abstracts
and some parts of the body texts.

We chose ASPEC-JC as the low-resource corpus compared with other language pairs such as
English-French, which usually comprise millions of parallel sentences; the ASPEC-JC corpus has about
672k sentences. We randomly extracted 300k sentence pairs from the training data for experiments.

4. Corpus Augmentation by Sentence Segmentation

Sennrich et al. [11] proposed a method to expand a parallel corpus by back-translating target language
sentences in monolingual corpora to obtain pseudo-source sentences; the pseudo-source sentences together
with the original target sentences were then added to the parallel corpus.

Our method expands the existing parallel corpus with itself, not with any monolingual data, not like
some back-translation methods with monolingual data [11,15,16]. Moreover, our method could be
combined with other corpus augmentation methods. Our augmentation process includes the following
phases: (1) splitting “long” parallel sentence pairs of the corpus into parallel partial sentence pairs,
(2) back-translating the target partial sentences, and (3) constructing parallel sentence pairs by combining
the source and the back-translated target partial sentences. To be precise, a “long” sentence above means a
sentence that contains more than one punctuation mark.

4.1. Generating Parallel Partial Sentences

The following procedure generates parallel partial sentence pairs from long parallel sentence pairs.

1. Obtain the word alignment information from tokenized Japanese-Chinese parallel sentences.
2. Split the long parallel sentences into segments at the punctuation symbols, such as “,”, “;”, and “:”.

Figure 1 presents an example of word alignment information and the segments of a sentence pair.
3. Obtain source-target segment alignments: For each source segment s-segi and target segment t-segj,

count the words in s-segi that correspond to the words in t-segj according to the word alignment
information. The numerical values on the arrows in Figure 2 represent the rate of the correspondence
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relation between the segments. We infer that s-segi corresponds to t-segj if the rate is greater than or
equal to a threshold value θ1.

4. Obtain target-source segment alignments: According to the procedure in 3.
5. Concatenate multiple segments to form a one-to-one relation if there is a one-to-many or

many-to-many relation between the segments.

In Figure 2, each sentence is divided into three segments. Two parallel partial sentences are generated.

バニラ刺激で両群に差がなく，トルエン刺激で患者のみに，主にテント下の中枢神経で ...

在 香草刺激 中 ，两个 人群 没有 差别 ，在 甲苯 刺激 中 只有 患者 主要 在 帐 状物下的 中枢神经 ...

0-1 1-2 2-0 2-3 3-5 4-6 5-4 6-8 8-7 9-9
10-11 11-12 12-10 12-13 13-15 14-14
17-16 18-17 18-18 20-20 21-19 21-21 22-22 23-22      25-25 25-26 26-27 27-28 28-24 29-23 30-24 31-29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

23 24

20 21 22

: Segment divided by punctuation.

Japanese 

Sentence

Chinese

Sentence

Vanilla stimulation did not differ between the 

two groups ,
with toluene stimulation 

only in patients, 

broadly in the central nervous system 

under the tentorium…

English 

Translation

Figure 1. Example of word alignment information and sentence segments by punctuation marks.

J -> C
0: [(0, 0.5), (1, 0.5)]
1: [(2, 1.0)]
2: [(2, 1.0)]
C -> J
0: [(0, 1.0)]
1: [(0, 1.0)]
2: [(2, 0.73), (1, 0.27)]
Mapping: [[[0], [0, 1]], [[1, 2], [2]]]

バニラ刺激で両群に差がなく， トルエン刺激で患者のみに，主にテント下の中枢神経で広範の異常を認めた。

在香草刺激中 ，两个 人群 没有差别 ， 在 甲苯 刺激 中只有 患者主要 在帐状物下的中枢神经 发现了 大范围的 异常 。

0.73 : Correspondence between segments based on 

word alignment information (numerical values are proportion)

: Parallel partial sentence obtained from 

correspondence between segments

1.0 1.0

1.0

0.73 0.27

1.00.5 0.5

0-1 1-2 2-0 2-3 3-5 4-6 5-4 6-8 8-7 9-9
10-11 11-12 12-10 12-13 13-15 14-14
17-16 18-17 18-18 20-20 21-19 21-21 22-22 23-22      25-25 25-26 26-27 27-28 28-24 29-23 30-24 31-29

Japanese 

Sentence

Chinese

Sentence

Vanilla stimulation did not differ between the 

two groups ,

with toluene stimulation 

only in patients, 

broadly abnormal in the central nervous system under the 

tentorium.

English 

Translation

Figure 2. Correspondence rates between segments and parallel partial sentences derived from the rates.

4.2. Correcting Segments’ Correspondence Information Using Common Chinese Characters

Word alignment errors can cause the above procedure to split sentences wrongly. Some of the
errors can be avoided by considering the correspondence between Chinese characters in Japanese and
Chinese sentences. For that reason, we improved Step 3 of the procedure described above to correct the
correspondence rates of segments, as described below.

After World War II, China and Japan respectively simplified their use of Chinese characters in different
ways, although Taiwan and Hong Kong still use the traditional Chinese characters. In Unicode, the same
character code is assigned to similar Chinese characters. For example, the Japanese kanji写 (copy) and
the simplified Chinese hanzi写 (write) are unified to U+5199. By contrast, different character codes are
assigned to the following pairs, which were originally the same characters:見 (see) and见 (see),発 (depart)
and发 (send out),広 (wide) and广 (wide). As a result, one cannot say whether they were originally the
same characters based on their codes.

Chu et al. [24] produced a mapping table between Japanese kanji, simplified Chinese hanzi,
and traditional Chinese characters. They showed that the table can improve accuracies of word alignment
and example-based machine translation between Japanese and Chinese [25]. We replaced Japanese kanji
in the parallel data with simplified Chinese hanzi employing Chu’s mapping table to calculate the rates of
common Chinese characters among segments and used them for correcting correspondence information
between segments.
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The rate of common Chinese character σ for a Japanese and Chinese segment pair is defined as
shown below.

σ =
2ns

nj + nc
(1)

Therein, nj and nc respectively denote the number of Chinese characters in the Japanese and Chinese
segments, and ns is the number of the common (shared) Chinese characters. Using the common character
rate σ, we updated the correspondence ratio ρ between segments as:

ρ′ =

{
ρ + σ · w (σ ≥ θ2)

ρ (σ < θ2)
(2)

where θ2 and w respectively stand for a threshold value and a weight (ρ′ is no longer a ratio).
An example of the correction is presented in Figure 3. In this figure, the correspondence of partial

sentences including “電流滴定法” (amperometric titration method) are corrected in the lower part.

これには， 電位差滴定法， 電流滴定法， 電量滴定法，導電率滴定法がある。

滴定法 包括 ： 电压 差 滴定法 、 电流 滴定法 、 电量 滴定法 、 导电 率 滴定法 。

1.0
1.0

1.0 0.75
0.25

0.6
0.4 1.0 1.01.00.62 0.38 0.670.33

滴定法 包括 ： 电压 差 滴定法 、 电流 滴定法 、 电量 滴定法 、 导电 率 滴定法 。

1.0
1.0

1.42 1.11
0.75

0.8
1.1 1.5

1.51.51.04 0.74 1.07

0.83
これには， 電位差滴定法， 電流滴定法， 電量滴定法，導電率滴定法がある。

In this,

The titration meth-
od includes:

potentiometric
titration

amperometric
titration

coulometric
titration

conductometric
titration are included

potentiometric
titration

amperometric
titration

coulometric
titration

conductometric titration

Japanese

Chinese

Japanese

Chinese

Figure 3. Correction of segments’ correspondence information using common Chinese character
information: upper, before correction; lower, after correction.

4.3. Corpus Augmentation by Generated Parallel Partial Sentences

Using the parallel partial sentences generated according to the procedure described in Section 4.1,
pseudo-parallel sentences were constructed using the following procedure. If some segment occurs that
does not correspond to any other segment or a correspondence relation (arrows in Figure 2) is crossing,
then we do not use the sentence pair because the partial sentences of the sentence are probably not parallel.

1. Back-translate the target partial sentences into the source language with a translation model built
from parallel data.

2. For each sentence, create a pseudo-source sentence that is partly different from the original source
sentence by replacing a part of the original sentence with a partial sentence obtained using
back-translation. As a result, it is possible to generate the same number of variations of pseudo-source
language sentences as the number of partial sentences. For example, if a sentence is divided into two
partial sentences, two pseudo-source sentences will be created. Table 1 shows the pseudo-source
language sentences generated from the Japanese sentence of Figure 2.

3. Copy the target sentences corresponding to the created pseudo-source sentences to produce
pseudo-parallel sentences.

4. Add the generated pseudo-parallel sentences to the original parallel corpus.
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Table 1. Examples of an original source sentence and pseudo-source sentences with English translations.
“//” denotes the splitting position.

Original/Generated Sentences Input Japanese Sentence English Translation of the Input Japanese Sentence

Source sentence
(original)

バニラ刺激で両群に差がな
く，// トルエン刺激で患者
のみに，主にテント下の中枢
神経で広範の異常を認めた。

Vanilla stimulation did not differ between the two
groups, // with toluene stimulation only in patients,
broadly abnormal in the central nervous system under
the tentorium.

Pseudo-source sentence 1
(pseudo- and original)

香草刺激では，両群に差は
なかった // トルエン刺激で
患者のみに，主にテント下の
中枢神経で広範の異常を認め
た。

There was no difference between the two groups with
vanilla stimulation // only in patients, toluene stimulation
showed extensive abnormalities, mainly in the central
nervous system under the tent.

Pseudo-source sentence 2
(original and pseudo-)

バニラ刺激で両群に差がな
く， // トルエン刺激には主
に帳票物下の中枢神経で広範
囲の異常が認められた。

With vanilla stimulation there was no difference between
both groups, // a wide range of abnormality was
confirmed mainly in the central nervous system under
the slap for toluene stimulation.

4.4. Use of Sentences Not Divided into Partial Sentences

Some sentence pairs could not be divided into partial sentence pairs through the procedure in
Section 4.3, even though they included punctuation marks. We retried generating pseudo-parallel sentences
using only the target sentences of those undivided sentence pairs as follows.

1. Extract target sentences from the undivided sentence pairs that can be split into multiple segments.
2. Back-translate the extracted target language sentences into the source language.
3. Split the target language sentence and its back-translation result into segments in the manner used

for Step 2 in Section 4.1.
4. Let t and t̄ be respectively a target sentence and its back-translation result; let n and m be respectively

the numbers of the segments of t and t̄; i.e., t = (s1, s2, . . . , sn) and t = (s′1, s′2, . . . , s′n). Extract sentence
pairs (t, t̄) such that (n = m) and (n ≥ 2).

(4-1) Back-translate each segment si of t to si.
(4-2) For i (1 ≤ i ≤ n), replace s′i in t with si to generate n pseudo-source sentences: t(1) =

(s1, s′2, . . . , s′n), t(2) = (s′1, s2, . . . , s′n), . . ., t(n) = (s′1, s′2, . . . , sn).
(4-3) Make n pseudo-parallel sentence pairs (t(1), t), . . . , (t(n), t) from each obtained pseudo-source

sentence t(i) and the target sentence t.

We also supply code (see Supplementary Materials) that can reproduce our proposed method.

5. Evaluation and Translation Results

5.1. Experiment Settings

We followed the NMT architecture by Luong et al. [12] and implemented the NMT architecture
using OpenNMT [26]. The LSTM model had one layer, each with 512 cells, with embedding size of 512.
The parameters were uniformly initialized in (−0.1, 0.1), using plain SGD, starting with a learning rate of
1.0 until Epoch 6, and subsequently 0.5 times for each epoch. The max-batch size was 100. The normalized
gradient was rescaled whenever its norm exceeded one. Because of the amounts of training data (150k
and 300k as the baseline) were relatively small, the dropout probability was set as 0.5 to avoid overfitting.
Decoding was performed by beam search with a beam size of five. The maximum length of a sentence was
250 by default, but it was set to 500 because it became much longer in character-level MT.
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Because sentences in Japanese and Chinese are written without spaces, we tokenized them with
MeCab http://taku910.github.io/mecab for Japanese and Jieba http://github.com/fxsjy/jieba for Chinese.
We employed fast_align to obtain word alignment information, which was symmetrized using the included
atool command http://github.com/clab/fast_align.

BiLingual Evaluation Understudy (BLEU) is an algorithm for evaluating the quality of text that has
been machine-translated from one natural language to another [27]. Translation Error Rate (TER) is an
error metric for machine translation that measures the number of edits required to change a system output
into one of the references [28]. The BLEU and TER scores were calculated on the same test data (2109
sentence pairs) and the same development-test data (2148 sentence pairs) of the ASPEC-JC corpus for each
method, using the “tools/score.lua” of OpenNMT after word segmentation. In other words, we took the
word-level evaluation. The validation perplexity (i.e., perplexity with the same development data for each
method) usually stopped declining around Epoch 10 in the settings above. The average of BLEU and TER
scores from that point to Epoch 16 was taken as the BLEU and TER values.

5.2. Selection of Thresholds θ1, θ2 and Weight w

Following, we discuss the selection of thresholds θ1, θ2 and weight w described in Section 4.
To determine the threshold θ1, we have conducted an experiment to investigate the changes in the

number of generated partial sentence pairs with 300k sentences. As shown in Figure 4, we found that the
number of the generated partial sentence pairs had a peak when θ1 was 0.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold 1

400,000

450,000

500,000

550,000

600,000

650,000

Nu
m

be
r o

f p
ar

tia
l s

en
te

nc
es

Threshold 1 and number of generated patial sentences (300k)

Figure 4. Threshold θ1 and number of generated partial sentences (300k).

We also did the experiments for the threshold θ2 and the weight w and manually evaluated and
observed the error rate of the aligned sentences, with 300k sentences as shown in Table 2.

Table 2. Experiment results of the error rate of aligned sentences with the threshold θ2 and the weight w
for 300k training data. “Without cc” indicates without using the common Chinese character information;
“With cc” indicates using the common Chinese character information.

θ2 = 0.3 θ2 = 0.5 θ2 = 0.7The Error Rate of
Aligned Sentences (%) Without cc With cc Without cc With cc Without cc With cc

w = 0.3 8.8 6.8 7.6 5.6 9.2 9.0
w = 0.5 2.1 1.7 1.7 0.8 3.3 2.2
w = 0.7 7.0 3.0 6.0 3.8 7.6 7.2

http://taku910.github.io/mecab
http://github.com/fxsjy/jieba
http://github.com/clab/fast_align
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In order to determine the threshold θ2 and the weight w, we manually checked the alignment of the
generated partial sentence pairs with 9000 (= 500 × 18) partial sentence pairs randomly extracted from
the 300k sentences. Table 2 shows the error rates. To confirm the effectiveness of the common Chinese
character information, we compared the error rates with and without using the information. The error rate
of aligned sentences had the lowest value when the weight θ2 = w = 0.5 with using the common Chinese
character information. The common Chinese character information was helpful for reducing the error rate
of aligned sentences.

Due to the above results, for the experiments described later, we set θ1 = 0.5 for the Proposed 1
method and θ2 = w = 0.5 for the Proposed 2 method.

5.3. Experiment Results and Discussion

Table 3 shows the information of the ASPEC-JC corpus. We randomly extracted 300k sentence pairs
from 672k training data of the ASPEC-JC corpus for experiments as the training data.

Table 3. The information of the ASPEC-JC corpus.

ASPEC-JC Corpus Number of Sentence Pairs

Training data 672,315
Development (dev) data 2090

Development-test (dev-test) data 2148
Test data 2107

Figure 5 shows the changes of BLEU scores on the same test data by epochs with 300k original training
data. Figure 6 shows the changes of TER scores on the same test data by epochs with 300k original training
data. Figure 7 shows changes of the validation perplexity values on the same development data by epochs
with 300k original training data. The proposed methods obtained BLEU and TER scores better than the
other methods on the test data in both cases.
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Figure 5. BiLingual Evaluation Understudy (BLEU) scores on the test data of 300k sentences. “P1” denotes
the Proposed 1 method, “P2” denotes the Proposed 2 method.
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Figure 6. Translation Error Rate (TER) scores on the test data of 300k sentences. “P1” denotes the Proposed
1 method, “P2” denotes the Proposed 2 method.
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Figure 7. Validation perplexity values on the development data of 300k sentences. “P1” denotes the
Proposed 1 method, “P2” denotes the Proposed 2 method.

The best (lowest) perplexities on the development (dev) data after they stopped declining and
the BLUE and TER scores of the translation results on the same test-data and the same development-test
data by each method are presented in Tables 4 and 5.
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Table 4. Experiment results of Japanese→Chinese Machine Translation (MT) with 300k training data. “ppl”
denotes perplexity. “Dev” denotes development data. “Dev-test” denotes development-test data.

Method

Chinese→Japanese

# Sentences # Back-Translated ppl BLEU (%) TER (%)

Raw Used Dev Dev-Test Test Dev-Test Test

Baseline 1 300k 300k 0 3.6 38.5 38.7 44.0 44.8
Baseline 2 for P1 518k 518k 218k 3.5 39.1 39.4 43.9 45.3
Baseline 2 for P2 531k 531k 231k 3.5 39.2 39.5 43.0 43.8
Copied 977k 977k 0 3.5 38.9 39.2 43.7 43.9
Partial 984k 984k 0 3.5 38.9 39.2 43.0 43.4
Proposed 1 952k 923k 218k 3.4 39.2 39.5 44.2 43.4
Proposed 2 977k 945k 231k 3.4 39.3 39.7 42.9 43.4

Table 5. Experiment results of Chinese→Japanese MT with 300k training data. “ppl” denotes perplexity.
“Dev” denotes development data. “Dev-test” denotes development-test data.

Method

Chinese→Japanese

# Sentences # Back-Translated ppl BLEU (%) TER (%)

Raw Used Dev Dev-Test Test Dev-Test Test

Baseline 1 300k 300k 0 2.7 38.1 38.0 44.9 44.8
Baseline 2 for P1 518k 518k 218k 2.6 40.0 39.4 44.5 44.1
Baseline 2 for P2 529k 529k 229k 2.6 40.1 39.5 43.6 43.8
Copied 972k 972k 0 2.6 39.7 39.8 43.5 43.3
Partial 984k 984k 0 2.6 39.0 39.2 43.9 43.8
Proposed 1 952k 947k 218k 2.5 40.2 40.1 42.9 43.3
Proposed 2 972k 967k 229k 2.5 40.5 40.2 43.6 43.4

“Baseline 1” was a character-level translation with the 300k original training data. The back-translation
models for corpus augmentation were constructed using the 300k original training data of “Baseline 1”.

“Proposed 1” was the proposed data augmentation method without consideration of the common
Chinese character rates and reuse of the undivided sentences (Section 4.4), which can be used for all
language pairs. This method expanded the parallel corpus from the original 300k sentence pairs to 952k
sentence pairs in both directions (Japanese→Chinese and Chinese→Japanese). Two hundred and eighteen
thousand sentence pairs from 300k training data were used for back-translation in both directions.

“Proposed 2” was the proposed method, which considered the common Chinese character rates
and reused undivided sentences, which can be used only for Chinese-Japanese language pairs. This
method expanded the parallel corpus from 300k sentence pairs to 977k and 972k sentence pairs in
Japanese→Chinese and Chinese→Japanese directions, respectively. Two hundred twenty seven thousands
and 218k sentence pairs from 300k original training data were used for back-translation, in each direction.

“Baseline 2 for P1” was the back-translation method that back-translated the same data as the
Proposed 1 (P1) method did (218k from original training data). The experiment of this method aimed
to compare Proposed 1 with the back-translation method (Baseline 2) on the same back-translated data.
“Baseline 2 for P2” was the back-translation method that back-translated the same data as the Proposed 2
(P2) method did (231k from original training data). The experiment of this method aimed to compare
Proposed 2 with the back-translation method (Baseline 2) on the same back-translated data.

“Copied” was the method that added duplicate copies of the training data as the same times as
the Proposed 2 method did. The experiment of this method aimed to highlight differences between the
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generated pseudo-parallel sentences pairs and unchanged sentences pairs. This method expanded the
parallel corpus from 300k sentence pairs to 977k and 972k sentence pairs in each direction.

“Partial” was the method that augmented the corpus with parallel partial sentences generated by the
procedure in Section 4.3, without back-translating and mixing the partial sentences. The experiment of this
method aimed to confirm that the mixing step (Section 4.3, Step 2) was necessary. This method expanded
the parallel corpus from 300k sentence pairs to 984k sentence pairs in both directions.

“# sentences” in the tables denotes the size (the number of sentence pairs) of training data,
whereas “# back-translated” denotes the number of parallel sentence pairs used for back-translation
processing, i.e., the corpus augmentation, in each method. “ppl” denotes the best (lowest) perplexity
values on the development (dev) data in each method.

In the case of 300k training data, the number of parallel sentence pairs augmented by Proposed 2
was 977k in the Japanese→Chinese direction. However, only 945k pairs were used as the training data.
This is because the translation errors in the back-translation steps sometimes generated unusually long
pseudo-source sentences where the same words or phrases occurred repeatedly in a sentence, and such
sentence pairs were removed due to exceeding the upper limit of the training data length (500 characters).
As a result, the used training data size of Proposed 2 was 32k (3.3%) smaller than that of “Copied”
(977k). For this reason, the training sentence numbers of “Copied” and “Proposed 2” in Tables 4 and 5
are different. Hence, we added the columns “Raw” and “Used” in the tables to denote the numbers
of generated sentences (raw data before removing) and used sentences (after removing unusually long
sentences), respectively.

The proposed methods obtained BLEU and TER scores better than the baselines did on the
development-test data and test data in both cases. Although there were translation errors and unnatural
expressions in the generated pseudo-source sentences, the BLEU scores were higher and the TER scores
were lower than “Copied” and “Partial” on the development-test data and test data in both directions,
Japanese→Chinese and Chinese→Japanese. The BLEU scores of the “Partial” method were lower than
the proposed methods, in both directions. Therefore, the mixing step (Section 4.3, Step 2) was necessary.
These results demonstrate that the proposed methods were effective for augmenting small-scale parallel
corpora to improve translation performance for Japanese→Chinese and Chinese→Japanese NMT.

Comparing “Proposed 1”, “Proposed 2” with “Baseline 2 for P1”, “Baseline 2 for P2” in the tables,
the results of the proposed methods were nearly identical and better : the proposed method was effective
at improving translation accuracy in both directions, Japanese→Chinese and Chinese→Japanese.

The experiments described above (Tables 4 and 5) proved the effectiveness of the proposed methods.
Nevertheless, our approach was based on only the original parallel data and did not require any additional
monolingual data, unlike the back-translation method of Sennrich et al. [11]. Most methods of corpus
augmentation were applied to pair monolingual training data with automatic back-translation and then
treat them as additional parallel training data. Therefore, we added comparison experiments.

We conducted comparison experiments using 150k and 300k sentences that were randomly extracted
from 672k training data of ASPEC-JC as the original data and used the remaining 522k and 372k sentences
as the monolingual data.

For the comparison experiment, we only implemented our “Proposed 2” method because the
experiments described above proved that the “Proposed 2” method was better than the “Proposed 1”
method in most cases with the Chinese-Japanese parallel corpus. Translation results obtained on the test
data and development-test data are shown in Tables 6–9 with 150k and 300k original training data in both
directions, respectively.
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Table 6. Experiment results of Japanese→Chinese MT with 150k sentences and 522k monolingual sentences.
“ppl” denotes perplexity. “Dev” denotes development data. “Dev-test” denotes development-test data.

Method

Chinese→Japanese

# Sentences # Back-Translated ppl BLEU (%) TER (%)

Raw Used Dev Dev-Test Test Dev-Test Test

Baseline 1 150k 150k 0 4.3 36.5 36.5 48.5 50.1
Baseline 2 + mono (522k) 672k 672k 522k 3.8 38.8 39.1 44.6 44.7
150k + mono (522k) + P2 2313k 2201k 525k 3.7 38.9 39.1 43.9 44.4

Table 7. Experiment results of Chinese→Japanese MT with 150k sentences and 522k monolingual sentences.
“ppl” denotes perplexity. “Dev” denotes development data. “Dev-test” denotes development-test data.

Method

Chinese→Japanese

# Sentences # Back-Translated ppl BLEU (%) TER (%)

Raw Used Dev Dev-Test Test Dev-Test Test

Baseline 1 150k 150k 0 3.1 35.4 35.5 48.4 47.5
Baseline 2 + mono (522k) 672k 672k 522k 2.8 39.3 39.1 45.1 44.6
150k + mono (522k) + P2 2239k 2134k 515k 2.7 40.6 40.1 43.7 43.7

Table 8. Experiment results of Japanese→Chinese MT with 300k sentences and 372k monolingual sentences.
“ppl” denotes perplexity. “Dev” denotes development data. “Dev-test” denotes development-test data.

Method

Chinese→Japanese

# Sentences # Back-Translated ppl BLEU (%) TER (%)

Raw Used Dev Dev-Test Test Dev-Test Test

Baseline 1 300k 300k 0 3.6 38.5 38.7 44.0 44.8
Baseline 2 + mono (372k) 672k 672k 372k 3.4 39.6 39.7 42.8 44.2
300k + mono (372k) + P2 2287k 2234k 522k 3.4 39.8 40.1 42.6 43.3

Table 9. Experiment results of Chinese→Japanese MT with 300k sentences and 372k monolingual sentences.
“ppl” denotes perplexity. “Dev” denotes development data. “Dev-test” denotes development-test data.

Method

Chinese→Japanese

# Sentences # Back-Translated ppl BLEU (%) TER (%)

Raw Used Dev Dev-Test Test Dev-Test Test

Baseline 1 300k 300k 0 2.7 38.1 38.0 44.9 44.8
Baseline 2 + mono (372k) 672k 672k 372k 2.6 40.5 39.9 43.3 43.3
300k + mono (372k) + P2 2223k 2213k 501k 2.5 41.8 41.4 42.2 42.5

For Tables 6 and 7, “Baseline 1” is a character-level translation, which did not process anything with
150k original training data. The back-translation models were constructed using 150k original training data
of Baseline 1 for each method, before corpus augmentation. The back-translation models were constructed
using 150k original training data of “Baseline 1” for each method, before corpus augmentation. “Baseline
2 + mono (522k)” was the back-translation method of Sennrich et al. [11], which back-translated the
remaining 522k target language sentences of 672k training data to generate 522k pseudo-source sentences
directly with no segmentation; the 522k pseudo-source sentences, together with the 522k target sentences,
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expanded the parallel corpus from 150k sentence pairs to 672k sentence pairs. The experiment of this
method aimed to confirm the effectiveness of applying our proposed methods to the augmented data by
the back-translation method of Sennrich et al. [11].

“150k + mono (522k) + P2” represents the combination method of “Baseline 2 + mono (522k)” (672k
training data) and “Proposed 2”. “150k + mono (522k) + P2” back-translated 525k and 515k from the
“Baseline 2 + mono (522k)” (672k training data), so that the numbers of sentence pairs were increased from
672k to 2313k and 2239k in both directions.

For Tables 8 and 9, “Baseline 1” is a character-level translation which did not process anything with
300k original training data. The back-translation models were constructed using 300k original training data
of Baseline 1 for each method, before corpus augmentation. The back-translation models were constructed
using 300k original training data of “Baseline 1” for each method, before corpus augmentation. “Baseline
2 + mono (372k)” was the back-translation method of Sennrich et al. [11], which back-translated the
remaining 372k target language sentences of 672k training data to generate 372k pseudo-source sentences
directly with no segmentation; the 372k pseudo-source sentences, together with the 372k target sentences,
expanded the parallel corpus from 300k sentence pairs to 672k sentence pairs. The experiment of this
method aimed to confirm the effectiveness of applying our proposed methods to the augmented data by
the back-translation method of Sennrich et al. [11].

“300k + mono (372k) + P2” represents the combination method of “Baseline 2 + mono (372k)” (672k
training data) and “Proposed 2”. “300k + mono (372k) + P2” back-translated 522k and 501k from the
“Baseline 2 + mono (372k)” (672k training data), so that the numbers of sentence pairs were increased from
672k to 2287k and 2223k in both directions.

The proposed methods obtained nearly identical and better results of BLEU and TER scores than in
the case of baseline methods on the development-test data and test data. These comparison experiments
demonstrate that our proposed method can augment the extended data by the other corpus augmentation
methods to yield better translation performance. In the future, we plan to combine the proposed
methods with other augmentation approaches, as our results suggest it may be more beneficial than
only back-translation.

The salient benefits of the proposed method are that it requires no monolingual data and that,
without changing the neural network architecture, our method can generate more pseudo-parallel
sentences. Moreover, it can be combined with other augmentation methods.

6. Conclusions and Future Work

In this paper, we proposed simple, but effective approaches to augment corpora of NMT for all
language pairs and for Chinese-Japanese language pairs, by segmenting long sentences in the parallel
corpus, using back-translation and generating pseudo-parallel sentences pairs. We demonstrated that
the approaches engender more pseudo-parallel sentences. Consequently, they obtained equal or higher
translation performance than in the case of the back-translation method for NMT with the ASPEC-JC
corpus. We have also reported improvements over the baseline systems.

In the future, we plan to combine the proposed methods with other augmentation approaches, as our
results suggest it may be more beneficial than only back-translation. On the other hand, as there is only
one pseudo-partial sentence in each generated pseudo-sentence, we should consider various combinations
of pseudo-partial sentences to generate more pseudo-sentences.
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