
applied
sciences

Article

Speed Optimization for Incremental Updating of
Grid-Based Distance Maps

Long Qin , Yue Hu, Quanjun Yin * and Junjie Zeng

College of Systems Engineering, National University of Defense Technology, Changsha 410073, China;
qldbx2007@sina.com (L.Q.); huyue.cse@gmail.com (Y.H.); zjjnudt@foxmail.com (J.Z.)
* Correspondence: yin_quanjun@163.com

Received: 2 April 2019; Accepted: 13 May 2019; Published: 16 May 2019
����������
�������

Abstract: In the context of robotics and game AI, grid-based Distance Maps (DMs) are often used to
fulfill collision checks by providing each traversable cell maximal clearance to its closest obstacle.
A key challenge for DMs’ application is how to improve the efficiency of updating the distance values
when cell states are changed (i.e., changes caused by newly inserted or removed obstacles). To this end,
this paper presents a novel algorithm to speed up the construction of DMs on planar, eight-connected
grids. The novelty of our algorithm, Canonical Ordering Dynamic Brushfire (CODB), lies in two
aspects: firstly, it only updates those cells which are affected by the changes; secondly, it employs
the strategy of Canonical Ordering from the fast path planning community to guide the direction of
the update; therefore, the construction requires much fewer cell visits and less computation costs
compared to previous algorithms. Furthermore, we propose algorithms to compute DM-based subgoal
graphs. Such a spatial representation can be used to provide high-level, collision-free roadmaps for
agents with certain safety radius to engage fast and rational path planning tasks. We present our
algorithm both intuitively and through pseudocode, compare it to competing algorithms in simulated
scenarios, and demonstrate its usefulness for real-time path planning tasks.

Keywords: distance map; incremental algorithms; canonical ordering; path planning; subgoal graph

1. Introduction

In the context of collision check and path planning in robotics and game AI, the Distance Map
(DM) has been widely used as a consistent model to encode the search space [1–5]. In a grid-based
environment with regions of blocked cells, a corresponding DM can be constructed to provide each
cell a maximal clearance value, which registers the distance from itself to the nearest obstacle. Thus,
a DM can help an agent (e.g., a Non-Player Character (NPC) in the video game or a robot in the real
world) with a certain safety radius to efficiently search out collision-free paths and to avoid obstacles
in motion. Figure 1 presents a DM constructed in an indoor environment.

In many practical applications, the underlying environments that an agent maneuvers in are
often dynamic; therefore, it is necessary to reconstruct their corresponding DMs whenever changes of
cell states are observed (e.g., an obstacle is inserted, removed, reshaped, or transferred). Since such
changes usually occur within a relatively neighboring area around the agent, only portions of the
previously constructed DM need repair. To make use of this localized feature, existing algorithms
such as Dynamic Brushfire [6] and its subsequent variants [7,8] aim to speed up the reconstruction
by launching a wavefront from the source of the state changes to incrementally repair the distance
values, rather than reconstructing the whole DM from scratch. With such a localized mechanism,
only those cells that are actually affected by the wavefront need to be handled; thus, in most cases,
the computation costs can be efficiently reduced.

Appl. Sci. 2019, 9, 2029; doi:10.3390/app9102029 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1245-6622
http://dx.doi.org/10.3390/app9102029
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/10/2029?type=check_update&version=2

Appl. Sci. 2019, 9, 2029 2 of 18

Figure 1. A distance map (DM) constructed from an indoor environment. The yellow regions consist
of blocked cells (obstacles). Visually speaking, for each of these traversable cells in the unblocked
areas, the father it is away from the nearest obstacle, the higher its brightness is.

In many practical applications, the underlying environments that an agent maneuvers in are
often dynamic; therefore, it is necessary to reconstruct their corresponding DMs whenever changes
of cell states are observed (e.g., an obstacle is inserted, removed, reshaped, or transferred). Since
such changes usually occur within a relatively neighboring area around the agent, only portions of
the previously constructed DM need repair. To make use of this localized feature, existing
algorithms such as Dynamic Brushfire [6]and its subsequent variants [7,8] aim to speed up the
reconstruction by launching a wavefront from the source of the state changes to incrementally
repair the distance values, rather than reconstructing the whole DM from scratch. With such a
localized mechanism, only those cells that are actually affected by the wavefront need to be
handled; thus, in most cases, the computation costs can be efficiently reduced.

However, for all of the previously proposed algorithms, the propagation of the wavefronts
simply expands all the neighbors of a processed cell without preference, and then inserts the newly
affected neighbors into a priority queue, so as to prepare for the next round propagation. Such
indiscriminate expansion results in a much longer priority queue and thus becomes an efficiency
bottleneck. In order to reduce the number of elements which need to be sorted by the priority
queue, a searching strategy, Canonical Ordering, is introduced by us to systematically choose a
single route from the equivalent propagation paths. Figure 2 shows how our algorithm propagates
the wavefront form the source blocked cell (denoted as yellow tiles), visiting each affected cell only
once (where the red arrows denotes the propagation directions of the wavefronts). We choose the
successors of an expanded cell, s, by following two basic rules described in Nathan R. Sturtevant
and Steve Rabin’s paper [9]. That is, for a cell s, with the propagation direction c that was
previously used to reach s, (1) If c to arrive at s is one of the four cardinal directions, the only legal
direction at s for the next round propagation is c; (2) If the c to arrive at s is one of the four diagonal
directions which can be decomposed into two perpendicular cardinal components c1 and c2, the
legal directions at s for the next round propagation are c, c1, and c2. We name our algorithm
Canonical Ordering Dynamic Brushfire (abbreviated to CODB in the rest of this paper).

Figure 2. Two lower wavefronts started from the newly blocked cell denoted as yellow tiles.

Figure 1. A distance map (DM) constructed from an indoor environment. The yellow regions consist
of blocked cells (obstacles). Visually speaking, for each of these traversable cells in the unblocked areas,
the father it is away from the nearest obstacle, the higher its brightness is.

However, for all of the previously proposed algorithms, the propagation of the wavefronts simply
expands all the neighbors of a processed cell without preference, and then inserts the newly affected
neighbors into a priority queue, so as to prepare for the next round propagation. Such indiscriminate
expansion results in a much longer priority queue and thus becomes an efficiency bottleneck. In order
to reduce the number of elements which need to be sorted by the priority queue, a searching strategy,
Canonical Ordering, is introduced by us to systematically choose a single route from the equivalent
propagation paths. Figure 2 shows how our algorithm propagates the wavefront form the source
blocked cell (denoted as yellow tiles), visiting each affected cell only once (where the red arrows
denotes the propagation directions of the wavefronts). We choose the successors of an expanded cell, s,
by following two basic rules described in Nathan R. Sturtevant and Steve Rabin’s paper [9]. That is, for
a cell s, with the propagation direction c that was previously used to reach s, (1) If c to arrive at s is one
of the four cardinal directions, the only legal direction at s for the next round propagation is c; (2) If the
c to arrive at s is one of the four diagonal directions which can be decomposed into two perpendicular
cardinal components c1 and c2, the legal directions at s for the next round propagation are c, c1, and c2.
We name our algorithm Canonical Ordering Dynamic Brushfire (abbreviated to CODB in the rest of
this paper).

Figure 1. A distance map (DM) constructed from an indoor environment. The yellow regions consist
of blocked cells (obstacles). Visually speaking, for each of these traversable cells in the unblocked
areas, the father it is away from the nearest obstacle, the higher its brightness is.

In many practical applications, the underlying environments that an agent maneuvers in are
often dynamic; therefore, it is necessary to reconstruct their corresponding DMs whenever changes
of cell states are observed (e.g., an obstacle is inserted, removed, reshaped, or transferred). Since
such changes usually occur within a relatively neighboring area around the agent, only portions of
the previously constructed DM need repair. To make use of this localized feature, existing
algorithms such as Dynamic Brushfire [6]and its subsequent variants [7,8] aim to speed up the
reconstruction by launching a wavefront from the source of the state changes to incrementally
repair the distance values, rather than reconstructing the whole DM from scratch. With such a
localized mechanism, only those cells that are actually affected by the wavefront need to be
handled; thus, in most cases, the computation costs can be efficiently reduced.

However, for all of the previously proposed algorithms, the propagation of the wavefronts
simply expands all the neighbors of a processed cell without preference, and then inserts the newly
affected neighbors into a priority queue, so as to prepare for the next round propagation. Such
indiscriminate expansion results in a much longer priority queue and thus becomes an efficiency
bottleneck. In order to reduce the number of elements which need to be sorted by the priority
queue, a searching strategy, Canonical Ordering, is introduced by us to systematically choose a
single route from the equivalent propagation paths. Figure 2 shows how our algorithm propagates
the wavefront form the source blocked cell (denoted as yellow tiles), visiting each affected cell only
once (where the red arrows denotes the propagation directions of the wavefronts). We choose the
successors of an expanded cell, s, by following two basic rules described in Nathan R. Sturtevant
and Steve Rabin’s paper [9]. That is, for a cell s, with the propagation direction c that was
previously used to reach s, (1) If c to arrive at s is one of the four cardinal directions, the only legal
direction at s for the next round propagation is c; (2) If the c to arrive at s is one of the four diagonal
directions which can be decomposed into two perpendicular cardinal components c1 and c2, the
legal directions at s for the next round propagation are c, c1, and c2. We name our algorithm
Canonical Ordering Dynamic Brushfire (abbreviated to CODB in the rest of this paper).

Figure 2. Two lower wavefronts started from the newly blocked cell denoted as yellow tiles. Figure 2. Two lower wavefronts started from the newly blocked cell denoted as yellow tiles.

Since a DM stores the maximal clearance for each traversable cell to its nearest obstacle, operations
such as collision checks can be simplified to instant look-up queries (As shown in Equation (1)).
For instance, if an agent with safety radius R> 0 is located on cell s, then the result of the collision check
is determined by Equation (1) as below (where 1 denotes collision detected and 0 denotes collision-free):

C(R, s) =
{

1
0

i f (R−DM(s)) ≥ 0
i f (R−DM(s)) < 0

(1)

Appl. Sci. 2019, 9, 2029 3 of 18

To make better use of this feature, we furthermore propose algorithms to construct DM-based
subgoal graphs. The resulting subgoal graphs are sparse but adequate high-level roadmaps to enable
agents who possess safety radius to search out collision-free paths in real time. In order to reduce the
possibility of replanning caused by dynamic terrain changes, we introduce Learning Real Time A*
(LRTA*) [10], an algorithm for planning immediate moves at runtime, to drive the agents between
subgoals connected by the high-level paths. Since each segment of the high-level paths is proved to be
direct h-reachable, irrational behaviors such as trapping in local minima can be eliminated when LRTA*
is iteratively applied between the direct-h-reachable subgoals (see the definition of direct h-reachable
in Section 4.1.3).

There is another space representation; i.e., grid-based Voronoi diagrams can be used as a sparse
model to help agents to maximize its distance to the obstacle cells. Actually, current algorithms for
building grid-based Voronoi graphs can also obtain a corresponding distance map in which each cells
keeps the distance to its nearest obstacle cell [11–13]. Although a Voronoi diagram can provide an agent
with a sparser search space, its drawback is also prominent. For instance, in Multi-Agent Pathfinding
Problems (MAPF) [14–19], a group of coordinated agents share the same Voronoi edges as their search
space, thus a dense cluster of conflicts may occur, which needs to resolve during the planning process.
Different from grid-based Voronoi Diagram, DM-based subgoal graphs don’t conservatively compress
the search space in unnecessary narrow channels. Furthermore, the search space between each pair
of the direct-h-reachable subgoals commonly reserve more spaces than Voronoi edges for a group of
coordinated agents to resolve conflicts.

We provide three main contributions in this paper. Firstly, we present an algorithm, Canonical
Ordering Dynamic Brushfire (CODB), to speed up the incremental update of grid-based Distance
Maps (DMs). Secondly, we propose algorithms to compute DM-based subgoal graphs which are
used to provide high-level, collision-free roadmaps for agents with certain safety radius. Thirdly,
we verify that under the guidance of the subgoal graphs, real-time search algorithms such as LRTA* can
effectively avoid local minima; therefore, the resulting trajectories can successfully coincide with the
optimal solutions searched by A*. We present our algorithms both intuitively and through pseudocode,
compare them to current approaches on typical scenarios, and demonstrate their usefulness for fast
path planning tasks.

The outline of this paper is as follow: Section 2 discusses related studies on DMs, Canonical
Ordering, and subgoal graphs; Section 3 gives preliminaries and notations; Section 4 presents our
algorithms both intuitively and through pseudocode; Section 5 compares CODB to other algorithms
and tests the usefulness of DM-based subgoal graph for fast path planning tasks. This paper ends with
conclusions in Section 6.

2. Related Work

2.1. Grid-Based Distance Maps

In the context of robotics and game AI, the grid-based DM is a popular spatial representation
applied in navigation and motion planning tasks. The principal component of the recent approaches for
constructing or reconstructing grid-based DMs is the well-known Brushfire algorithm [20]. Intuitively,
Brushfire launches wavefronts to propagate changes of maximal clearance (i.e., changes caused
by insertion or deletion of obstacle cells), updating distance values from the source of the change,
and terminates when the change does not affect any more cells. Brushfire represents the OPEN list as a
priority queue to incrementally record the affected cells and propagate the wavefronts. The priority of
an element in the OPEN queue is determined by its newly updated distance and all these elements
are popped up in increasing priorities. Sequentially, new cells which are adjacent to the popped one
are tested, among which, newly updated cells will again be inserted into the OPEN list so that the
propagation continues.

Appl. Sci. 2019, 9, 2029 4 of 18

Kalra et al. [6], in their fundamental work, proposed a dynamic version of Brushfire algorithm,
Dynamic Brushfire, to incrementally update grid-based DMs by propagating two kinds of wavefronts
named “lower” and “raise” which start at newly blocked or freed cells, respectively; therefore, the
update can be constrained within local areas. However, the wavefronts launched by Dynamic Brushfire
roughly accumulate 8-connected grid steps to approximate maximal clearance, which overestimates
the true Euclidean distances and would possibly lead to either a collision risk or overly conservative
movements. To this end, Scherer et al. [21] proposed a method to propagate obstacle locations rather
than counts of the grid steps, which reduces the absolute overestimation error below an upper bound
of 0.09 pixel units. In the method proposed by Cuisenaire and Macq [22], the shortest distance at
which this propagation error can occur is 13 pixels, which yields a maximum relative error of 0.69%.
Regarding propagating obstacle references, Lau et al. proposed an approach to provide the location
of the closest obstacle rather than just the distance to it, which can be appealing for collision check
tasks [23]. Moreover, Lau et al. extended their method to 3D by adding the possibility to limit the
propagated distances to maintain online feasibility in large open spaces and outdoors as proposed by
Scherer et al.

Although these dynamic algorithms are fast and efficient for dealing with local changes, they just
indiscriminately expand all the adjacent cells surrounding a currently processed cell, which results in a
lot of redundant cell visits and scales up the size of the OPEN list and restricts the overall efficiency of
the algorithm. We introduce the Canonical Ordering strategy in our work to prune the search space.

2.2. Canonical Ordering

The idea of applying Canonical Ordering as a speedup technique for real-time pathfinding systems
that operate on regular grids was proposed by Daniel Harabor [24] and N Pochter [25]. As mentioned
in the literature, searching in grids often becomes overwhelmed by a high degree of path symmetry,
which accounts for a major part of the computational costs. Two paths are viewed as symmetric if
(1) they have the same start and goal cells; (2) they are of the same length; and (3) their respective
sequences of moves (i.e., cardinal or diagonal moves) can be reordered into the other. With symmetries
in the grids, a search task will explore multiple cells for multiple times from those symmetric paths
and this severely undermines the efficiency.

To break such symmetries, an online algorithm called Jump Point Search (JPS) [26] was presented
by Daniel Harabor et al. to apply Canonical Ordering to recursively prune redundant successors and
selectively expand only certain cells, called jump points. Canonical Ordering is essentially a special
case of partial orderings among all the symmetric paths and prefers the diagonal-first ones to other
alternatives. We say that a path has the diagonal-first property if there is no straight-diagonal turning
point can be mutated into a diagonal-straight one of the same length constrained by the obstacles.
By its virtue, JPS visits much fewer cells than traditional searching strategies; therefore, it answers a
path query averagely faster than A* by an order of magnitude. After that, this algorithm’s performance
was further improved by a preprocessing based strategy and addition of Bounding Boxes, resulting in
the algorithms JPS+ [26] and JPS+BB [27]. As an automatic move pruning technique for single-agent
search [28], Canonical Ordering can not only be used in grids, but can also be built on general graphs
and considerably reduce the number of cells generated by an A* search [29].

The outstanding performance of the Canonical Ordering strategy in compressing search space
for real-time pathfinding algorithms provides us with a novel method to guide the direction of the
wavefronts which propagate the distance changes, making it possible to speed up the construction of
grid-based DMs.

2.3. Subgoal Graphs

A subgoal graph is a kind of sparse spatial representation which can be precomputed by
abstracting the skeletons of the underlying grids into undirected graphs. The algorithm which accounts
for computing subgoal graphs was proposed by Tansel Uras et al. [30]. It firstly introduces the basic

Appl. Sci. 2019, 9, 2029 5 of 18

version of the subgoal graph, called Simple Subgoal Graphs (SSGs). On grid maps, SSGs are constructed
by placing subgoals at the convex corners of obstacles and connecting direct-h-reachable subgoals in
the preprocessing stage. Two subgoals are mutually direct-h-reachable if all the optimal paths between
them are valid and traverse no other subgoals.

SSGs reduce the search space and accelerate the process of finding shortest paths by abstracting
the key points of the grid maps and reducing all symmetric paths between subgoals into only one
edge. It can be proved that, for any given start and goal cells which are reachable, there is a shortest
path that can be divided into segments between subgoals. Each segment connects direct-h-reachable
subgoals. Therefore, when finding shortest paths on SSGs, one first connects the start and goal vertices
to their direct-h-reachable subgoals in SSGs, and then searches the modified graphs via A* to get the
shortest high-level path, which consists of a sequence of subgoals between the start and goal vertices.
By refining the shortest high-level path, one can get the shortest path between start and goal on the
grid map.

Moreover, a Two-level Subgoal Graph (TSG) is constructed from a SSG by partitioning the
subgoals into global and local ones and only the global ones belong to the TSG. When removing the
local subgoals, one has to add some extra edges so that the shortest paths between global subgoals
remain the same. Finding the shortest path on a TSG is similar to finding a shortest path on a SSG.
One first connects the start and goal vertices to their direct-h-reachable subgoals, among which the
local ones should be temporarily connected to the TSG. Then, the search and refining processes are
executed. It should be noted that the refining process of TSGs is slower than SSGs because TSGs
connect h-reachable subgoals instead of direct-h-reachable subgoals. But, TSGs still find optimal paths
faster due to the smaller search space. To reduce the search space even further, Tansel Uras et al.
generalized the idea of partitioning [31,32], created a hierarchy among the vertices, and repeatedly
divided the highest-level subgoals into global and local subgoals and increased the level of global
subgoals by one. The resulting graphs are called N-Level Subgoal Graphs.

Subgoal Graphs can be used not only to find grid paths, but also to find any-angle paths which
are shorter and more realistic [33–35]. Tansel Uras and Sven Koenig [36] exploited the similarities
between Subgoal Graphs and visibility graphs and used Subgoal Graphs to quickly find any-angle
paths with some small modifications. Their algorithm is up to two orders of magnitude faster than
Theta*, a well-known any-angle path planning algorithm.

All the above algorithms only take regular grids as input and build subgoal graphs which do
not take physical radius into considerations. Therefore, the paths planned from the resulting subgoal
graphs would possibly be unable to meet the collision-free requirements in practical application. In this
paper, we attempt to modify the existing algorithm so that it can make use of the maximal clearance
values provided by the grid-based DMs and to build new type of subgoal graph that can efficiently
search collision-free paths.

3. Preliminaries and Notation

All the algorithms studied in this paper work in planar, eight-connected grid maps with regions
of obstacles consisting of blocked cells. A wavefront launched by a cell state change can propagate
from one cell to its neighbor in any cardinal or diagonal directions, and the length of the cardinal and
diagonal moves are 1 and

√
2, respectively. We follow the definition of octile distance to compute

the heuristic distance between any two cells in a grid map, i.e., the distance between cells s and s’ is
computed by following Equation (2):

dist(s, s′) =
√

2×min(dx, dy) +
∣∣∣dx− dy

∣∣∣ (2)

In Equation (2), dx and dy denote the differences of the 2D coordinates of cell s and s’. For each cell
s, obsts maintains coordinates of the obstacle cell so to which s is currently closest, and dists maintains
the distance between s and so. The notation dirs maintains the direction along with which s would

Appl. Sci. 2019, 9, 2029 6 of 18

propagate the wavefront. The options of dirs include four cardinal directions (denoted as left = 1,
up = 3, right = 5, and down = 7), four diagonal directions (denoted as up-left = 2, up-right = 4,
down-right = 6, and down-left = 8), and full directions (denoted as full-dir = 0, declaring that s is
the source of the wavefront; thus, all the eight directions need to be considered in the next round
propagation). The notation raises shows if the wavefront on s is a raise wavefront or a lower one
(the differences between raise and lower wavefronts are explained in Section 4.1.1). Given a cell s, a
direction d, and an integer k, the notation s’ = s + kd denotes a cell s’ that is reached from s by moving k
steps along d. For two perpendicular directions c1 and c2, we have d=c1+c2 to denote that the sum of c1
and c2 results in their corresponding diagonal direction d.

4. The Methodology

4.1. Algorithm Intuition

Figure 3 shows the flowchart describing the main steps of CODB and its application in real-time
pathfinding tasks.

In Equation (2), dx and dy denote the differences of the 2D coordinates of cell s and s’. For each
cell s, obsts maintains coordinates of the obstacle cell so to which s is currently closest, and dists
maintains the distance between s and so. The notation dirs maintains the direction along with which
s would propagate the wavefront. The options of dirs include four cardinal directions (denoted as
left = 1, up = 3, right = 5, and down = 7), four diagonal directions (denoted as up-left = 2, up-right =
4, down-right = 6, and down-left = 8), and full directions (denoted as full-dir = 0, declaring that s is
the source of the wavefront; thus, all the eight directions need to be considered in the next round
propagation). The notation raises shows if the wavefront on s is a raise wavefront or a lower one (the
differences between raise and lower wavefronts are explained in Section 4.1.1). Given a cell s, a
direction d, and an integer k, the notation s’= s + kd denotes a cell s’ that is reached from s by moving
k steps along d. For two perpendicular directions c1 and c2, we have d=c1+c2 to denote that the sum of
c1 and c2 results in their corresponding diagonal direction d.

4. The Methodology

4.1. Algorithm Intuition

Figure 3 shows the flowchart describing the main steps of CODB and its application in
real-time pathfinding tasks.

Start

Step 1:Initialization

Initialize the underlying
grid map

Newly inserted
obstacles?

Set obstacle cells

Newly removed
obstacles?

Remove obstacle cells

Build or update the DM Step 2: DM building

Place the subgoals

Connect direc-h-reachable subgoals

Step 3: Subgoal graph bulding

Connect start and goal cells to the
subgoal graph

Find high-level path from the
subgoal graph

Step 4:
High-level pathfinding

Execute LRTA* for each segment
of the high-level path

Reach the goal?

End

Step 5:
Low-level navigation

N

N

N

Y

Y

Y

Disconnect start and goal cells
from the subgoal graph

Figure 3. the flowchart describing the process of building a DM, building a DM-based subgoal
graph, engaging a high-level path planning task, and executing Learning Real Time A* (LRTA*) to
fulfill a low-level navigation task.

4.1.1. Lower and Raise Wavefronts

Following the basic ideas of Dynamic Brushfire algorithms, CODB employs two kinds of
wavefront, lower and raise wavefronts, to incrementally update DMs. CODB keeps a priority queue
(denoted as OPEN) to sort the cells to be explored by the wavefronts. A cell’s priority is determined
by its dists value and is dequeued with increasing priority values. When a cell is popped from

Figure 3. The flowchart describing the process of building a DM, building a DM-based subgoal graph,
engaging a high-level path planning task, and executing Learning Real Time A* (LRTA*) to fulfill a
low-level navigation task.

4.1.1. Lower and Raise Wavefronts

Following the basic ideas of Dynamic Brushfire algorithms, CODB employs two kinds of wavefront,
lower and raise wavefronts, to incrementally update DMs. CODB keeps a priority queue (denoted as
OPEN) to sort the cells to be explored by the wavefronts. A cell’s priority is determined by its dists

value and is dequeued with increasing priority values. When a cell is popped from OPEN, the distance
change on it will be propagated to its adjacent cells and any inconsistent cells (i.e., cells which are
affected by the wavefront) are again put on OPEN, so as to prepare for the next round of propagation.

Appl. Sci. 2019, 9, 2029 7 of 18

As shown in Figure 4a, when an obstacle cell (red dot denoted as s) is newly inserted into the
center of the grids, it firstly sets dists as 0 and obsts as its own coordinates; then, a so called “lower
wavefront” is launched to propagate a distance reduction to its adjacent cells (as shown in Figure 4b).
This propagation emanates from s, the source of the change, and terminates when the distance change
no longer affects anymore cells (as shown in Figure 4c,d, the wavefront encounters cells which keeps
equal clearance to other obstacle cells and thus failed to continue the propagation.). Finally, new
boundaries of the updated DM are reached and the distance values of all affected cells are updated
(As shown in Figure 4e).

OPEN, the distance change on it will be propagated to its adjacent cells and any inconsistent cells
(i.e., cells which are affected by the wavefront) are again put on OPEN, so as to prepare for the next
round of propagation.

As shown in Figure 4a, when an obstacle cell (red dot denoted as s) is newly inserted into the
center of the grids, it firstly sets dists as 0 and obsts as its own coordinates; then, a so called “lower
wavefront” is launched to propagate a distance reduction to its adjacent cells (as shown in Figure
4b). This propagation emanates from s, the source of the change, and terminates when the distance
change no longer affects anymore cells (as shown in Figure 4c,d, the wavefront encounters cells
which keeps equal clearance to other obstacle cells and thus failed to continue the propagation.).
Finally, new boundaries of the updated DM are reached and the distance values of all affected cells
are updated (As shown in Figure 4e).

(a)

(b)

(c)

(d)

(e)

Figure 4. Lower wavefront propagation. (a) Insert a new obstacle cell; (b) Launch a lower wavefront;
(c) Propagate the distance change; (d) Reach edges of affected area; (e) New DM is reconstructed.

On the other hand, when an obstacle cell is removed (e.g., as Figure 5a shows, we again
remove the center obstacle cell s from the map), all the cells whose obst and dist value are computed
based on s become invalid; therefore, a so called “raise wavefront” is launched to reset these invalid
cells, declaring that they can be then updated by other lower wavefronts (as shown in Figure 5b).
The “raise wavefront” terminates at the boundaries between s and other obstacle cells (as shown in
Figure 5c), then lower wavefronts on the other sides of the boundaries are permitted to continue
their propagation until the invalid region is again submerged (as shown in Figure 5d) and Figure
5e).

(a)

(b)

(c)

(d)

(e)

Figure 5. Raise wavefront propagation. (a) Remove the center obstacle; (b) Launch a raise wavefront;
(c) Propagate the resetting to the invalid edges; (d) Continue the lower wavefront from other sides;
(e)The invalid region is again submerged.

4.1.2. Propagation in Canonical Ordering

To speed up the construction efficiency, we introduce the concept of Canonical Ordering to
guide the propagation of wavefronts. The application of Canonical Ordering has been recently
discussed to speed up best-first search in grids-based pathfinding tasks in [24]. Different from the
classical Dynamic Brushfire algorithm, which expands all the eight directions at every step,
Canonical Ordering can eliminate redundant, symmetric paths from the source of state change,
which accounts for the main part of the speed improvement.

As shown in Figure 6a, in an open grid map without obstacles, a wavefront launched by a cell
(denoted as s) on the left top can follow three different optimal paths to propagate its distance
change to the traversable cell (denoted as g) on the right bottom. The only difference between these
paths relies on the permutation of actions of moving right one cell and moving down-right two

Figure 4. Lower wavefront propagation. (a) Insert a new obstacle cell; (b) Launch a lower wavefront;
(c) Propagate the distance change; (d) Reach edges of affected area; (e) New DM is reconstructed.

On the other hand, when an obstacle cell is removed (e.g., as Figure 5a shows, we again remove
the center obstacle cell s from the map), all the cells whose obst and dist value are computed based
on s become invalid; therefore, a so called “raise wavefront” is launched to reset these invalid cells,
declaring that they can be then updated by other lower wavefronts (as shown in Figure 5b). The “raise
wavefront” terminates at the boundaries between s and other obstacle cells (as shown in Figure 5c),
then lower wavefronts on the other sides of the boundaries are permitted to continue their propagation
until the invalid region is again submerged (as shown in Figure 5d) and Figure 5e).

OPEN, the distance change on it will be propagated to its adjacent cells and any inconsistent cells
(i.e., cells which are affected by the wavefront) are again put on OPEN, so as to prepare for the next
round of propagation.

As shown in Figure 4a, when an obstacle cell (red dot denoted as s) is newly inserted into the
center of the grids, it firstly sets dists as 0 and obsts as its own coordinates; then, a so called “lower
wavefront” is launched to propagate a distance reduction to its adjacent cells (as shown in Figure
4b). This propagation emanates from s, the source of the change, and terminates when the distance
change no longer affects anymore cells (as shown in Figure 4c,d, the wavefront encounters cells
which keeps equal clearance to other obstacle cells and thus failed to continue the propagation.).
Finally, new boundaries of the updated DM are reached and the distance values of all affected cells
are updated (As shown in Figure 4e).

(a)

(b)

(c)

(d)

(e)

Figure 4. Lower wavefront propagation. (a) Insert a new obstacle cell; (b) Launch a lower wavefront;
(c) Propagate the distance change; (d) Reach edges of affected area; (e) New DM is reconstructed.

On the other hand, when an obstacle cell is removed (e.g., as Figure 5a shows, we again
remove the center obstacle cell s from the map), all the cells whose obst and dist value are computed
based on s become invalid; therefore, a so called “raise wavefront” is launched to reset these invalid
cells, declaring that they can be then updated by other lower wavefronts (as shown in Figure 5b).
The “raise wavefront” terminates at the boundaries between s and other obstacle cells (as shown in
Figure 5c), then lower wavefronts on the other sides of the boundaries are permitted to continue
their propagation until the invalid region is again submerged (as shown in Figure 5d) and Figure
5e).

(a)

(b)

(c)

(d)

(e)

Figure 5. Raise wavefront propagation. (a) Remove the center obstacle; (b) Launch a raise wavefront;
(c) Propagate the resetting to the invalid edges; (d) Continue the lower wavefront from other sides;
(e)The invalid region is again submerged.

4.1.2. Propagation in Canonical Ordering

To speed up the construction efficiency, we introduce the concept of Canonical Ordering to
guide the propagation of wavefronts. The application of Canonical Ordering has been recently
discussed to speed up best-first search in grids-based pathfinding tasks in [24]. Different from the
classical Dynamic Brushfire algorithm, which expands all the eight directions at every step,
Canonical Ordering can eliminate redundant, symmetric paths from the source of state change,
which accounts for the main part of the speed improvement.

As shown in Figure 6a, in an open grid map without obstacles, a wavefront launched by a cell
(denoted as s) on the left top can follow three different optimal paths to propagate its distance
change to the traversable cell (denoted as g) on the right bottom. The only difference between these
paths relies on the permutation of actions of moving right one cell and moving down-right two

Figure 5. Raise wavefront propagation. (a) Remove the center obstacle; (b) Launch a raise wavefront;
(c) Propagate the resetting to the invalid edges; (d) Continue the lower wavefront from other sides;
(e)The invalid region is again submerged.

4.1.2. Propagation in Canonical Ordering

To speed up the construction efficiency, we introduce the concept of Canonical Ordering to guide
the propagation of wavefronts. The application of Canonical Ordering has been recently discussed to
speed up best-first search in grids-based pathfinding tasks in [24]. Different from the classical Dynamic
Brushfire algorithm, which expands all the eight directions at every step, Canonical Ordering can
eliminate redundant, symmetric paths from the source of state change, which accounts for the main
part of the speed improvement.

As shown in Figure 6a, in an open grid map without obstacles, a wavefront launched by a cell
(denoted as s) on the left top can follow three different optimal paths to propagate its distance change
to the traversable cell (denoted as g) on the right bottom. The only difference between these paths
relies on the permutation of actions of moving right one cell and moving down-right two cells. It is
clear to see that the number of possible paths grows exponentially if we enlarge the grid map and keep
g in the right bottom corner. Since the existing Dynamic Brushfire algorithm generates the same cell

Appl. Sci. 2019, 9, 2029 8 of 18

along different paths, such propagation would trigger large numbers of pushing and sort ascending
operations in OPEN list, which can be computationally expensive.

(a)

(b)

(c)

(d)

(e)

Figure 4. Lower wavefront propagation. (a) Insert a new obstacle cell; (b) Launch a lower wavefront;

(c) Propagate the distance change; (d) Reach edges of affected area; (e) New DM is reconstructed.

On the other hand, when an obstacle cell is removed (e.g., as Figure 5a shows, we again remove

the center obstacle cell s from the map), all the cells whose obst and dist value are computed based on

s become invalid; therefore, a so called “raise wavefront” is launched to reset these invalid cells,

declaring that they can be then updated by other lower wavefronts (as shown in Figure 5b). The “raise

wavefront” terminates at the boundaries between s and other obstacle cells (as shown in Figure 5c),

then lower wavefronts on the other sides of the boundaries are permitted to continue their

propagation until the invalid region is again submerged (as shown in Figure 5d) and Figure 5e).

(a)

(b)

(c)

(d)

(e)

Figure 5. Raise wavefront propagation. (a) Remove the center obstacle; (b) Launch a raise wavefront;

(c) Propagate the resetting to the invalid edges; (d) Continue the lower wavefront from other sides;

(e)The invalid region is again submerged.

4.1.2. Propagation in Canonical Ordering

To speed up the construction efficiency, we introduce the concept of Canonical Ordering to

guide the propagation of wavefronts. The application of Canonical Ordering has been recently

discussed to speed up best-first search in grids-based pathfinding tasks in [24]. Different from the

classical Dynamic Brushfire algorithm, which expands all the eight directions at every step, Canonical

Ordering can eliminate redundant, symmetric paths from the source of state change, which accounts

for the main part of the speed improvement.

As shown in Figure 6a, in an open grid map without obstacles, a wavefront launched by a cell

(denoted as s) on the left top can follow three different optimal paths to propagate its distance change

to the traversable cell (denoted as g) on the right bottom. The only difference between these paths

relies on the permutation of actions of moving right one cell and moving down-right two cells. It is

clear to see that the number of possible paths grows exponentially if we enlarge the grid map and

keep g in the right bottom corner. Since the existing Dynamic Brushfire algorithm generates the same

cell along different paths, such propagation would trigger large numbers of pushing and sort

ascending operations in OPEN list, which can be computationally expensive.

S

G

(a)

(b)

Figure 6. Canonical Ordering in wavefront propagation. (a) The possible paths to propagate a
wavefront from cell S on left-top to cell G on bottom-right. Among these paths, only the gray one is
tested when following the preference rule of Canonical Ordering; (b) By following the preference rule
of Canonical Ordering, the expansion of a wavefront denoted as red arrows is launched from the center
yellow cell and visits each affected cell only once.

To eliminate these redundancies, Canonical Ordering insists on a preference rule, i.e., distance
changes first propagate diagonally before propagating cardinally whenever possible along a path
(e.g., as shown in Figure 6a, by following this rule, only the gray path is tested.). With such a preference,
a source cell in an open grid map returns a unique path from itself to each affected cell. As shown in
Figure 6b a wavefront launched from the center cell (denoted as a yellow cell) draws lines diagonally
and then branches vertically and horizontally, extending from the diagonals. Since every affected cell
owns exactly one path from the source cell, the propagation is no longer a graph, but a tree.

4.1.3. DM-Based Subgoal Graph

In order to introduce the concept of maximal clearance provided by DMs into the precomputing
algorithms of subgoal graphs, we extend the formal definitions of the traditional subgoal graph
as follows:

Definition 1. For two cells s and s’, let dx and dy be the respective distances between s and s’ along the x and
y axes. The shortest trajectory between s and s’ is a permutation of exactly min(dx,dy) diagonal and |dx-dx|
cardinal moves, for a total of max(dx,dy) moves.

Definition 2. Given a safety radius R, a collision-free path between two cells s and s’ is the shortest trajectory
in which each cell sˆ is collision-free, i.e., C(R,sˆ)=0.

Definition 3. Given a safety radius R, an unblocked cell s is a collision-free subgoal if there are two perpendicular
cardinal directions c1 and c2 such that C(R,s+c1+c2)=1, C(R,s+c1)=0 and C(R,s+c2)=0.

Definition 4. Given a safety radius R, two cells s and s’ are h-reachable if there is a collision-free path of octile
length h(s,s’) between them. Two h-reachable cells are safe-h-reachable if all shortest trajectories between them
are also paths. Two safe-h-reachable cell s and s’ are direct-h-reachable if none of the shortest paths between them
contains a subgoal s” < {s,s’}.

Definition 5. Given a safety radius R, an DM-based subgoal graph, Gs =(R,Vs,Es), on its corresponded grids,
is a high-level, undirected graph, where Vs is the set of collision-free subgoals and Es is the set of edges connecting
direct-h-reachable subgoals, and the length of the edges is the octile distances between the subgoals they connect.

The process of constructing an DM-based subgoal graph can be intuitively divided into two steps:
(1) placing collision-free subgoals at the corners of the expanded obstacle boundary to circumnavigate

Appl. Sci. 2019, 9, 2029 9 of 18

the collision regions (e.g., the orange circles shown in Figure 7a); (2) adding edges between those
subgoals which are mutually direct-h-reachable (e.g., the green edges shown in Figure 7b). Given
a start and a goal cell (e.g., the blue and red discs shown in Figure 7b), we first connect them to
their respective direct-h-reachable subgoals and then plan a high-level shortest path by executing
A* on the updated subgoal graph (e.g., the white trajectory shown in Figure 7b). We can refine each
segment of the high-level path by arbitrarily selecting an h-reachable path between two connecting
subgoals, and then orderly appending these refined paths together. Moreover, as shown in Figure 7c,d,
for agents with different safety radius, their corresponding DM-based subgoal graph, according to
Definition 5, can set aside adequate clearance; therefore, the paths found from the resulting graphs can
be collision-free.

connect them to their respective direct-h-reachable subgoals and then plan a high-level shortest
path by executing A* on the updated subgoal graph (e.g., the white trajectory shown in Figure 7b).
We can refine each segment of the high-level path by arbitrarily selecting an h-reachable path
between two connecting subgoals, and then orderly appending these refined paths together.
Moreover, as shown in Figure 7c,d, for agents with different safety radius, their corresponding
DM-based subgoal graph, according to Definition 5, can set aside adequate clearance; therefore, the
paths found from the resulting graphs can be collision-free.

(a)

(b)

(c)

(d)

Figure 7. Steps of constructing DM-based subgoal graphs with different safety radius. (a) Step1:
placing subgoals (R=1); (b) Step2: connecting direct-h-reachable subgoals (R=1); (c) a subgoal graph
with R=1.5; (d) a subgoal graph with R=3.

4.2. Algorithm Pseudocode

4.2.1. Initiate the DM

Table 1 presents pseudocode for the initialization of a DM, including three functions, i.e., 1)
initialize() to set aside certain space for required data structures and then initial their values; 2)
setObstacleCell(o) to register a newly inserted obstacle cell; and 3) removeObstacleCell(o) to reset
an removed obstacle cell. Upon initialization, all the cells are set to be traversable and undetermined,
declaring that there is no obstacle cell, neither in the map, nor in finite distance (lines 1 to 7). When a
cell o is marked as an obstacle cell by calling setObstacleCell(o), it sets disto as 0 and refers to itself as
the closest obstacle cell, i.e., obsto = o (lines 8 and 9). Conversely, when o is freed by calling
removeObstacleCell(o), the function resetCell(o) resets it to the initial values, i.e., disto = ∞ and obsto
= ∅ (line 11), and raiseo is set as true (line 12). The function insert (OPEN, c, d) inserts a cell c into
OPEN with a priority value d, or updates the priority if c is already in OPEN.

Table 1. The pseudocode for initialization.

initialize() setObstacleCell (Cell o) removeObstacleCell (Cell o)

Figure 7. Steps of constructing DM-based subgoal graphs with different safety radius. (a) Step1:
placing subgoals (R=1); (b) Step2: connecting direct-h-reachable subgoals (R=1); (c) a subgoal graph
with R=1.5; (d) a subgoal graph with R=3.

4.2. Algorithm Pseudocode

4.2.1. Initiate the DM

Table 1 presents pseudocode for the initialization of a DM, including three functions, i.e.,
(1) initialize() to set aside certain space for required data structures and then initial their values;
(2) setObstacleCell(o) to register a newly inserted obstacle cell; and (3) removeObstacleCell(o) to reset
an removed obstacle cell. Upon initialization, all the cells are set to be traversable and undetermined,
declaring that there is no obstacle cell, neither in the map, nor in finite distance (lines 1 to 7). When
a cell o is marked as an obstacle cell by calling setObstacleCell(o), it sets disto as 0 and refers to
itself as the closest obstacle cell, i.e., obsto = o (lines 8 and 9). Conversely, when o is freed by calling
removeObstacleCell(o), the function resetCell(o) resets it to the initial values, i.e., disto = ∞ and

Appl. Sci. 2019, 9, 2029 10 of 18

obsto = ∅ (line 11), and raiseo is set as true (line 12). The function insert (OPEN, c, d) inserts a cell c into
OPEN with a priority value d, or updates the priority if c is already in OPEN.

Table 1. The pseudocode for initialization.

initialize()

1. OPEN← ∅
2. for each cell s in the grid

map do
3. dists ←∞

4. obsts ← ∅
5. voros ← false
6. raises ← false
7. dirs ← 0

setObstacleCell (Cell o)

8. disto ← 0
9. obsto ← o
10. insert (OPEN,o,0)

removeObstacleCell (Cell
o)

11. resetCell (o)
12. raiseo ← true
13. insert (OPEN, o, 0)

4.2.2. Update the DM

Table 2 presents pseudocode for updating the DM. The function update() orderly pops the next
unprocessed cell s with the lowest dists until the OPEN queue is empty (lines 14 and 15). If s is cleared
and is not yet propagated by a raise wavefront, the function raise() is called (lines 16 and 17). However,
if s has a valid closest obstacle cell, the function lower() is called (lines 18 to 20).

Table 2. The pseudocode for updating the Euclidean distance map.

update()

14. while OPEN , ∅ do
15 s← pop(OPEN)
16. if raises then
17. raise(s)
18. else if isOcc(obsts) then
19. voros ← false
20. lower(s)

lower (cell s)

21. N← findSuccessors(s)
22. for each n ∈ N do
23. if ¬raisen then
24. d← distance (obsts,n)
25. if d < distn; then
26. distn ← d
27. obstn ← obsts
28. dirn ← direction(s,n)
29. insert(OPEN,n,d)

raise (cell o)

30. N← findSuccessors(s)
31. for each n ∈ N do
32. if (obstn , ∅

∧
¬raisen)

then
33. if ¬ isOcc(obstn) then
34. clearCell(n)
35. raisen ← true
36. dirn ← direction(s,n)
37. else dirn ← full-dir
38. insert (OPEN,n,distn)
39. raises ← false

findSuccessors(cell s)

40. if dirs is one of the four cardinal directions then
41. return N← {s + dirs }
42. else
43. return N← {s + dirs, s + c1, s+c2 | where dirs =c1+c2}

Newly inserted obstacle cells call function lower() to launch a lower wavefront to propagate the
reduction of dist and obst values from the currently popped cell s to its affected cells (lines 26 to 29).
The lower wavefront continues when the distance value (denoted as d which is computed in line 24)
between obsts and the newly expanded cell n holds the trend of distance reduction (being determined
in line 25). Simultaneously, newly freed cells call function raise() to launch a raise wavefront, resetting
the cells whose closest obstacle cell was the freed one (line 33 to 36). The raise wavefront terminates
when it reaches those cells whose closest obstacle is valid; thus, a lower wavefront launched by n is
generated (line 37). During the interwoven of these two wavefronts, inconsistent neighbors affected by
the processed cell are again put on OPEN (line 29 and 38), thus the propagation continues.

Instead of propagating a wavefront along with full directions, we introduce a function
findSuccessors(s) to filter cells by employing the rule of canonical ordering (line 21 and 30).
As illustrated in Figure 6b, only the successors of a cell in the direction of the arrows are chosen as the

Appl. Sci. 2019, 9, 2029 11 of 18

candidates of the next round of propagation, while the others are ignored. For a cell n conducting a
wavefront from one of its adjacent cell s, function direction(s,n) determines the direction from s to n
and accordingly returns the value of dirn (line 28 and 36).

4.2.3. Construct DM-Based Subgoal Graphs

By making use of the collision test equation shown in Equation (1), we modify the subgoal
placement condition of the original construction algorithm; therefore. a collision-free subgoal graph
for a certain safety radius R can be efficiently computed from the underlying DM.

Given an agent with safety radius R ≥ 0, Table 3 shows how to construct a subgoal graph,
Gs := (Vs,Es), from the underlying DM. The entire construction process consists of two sequential
phases, i.e., firstly placing collision-free subgoals on the corners of the expanded obstacle boundaries
(line 45 to line 49), and secondly, adding edges to connect those subgoals which are mutually
direct-h-reachable (line 50 to 53).

Table 3. The pseudocode for constructing DM-based subgoal graphs.

ConstrucDMBasedSubGraph(safetyRadius R)

44. Vs ← ∅ , Es ← ∅
45. for each unblocked cells s do
46. for each pair of perpendicular cardinal directions c1 and c2 do
47. if C(R,s+c1+c2)=1 then
48. if C(R,s+c1)=0∧C(R,s+c2)=0 then
49. Vs← Vs

⋃
{s}

50. for each s ∈ Vs do
51. S← GetDirectHReachable(Vs, R,s)
52. for each s’∈S do
53. Es← Es

⋃
{(s,s’)}

54. Gs← (Vs,Es)

A time-consuming and important part in the algorithm shown in Table 3 is how to identify all
direct-h-reachable subgoals from a given subgoal s (line 51), and this can be done by determining the
direct-h-reachable area around s. As shown in Table 4 the algorithm proposed by Tansel Uras et al. [30]
works in two steps. The first step (line 56 to 58) identifies the closest subgoals in each of the eight
cardinal and diagonal directions, and the second step (line 59 to 70) incrementally finds out the other
subgoals that can be reached via moves in two directions (i.e., either a diagonal direction or one of
its two corresponded cardinal directions). In order to meet the strong requirements of Definition 5,
we replace the Clearance(R, V, s, d) function in the original algorithm with SafeClearance(R, V, s, d),
thus the resulting direct-h-reachable paths between two subgoals can be collision-free when taking
safety radius R into consideration (e.g., the tests in line 73 ensure that every step of the incremental
exploration is collision-free). For more detail about the function GetDirectHReachable, please refer to
Tansel Uras’ work [30].

Appl. Sci. 2019, 9, 2029 12 of 18

Table 4. The pseudocode of determining the direct-h-reachable area of a given unblocked cell s.

GetDirectHReachable(subgoals V, safetyRadius R, cell s

55. S ← ∅
56. for each directions d do
57. s’ ← (s+SafeClearance(R,V,s,d)×d)
58. if s’ ∈ V then S← S

⋃
{s’}

59. for each diagonal directions d do
60. for each cardinal directions c associated with d do
61. max← SafeClearance(R,V,s,c)
62. diag← SafeClearance(R,V,s,d)
63. if ((s+max)×c) ∈ V) then max← max-1
64. if ((s+diag)×d) ∈ V) then diag← diag -1
65. for each i from 1 to diag do
66. j← SafeClearance(R,V,s+id,c)
67. if j≤max and (s+id+c) ∈ V then
68. S← S

⋃
{s+id+c}

69. j← j-1
70. if j<max then max← j

SafeClearance(safetyRadius R, subgoals V, cell s, direction d)

71. i← 0
72. while true do
73. if ¬(C(R,s+id) = 0∧ C(R,s+id+d)=0) then
74. return i
75. i← i+1
76. if (s+id) ∈ V then return i

4.2.4. Find Paths in DM-Based Subgoal Graphs

The algorithms shown in Table 5 are proposed by Tansel Uras et al. [30], illustrating how to search
for a high-level path between two cells in the subgoal graphs. The function FindHighLevelPath is
called to connect s and s’ to the underlying subgoal graph, engage an A* search to find a shortest
collision-free path between s and s’ from the updated subgoal graph (line 79), and to restore the original
graph (line 80) before returning the resulting path (line 81). The function ConnectToGraph is called
to identify all direct-h-reachable subgoals of s and s’ (line 77 and line 78), and then add new edges
between them into the graph (line 85)).

Table 5. The pseudocode for searching paths in DM-based subgoal graphs.

FindHighLevelPath(subgoals V, edges E, safetyRadius R, startCell s, endCell s’)

77. ConnectToGraph(V,E,R,s)
78. ConnectToGraph(V,E,R,s’)
79. Π← A*(V,E,s,s’)
80. restore original graph
81 return Π

ConnectToGraph(subgoals V, edges E, safetyRadius R, cells s)

82. if s∈V then return
83. Vs← Vs

⋃
{s}

84. S← GetDirectHReachable(V,R,s)
85. for each s’∈S do Es← Es

⋃
{(s,s’)}

According to Tansel Uras’ work, the real-time requirement is easy to meet because each segment of
the resulting high-level path can be quickly refined by arbitrarily choosing one of the symmetric paths
between its two direct h-reachable subgoals. However, this global planning strategy often fails in some
dynamic environments in which some other moving agents may block the preplanned routes. To solve
this problem, we introduce Learning Real-time A* (LRTA*), a real-time heuristic search algorithm [10],
to take local changes into consideration and repeatedly plan and execute actions within a constant
time interval during the runtime.

We illustrate the key idea of LRTA* via pseudocode shown in Table 6. As long as the goal cell s’ is
not reached (line 87), the agent will follow the plan (line 88 and 89), learn (line 90), and execute the
(91) cycle. The planning phase expands all the traversable, reachable cells within the range of a fixed
look ahead range R and choose one cell n with the lowest g(s,n)+h(n,s’) as the immediate goal for the
next move (line 89). During the learning part, the numeric value h(sˆ,s’) is updated to approach the

Appl. Sci. 2019, 9, 2029 13 of 18

real total cost, denoted by h*(sˆ,s’) (line 90). Finally, the agent moves by changing its current position
towards the most promising cell discovered in the planning phase (line 91).

Table 6. The pseudocode for learning real time A* search.

LRTA*(start s, end s’, safety radius R)

86. sˆ← s
87. while sˆ,s’ do
88. S← frontier(sˆ,R)
89. s” ← argminn∈S (g(s,n)+h(n,s’))
90. h(sˆ,s’)← g(s,s”)+h(s”,s’)
91. sˆ← s”

A drawback that prevents the application of LRTA* is that agents who adopt this strategy could
possibly be trapped in local minima [37]. As shown in Figure 8a, local minima often exist around
certain terrain patterns such as concave regions, long distance barriers, and so on. Agents who use
LRTA* to search paths in these patterns would meaninglessly move back and forth, visit the same
cells several times to correct their heuristic values before escaping from these regions (As shown in
Figure 8c). However, the high-level path planned from the DM-based subgoal graph can provide an
agent with waypoints which circumnavigate the collision regions (As shown in Figure 8b). Therefore,
it can efficiently evade local minima by iteratively popping subgoals from the high-level path as the
next waypoint to head for (as shown in Figure 8d).

(a)

(b)

(c)

(d)

Figure 8. Examples of using LRTA* to search paths, with or without guidance of a high-level path
provided by DM-based subgoal graph. (a) A DM with safety radius R=1.5 constructed on a concave
blocked region; (b) The high-level path connecting the start and the goal cells can be searched from
the DM-based subgoal graph; (c) The trajectory from the start cell to the goal cell searched by LRTA*,
without guidance of the subgoal graph; (d) Making use of the subgoal graph, LRTA* visits much
fewer cells when heading for the goal cell, and can efficiently deal with dynamical terrain changes
which do not destroy connectivity.

5. Experiments and Results

In this section, we employ statistical methods to compare our algorithm with other competing
methods on certain simulated scenarios. We also demonstrate the usefulness of the DM-based
subgoal graphs to real-time path planning tasks. Our algorithms are implemented in C++, running
on an Intel® Core(TM) i7-4790 CPU @ 3.60GHz.

5.1. Comparison to Other Algorithms

We compare CODB with other three competing algorithms (i.e., Brushfire, Dynamic Brushfire,
and algorithms proposed by Boris Lau et al. [23](we abbreviate it as BL below)) which are discussed
in Section 2 in four typical scenarios as shown in Figure 9.

Figure 8. Examples of using LRTA* to search paths, with or without guidance of a high-level path
provided by DM-based subgoal graph. (a) A DM with safety radius R=1.5 constructed on a concave
blocked region; (b) The high-level path connecting the start and the goal cells can be searched from
the DM-based subgoal graph; (c) The trajectory from the start cell to the goal cell searched by LRTA*,
without guidance of the subgoal graph; (d) Making use of the subgoal graph, LRTA* visits much fewer
cells when heading for the goal cell, and can efficiently deal with dynamical terrain changes which do
not destroy connectivity.

5. Experiments and Results

In this section, we employ statistical methods to compare our algorithm with other competing
methods on certain simulated scenarios. We also demonstrate the usefulness of the DM-based subgoal
graphs to real-time path planning tasks. Our algorithms are implemented in C++, running on an
Intel®Core(TM) i7-4790 CPU @ 3.60GHz.

Appl. Sci. 2019, 9, 2029 14 of 18

5.1. Comparison to Other Algorithms

We compare CODB with other three competing algorithms (i.e., Brushfire, Dynamic Brushfire,
and algorithms proposed by Boris Lau et al. [23] (we abbreviate it as BL below)) which are discussed in
Section 2 in four typical scenarios as shown in Figure 9.

(a) (b) (c) (d)

Figure 9. The grid maps used to compare performance of different algorithms. (a) Full reconstruction;
(b) 75% changed; (c) 50% changed; (d) 25% changed. Within these figures, the obstacles marked in
black and blue are static, while the obstacles marked in yellow randomly change their positions or
shapes.

We set aside four grid maps (from Figure 9a to Figure 9d) which have the same size (100 × 100)
while allowing different proportions of the obstacles (i.e., fully reconstruction, 75%, 50%, and 25%
respectively) to randomly change their positions or shapes. After each set of changes, we use the
above mentioned four algorithms to construct or reconstruct the DMs. We run each algorithm on
each scenario 100 times, and the comparisons of the performances among these algorithms are
shown in Table 7 and Figure 10 (i.e., the average computation time scaled in milliseconds and its
variance) and Table 8 and Figure 11 (i.e., the maximal size of the priority queue OPEN during
construction and its variance).

For the first scenario in which full reconstructions are inevitable since all the obstacles are
moved or reshaped, the extra operations that enable local repairs make Dynamic Brushfire (8.61 ms)
and BL (7.22 ms) slower than their static counterpart, Brushfire (6.34 ms). However, due to the
integration of Canonical Ordering strategy, CODB can substantially prune the search space; thus, it
still maintains an obvious advantage over the other three algorithms in time efficiency (4.26 ms),
even in the case of full reconstructions. As for the other three scenarios, as the proportion of the
dynamic obstacles decreases, dynamic algorithms gradually manifest their superiority in speed.
Among the three dynamic algorithms, CODB is also faster than the others due to fewer cell visits,
reducing the computation time by at least 50%.

Table 7. Comparison of the algorithms’ efficiencies in the four scenarios (milliseconds).

Algorithm
full Reconstruction 75% Dynamic 50% Dynamic 25% Dynamic

µ 𝝈 µ 𝝈 µ 𝝈 µ 𝝈
Brushfire 6.34 0.2533 6.53 0.1824 6.48 0.2316 6.32 0.2339

Dynamic Brushfire* 8.61 0.1753 6.19 0.2018 3.48 0.1899 1.39 0.2037
BL* 7.22 0.2451 5.24 0.2342 2.93 0.2171 1.12 0.1746

CODB* 4.26 0.2124 3.25 0.1937 1.67 0.2248 0.73 0.2102
*Dynamic algorithms that only repair the affected portions.

Table 8. Comparison of the maximal size of the priority queue OPEN (Only dynamic algorithms
are compared).

Algorithm
Full Reconstruction 75% Dynamic 50% Dynamic 25% Dynamic

µ 𝝈 µ 𝝈 µ 𝝈 µ 𝝈

Figure 9. The grid maps used to compare performance of different algorithms. (a) Full reconstruction;
(b) 75% changed; (c) 50% changed; (d) 25% changed. Within these figures, the obstacles marked in black
and blue are static, while the obstacles marked in yellow randomly change their positions or shapes.

We set aside four grid maps (from Figure 9a to Figure 9d) which have the same size (100 × 100)
while allowing different proportions of the obstacles (i.e., fully reconstruction, 75%, 50%, and 25%
respectively) to randomly change their positions or shapes. After each set of changes, we use the
above mentioned four algorithms to construct or reconstruct the DMs. We run each algorithm on
each scenario 100 times, and the comparisons of the performances among these algorithms are shown
in Table 7 and Figure 10 (i.e., the average computation time scaled in milliseconds and its variance)
and Table 8 and Figure 11 (i.e., the maximal size of the priority queue OPEN during construction and
its variance).

Table 7. Comparison of the algorithms’ efficiencies in the four scenarios (milliseconds).

Algorithm Full Reconstruction 75% Dynamic 50% Dynamic 25% Dynamic
µ σ µ σ µ σ µ σ

Brushfire 6.34 0.2533 6.53 0.1824 6.48 0.2316 6.32 0.2339
Dynamic Brushfire * 8.61 0.1753 6.19 0.2018 3.48 0.1899 1.39 0.2037

BL * 7.22 0.2451 5.24 0.2342 2.93 0.2171 1.12 0.1746
CODB * 4.26 0.2124 3.25 0.1937 1.67 0.2248 0.73 0.2102

* Dynamic algorithms that only repair the affected portions.

Table 8. Comparisonof themaximalsizeof thepriorityqueueOPEN (Onlydynamicalgorithmsarecompared).

Algorithm Full Reconstruction 75% Dynamic 50% Dynamic 25% Dynamic
µ σ µ σ µ σ µ σ

Dynamic Brushfire 27,550 149 24,899 110 16,765 124 13,184 96
BL 12,523 78 10,268 106 8024 95 5327 77

CODB 9048 90 7611 121 6027 102 4116 88

Appl. Sci. 2019, 9, 2029 15 of 18

Dynamic Brushfire 27,550 149 24,899 110 16,765 124 13,184 96
BL 12,523 78 10,268 106 8024 95 5327 77

CODB 9048 90 7611 121 6027 102 4116 88

Figure 10. The average computation time provided by the four algorithms for updating DMs. The
algorithms prefixed with "*" are dynamic algorithms and only update the affected areas.

Figure 11. The average cell visits provided by the three dynamic algorithms.

5.2. Application Tests on Real-Time Pathfinding

This work is motivated by the need to engage real-time and collision-free pathfinding tasks for
agents with a certain safety radius. Such agents often maneuver in dynamic, crowded environments,
and have to decide their next move in a limited amount of time. In order to demonstrate the
usefulness of our algorithm in such scenarios, two agents (denoted as agent X and agent Y) working
in a grid map of size 200 × 200 (as shown in Figure 12) are simulated. For each round of testing, both
of the two agents are assigned the same start and goal cells located on the top right and left bottom of
the grid map, respectively. The resulting paths of Agent X and Y are respectively shown in Figure
12a,b as light green trajectories; by contrast, the optimal path searched by the classical path planning
algorithm, A*, is marked as red trajectories. Agent X simply adopts LRTA* to directly search and
move in the underlying DM, while agent Y shown in Figure 12b would firstly search out a high-level
path from the DM-based subgoal graph, and then engages LRTA* to search and move between the
segments of the path. In order to gain the average performance, we run the test of each of the ten
pairs of start and goal cells 100 times.

For agent X, applying LRTA* to engage a real-time search can help the agent successfully avoid
collisions with obstacles, but it is very easy for the underlying DM to generate local minima around
typical locations such as concaves, narrow channels, long distance barriers, and so on. To the cells
within these locations, the occurrence of the local minima results in an increase in errors between the
default heuristic values and the actual values. Therefore, LRTA* has to recheck these cells many
times to incrementally correct their heuristic values (as shown in line 90, Table 6). Only in this way
can the heuristic depressions be gradually filled up and finally drive the agent to escape from the
local minima. Unfortunately, such runtime correction incurs meaningless movements (As the
regions labeled as A, B, and C in Figure 12a) which are unacceptable to the requirements of engaging
reasonable behavior.

0

5

10

full 75% dynamic 50% dynamic 25% dynamic

time
(ms)

Brushfire Dynamic Brushfire* BL* CODB*

0

10000

20000

30000

full 75% dynamic 50% dynamic 25% dynamic

Dynamic Brushfire BL CODB

Figure 10. The average computation time provided by the four algorithms for updating DMs.
The algorithms prefixed with “*” are dynamic algorithms and only update the affected areas.

Dynamic Brushfire 27,550 149 24,899 110 16,765 124 13,184 96
BL 12,523 78 10,268 106 8024 95 5327 77

CODB 9048 90 7611 121 6027 102 4116 88

Figure 10. The average computation time provided by the four algorithms for updating DMs. The
algorithms prefixed with "*" are dynamic algorithms and only update the affected areas.

Figure 11. The average cell visits provided by the three dynamic algorithms.

5.2. Application Tests on Real-Time Pathfinding

This work is motivated by the need to engage real-time and collision-free pathfinding tasks for
agents with a certain safety radius. Such agents often maneuver in dynamic, crowded environments,
and have to decide their next move in a limited amount of time. In order to demonstrate the
usefulness of our algorithm in such scenarios, two agents (denoted as agent X and agent Y) working
in a grid map of size 200 × 200 (as shown in Figure 12) are simulated. For each round of testing, both
of the two agents are assigned the same start and goal cells located on the top right and left bottom of
the grid map, respectively. The resulting paths of Agent X and Y are respectively shown in Figure
12a,b as light green trajectories; by contrast, the optimal path searched by the classical path planning
algorithm, A*, is marked as red trajectories. Agent X simply adopts LRTA* to directly search and
move in the underlying DM, while agent Y shown in Figure 12b would firstly search out a high-level
path from the DM-based subgoal graph, and then engages LRTA* to search and move between the
segments of the path. In order to gain the average performance, we run the test of each of the ten
pairs of start and goal cells 100 times.

For agent X, applying LRTA* to engage a real-time search can help the agent successfully avoid
collisions with obstacles, but it is very easy for the underlying DM to generate local minima around
typical locations such as concaves, narrow channels, long distance barriers, and so on. To the cells
within these locations, the occurrence of the local minima results in an increase in errors between the
default heuristic values and the actual values. Therefore, LRTA* has to recheck these cells many
times to incrementally correct their heuristic values (as shown in line 90, Table 6). Only in this way
can the heuristic depressions be gradually filled up and finally drive the agent to escape from the
local minima. Unfortunately, such runtime correction incurs meaningless movements (As the
regions labeled as A, B, and C in Figure 12a) which are unacceptable to the requirements of engaging
reasonable behavior.

0

5

10

full 75% dynamic 50% dynamic 25% dynamic

time
(ms)

Brushfire Dynamic Brushfire* BL* CODB*

0

10000

20000

30000

full 75% dynamic 50% dynamic 25% dynamic

Dynamic Brushfire BL CODB

Figure 11. The average cell visits provided by the three dynamic algorithms.

For the first scenario in which full reconstructions are inevitable since all the obstacles are moved
or reshaped, the extra operations that enable local repairs make Dynamic Brushfire (8.61 ms) and BL
(7.22 ms) slower than their static counterpart, Brushfire (6.34 ms). However, due to the integration of
Canonical Ordering strategy, CODB can substantially prune the search space; thus, it still maintains
an obvious advantage over the other three algorithms in time efficiency (4.26 ms), even in the case
of full reconstructions. As for the other three scenarios, as the proportion of the dynamic obstacles
decreases, dynamic algorithms gradually manifest their superiority in speed. Among the three dynamic
algorithms, CODB is also faster than the others due to fewer cell visits, reducing the computation time
by at least 50%.

5.2. Application Tests on Real-Time Pathfinding

This work is motivated by the need to engage real-time and collision-free pathfinding tasks for
agents with a certain safety radius. Such agents often maneuver in dynamic, crowded environments,
and have to decide their next move in a limited amount of time. In order to demonstrate the usefulness
of our algorithm in such scenarios, two agents (denoted as agent X and agent Y) working in a grid
map of size 200 × 200 (as shown in Figure 12) are simulated. For each round of testing, both of the two
agents are assigned the same start and goal cells located on the top right and left bottom of the grid
map, respectively. The resulting paths of Agent X and Y are respectively shown in Figure 12a,b as
light green trajectories; by contrast, the optimal path searched by the classical path planning algorithm,
A*, is marked as red trajectories. Agent X simply adopts LRTA* to directly search and move in the
underlying DM, while agent Y shown in Figure 12b would firstly search out a high-level path from the
DM-based subgoal graph, and then engages LRTA* to search and move between the segments of the
path. In order to gain the average performance, we run the test of each of the ten pairs of start and goal
cells 100 times.

For agent X, applying LRTA* to engage a real-time search can help the agent successfully avoid
collisions with obstacles, but it is very easy for the underlying DM to generate local minima around
typical locations such as concaves, narrow channels, long distance barriers, and so on. To the cells

Appl. Sci. 2019, 9, 2029 16 of 18

within these locations, the occurrence of the local minima results in an increase in errors between the
default heuristic values and the actual values. Therefore, LRTA* has to recheck these cells many times
to incrementally correct their heuristic values (as shown in line 90, Table 6). Only in this way can the
heuristic depressions be gradually filled up and finally drive the agent to escape from the local minima.
Unfortunately, such runtime correction incurs meaningless movements (As the regions labeled as A, B,
and C in Figure 12a) which are unacceptable to the requirements of engaging reasonable behavior.

(a) (b)

Figure 12. Performance comparison between agent X and Y. (a) The resulting path of agent X who
simply uses LRTA* to engage a global search in a DM. As the light green trajectory shows, repeated
heuristic corrections and meaningless movements caused by local minima (such as the regions
denoted by identifiers A, B, and C) seriously reduce the rationality of the resulting trajectory when it
is compared with the high level path searched by A* form the DM-based subgoal graph (denoted as
the red trajectory); (b) The resulting path of agent Y who adopts LRTA* to refine the high-level path
searched from the DM-based subgoal graph. Due to the sparse and h-direct reachable feature, Agent
Y prefers to expand cells between consecutive subgoals and thus can efficiently avoid local minima.
Therefore, the resulting path (shown as light green trajectory in (b)) is, to a large extent, close to the
optimal path denoted as the red trajectory.

As for agent Y, a high-level path (as the red path shown in both Figure 12a,b , is firstly searched
out from the DM-based subgoal graph by executing the algorithms proposed in Table 5 (in order to
make the figures clear, we only retain the subgoals and do not draw the direct-h-reachable edges).
The resulting path provides a list of sparse and direct-h-reachable waypoints to circumnavigate the
collision regions. Based on the path, agent B uses LRTA* at runtime to search and move along the
path; therefore, it can efficiently avoid local minima and terminate meaningless movements.

6. Conclusions

In this paper, we present an algorithm, Canonical Ordering Dynamic Brushfire (CODB), to
speed up the incremental updating of grid-based Distance Maps (DMs). CODB only updates those
cells which are affected by local changes, and it employs the strategy of Canonical Ordering to guide
the search direction; therefore, the algorithm requires much fewer cell visits and less computation
costs compared to its competing approaches. Furthermore, we propose algorithms to compute
DM-based subgoal graphs which are used to provide high-level, collision-free roadmaps for agents
with certain safety radius to engage fast and rational path planning tasks. We present our algorithms
both intuitively and through pseudocode, compare them to current approaches on typical scenarios,
and demonstrate their usefulness for fast path planning tasks.

Author Contributions: Conceptualization, L.Q., Y.H. and J.Z.; Data curation, L.Q.; Formal analysis, L.Q.;
Funding acquisition, Q.Y.; Methodology, L.Q., Y.H. and J.Z.; Project administration, Q.Y.; Resources, Q.Y.;
Software, L.Q.; Supervision, Q.Y.; Writing—original draft, L.Q.; Writing—review & editing, L.Q., Y.H. and J.Z.

Funding: This work described in this paper is sponsored by the National Natural Science Foundation of China
under Grant No. 61473300.

Acknowledgments: This work described in this paper is sponsored by the National Natural Science Foundation
of China under Grant No. 61473300. We appreciate the fruitful discussion with the Sim812 group: Qi Zhang, Kai
Xu, Weilong Yang, and Cong Hu.

Figure 12. Performance comparison between agent X and Y. (a) The resulting path of agent X who
simply uses LRTA* to engage a global search in a DM. As the light green trajectory shows, repeated
heuristic corrections and meaningless movements caused by local minima (such as the regions denoted
by identifiers A, B, and C) seriously reduce the rationality of the resulting trajectory when it is compared
with the high level path searched by A* form the DM-based subgoal graph (denoted as the red
trajectory); (b) The resulting path of agent Y who adopts LRTA* to refine the high-level path searched
from the DM-based subgoal graph. Due to the sparse and h-direct reachable feature, Agent Y prefers to
expand cells between consecutive subgoals and thus can efficiently avoid local minima. Therefore, the
resulting path (shown as light green trajectory in (b)) is, to a large extent, close to the optimal path
denoted as the red trajectory.

As for agent Y, a high-level path (as the red path shown in both Figure 12a,b, is firstly searched
out from the DM-based subgoal graph by executing the algorithms proposed in Table 5 (in order to
make the figures clear, we only retain the subgoals and do not draw the direct-h-reachable edges).
The resulting path provides a list of sparse and direct-h-reachable waypoints to circumnavigate the
collision regions. Based on the path, agent B uses LRTA* at runtime to search and move along the path;
therefore, it can efficiently avoid local minima and terminate meaningless movements.

6. Conclusions

In this paper, we present an algorithm, Canonical Ordering Dynamic Brushfire (CODB), to speed
up the incremental updating of grid-based Distance Maps (DMs). CODB only updates those cells which
are affected by local changes, and it employs the strategy of Canonical Ordering to guide the search
direction; therefore, the algorithm requires much fewer cell visits and less computation costs compared
to its competing approaches. Furthermore, we propose algorithms to compute DM-based subgoal
graphs which are used to provide high-level, collision-free roadmaps for agents with certain safety
radius to engage fast and rational path planning tasks. We present our algorithms both intuitively and
through pseudocode, compare them to current approaches on typical scenarios, and demonstrate their
usefulness for fast path planning tasks.

Appl. Sci. 2019, 9, 2029 17 of 18

Author Contributions: Conceptualization, L.Q., Y.H. and J.Z.; Data curation, L.Q.; Formal analysis, L.Q.; Funding
acquisition, Q.Y.; Methodology, L.Q., Y.H. and J.Z.; Project administration, Q.Y.; Resources, Q.Y.; Software, L.Q.;
Supervision, Q.Y.; Writing—original draft, L.Q.; Writing—review & editing, L.Q., Y.H. and J.Z.

Funding: This work described in this paper is sponsored by the National Natural Science Foundation of China
under Grant No. 61473300.

Acknowledgments: This work described in this paper is sponsored by the National Natural Science Foundation
of China under Grant No. 61473300. We appreciate the fruitful discussion with the Sim812 group: Qi Zhang,
Kai Xu, Weilong Yang, and Cong Hu.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Chen, L.; Chuang, H.Y. A Fast Algorithm for Euclidean Distance Maps of a 2-D Binary Image. Inf. Process. Lett.
1994, 51, 25–29. [CrossRef]

2. Yazici, A.; Kirlik, G.; Parlaktuna, O.; Sipahioglu, A. A Dynamic Path Planning Approach for Multirobot
Sensor-Based Coverage Considering Energy Constraints. IEEE Trans. Cybern. 2017, 44, 305–314. [CrossRef]
[PubMed]

3. Borgefors, G. Distance Transformations in Digital Images. Comput. Vis. Gr. Image Process. 1988, 34, 344–371.
[CrossRef]

4. Fabbri, R.; Costa, L.D.F.; Torelli, J.C.; Bruno, O.M. 2D Euclidean Distance Transform Algorithms:
A Comparative Survey. ACM Comput. Surv. 2008, 40, 1–44. [CrossRef]

5. Charrow, B.; Kahn, G.; Patil, S.; Liu, S.; Goldberg, K.; Abbeel, P.; Michael, N.; Kumar, V. Information-Theoretic
Planning with Trajectory Optimization for Dense 3D Mapping. Robot. Sci. Syst. 2015, 11.

6. Kalra, N.; Ferguson, D.; Stentz, A. Incremental Reconstruction of Generalized Voronoi Diagrams on Grids.
Robot. Auton. Syst. 2009, 57, 123–128. [CrossRef]

7. Lau, B.; Sprunk, C.; Burgard, W. Efficient Grid-Based Spatial Representations for Robot Navigation in
Dynamic Environments. Robot. Auton. Syst. 2013, 61, 1116–1130. [CrossRef]

8. Qin, L.; Yin, Q.; Zha, Y.; Peng, Y. Dynamic Detection of Topological Information from Grid-Based Generalized
Voronoi Diagrams. Math. Probl. Eng. 2013, 2013, 1–11. [CrossRef]

9. Sturtevant, N.R.; Rabin, S. Canonical Orderings on Grids. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–13 July 2016; pp. 683–689.

10. Bulitko, V.; Lee, G. Learning in Real-Time Search: A Unifying Framework. J. Artif. Intell. Res. 2006, 25,
119–157. [CrossRef]

11. Lucet, Y. New Sequential Exact Euclidean Distance Transform Algorithms Based on Convex Analysis. Image
Vis. Comput. 2009, 27, 37–44. [CrossRef]

12. Schouten, T.E.; Den Broek, E.L. Fast Exact Euclidean Distance (FEED): A New Class of Adaptable Distance
Transforms. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2159–2172. [CrossRef] [PubMed]

13. Tsardoulias, E.G.; Serafi, A.T.; Panourgia, M.N.; Papazoglou, A.; Petrou, L. Construction of Minimized
Topological Graphs on Occupancy Grid Maps Based on GVD and Sensor Coverage Information. J. Intell.
Robot. Syst. 2014, 75, 457–474. [CrossRef]

14. Wang, K.-H.C.; Botea, A. Scalable Multi-Agent Pathfinding on Grid Maps with Tractability and Completeness
Guarantees. In Proceedings of the ECAI—European Conference on Artificial Intelligence DBLP, Lisbon,
Portugal, 16–20 August 2017.

15. Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-Based Search for Optimal Multi-Agent Pathfinding.
Artif. Intell. 2015, 219, 40–66. [CrossRef]

16. Sigurdson, D.; Bulitko, V.; Yeoh, W.; Hernandez, C.; Koenig, S. Multi-Agent Pathfinding with Real-Time
Heuristic Search. In Proceedings of the 2018 IEEE Conference on Computational Intelligence and Games
(CIG), Maastricht, The Netherlands, 14–17 August 2018; pp. 1–8.

17. Li, J.; Harabor, D.; Stuckey, P.; Ma, H.; Koenig, S. Symmetry Breaking Constraints for Grid-based Multi-Agent
Path Finding. In Proceedings of the National Conference on Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019.

http://dx.doi.org/10.1016/0020-0190(94)00062-X
http://dx.doi.org/10.1109/TCYB.2013.2253605
http://www.ncbi.nlm.nih.gov/pubmed/23757551
http://dx.doi.org/10.1016/S0734-189X(86)80047-0
http://dx.doi.org/10.1145/1322432.1322434
http://dx.doi.org/10.1016/j.robot.2007.01.009
http://dx.doi.org/10.1016/j.robot.2012.08.010
http://dx.doi.org/10.1155/2013/438576
http://dx.doi.org/10.1613/jair.1789
http://dx.doi.org/10.1016/j.imavis.2006.10.011
http://dx.doi.org/10.1109/TPAMI.2014.25
http://www.ncbi.nlm.nih.gov/pubmed/26353058
http://dx.doi.org/10.1007/s10846-013-9995-3
http://dx.doi.org/10.1016/j.artint.2014.11.006

Appl. Sci. 2019, 9, 2029 18 of 18

18. Ma, H.; Wagner, G.; Felner, A.; Li, J.Y.; Kumar, T.K.S.; Koenig, S. Multi-Agent Path Finding with Deadlines.
In Proceedings of the International Joint Conference on Artificial Intelligence, Wellington, New Zealand,
10–12 December 2018; pp. 417–423.

19. Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.; Betzalel, O.; Shimony, E. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfinding. In Proceedings of the International Conference
on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015.

20. Rao, N.S.V.; Stoltzfus, N.; Iyengar, S.S. A “retraction” method for learned navigation in unknown terrains for
a circular robot. IEEE Trans. Robot. Autom. 1991, 7, 699–707. [CrossRef]

21. Scherer, S.; Ferguson, D.; Singh, S. Efficient C-space and cost function updates in 3D for unmanned aerial
vehicles. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe,
Japan, 12–17 May 2009.

22. Cuisenaire, O.; Macq, B. Fast Euclidean Distance Transformation by Propagation Using Multiple
Neighborhoods. Comput. Vis. Image Underst. 1999, 76, 163–172. [CrossRef]

23. Lau, B.; Sprunk, C.; Burgard, W. Improved Updating of Euclidean Distance Maps and Voronoi Diagrams.
Intell. Robot. Syst. 2010, 281–286.

24. Harabor, D.; Botea, A. Breaking Path Symmetries on 4-Connected Grid Maps. In Proceedings of the Sixth
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2010, Stanford,
California, CA, USA, 11–13 October 2010.

25. Pochter, N.; Zohar, A.; Rosenschein, J.S.; Felner, A. Search Space Reduction Using Swamp Hierarchies.
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, California, CA, USA, 11–15
July 2010.

26. Harabor, D.; Grastien, A. Improving Jump Point Search. In Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling, New Hampshire, NH, USA, 21–26 June 2014.

27. Rabin, S.; Sturtevant, N.R. Combining Bounding Boxes and Jps to Prune Grid Pathfinding. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, 12–17 February 2016.

28. Harabor, D.; Grastien, A. Online Graph Pruning for Pathfinding on Grid Maps. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, California, CA, USA, 7–11 August 2011.

29. Sturtevant, N.R. Generalizing JPS Symmetry Detection: Canonical Orderings on Graphs. In Proceedings of
the Ninth Annual Symposium on Combinatorial Search, New York, NY, USA, 6–8 July 2016.

30. Uras, T.; Koenig, S.; Hernández, C. Subgoal Graphs for Optimal Pathfinding in Eight-Neighbor Grids.
In Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling, Rome,
Italy, 10–14 June 2013.

31. Uras, T.; Koenig, S. Identifying Hierarchies for Fast Optimal Search. In Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, Quebec City, QC, Canada, 27–31 July 2014.

32. Uras, T.; Koenig, S. Understanding Subgoal Graphs by Augmenting Contraction Hierarchies. In Proceedings of
the International Joint Conference on Artificial Intelligence, Macao, China, 28 September 2018; pp. 1506–1513.

33. Harabor, D.D.; Grastien, A.; Öz, D.; Aksakalli, V. Optimal Any-Angle Pathfinding in Practice. J. Artif. Intell.
2016, 56, 89–118. [CrossRef]

34. Hormazábal, N.; Díaz, A.; Hernández, C.; Baier, J.A. Fast and Almost Optimal Any-Angle Pathfinding Using
the 2k Neighborhoods. In Proceedings of the Tenth Annual Symposium on Combinatorial Search, Pittsburgh,
PA, USA, 16–17 June 2017.

35. Uras, T.; Koenig, S. An Empirical Comparison of Any-Angle Path-Planning Algorithms. In Proceedings of
the Annual Symposium on Combinatorial Search, Ein Gedi, The Dead Sea, Israel, 11–13 June 2015.

36. Uras, T.; Koenig, S. Speeding-up any-angle path-planning on grids. In Proceedings of the Twenty-Fifth
International Conference on Automated Planning and Scheduling, Jerusalem, Israel, 7–11 June 2015.

37. Hu, Y.; Zhang, Q.; Qin, L.; Yin, Q. Escaping Depressions in LRTS with Wall Following Method. In Proceedings
of the 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC),
Hangzhou, China, 26–27 August 2017.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/70.97883
http://dx.doi.org/10.1006/cviu.1999.0783
http://dx.doi.org/10.1613/jair.5007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Grid-Based Distance Maps
	Canonical Ordering
	Subgoal Graphs

	Preliminaries and Notation
	The Methodology
	Algorithm Intuition
	Lower and Raise Wavefronts
	Propagation in Canonical Ordering
	DM-Based Subgoal Graph

	Algorithm Pseudocode
	Initiate the DM
	Update the DM
	Construct DM-Based Subgoal Graphs
	Find Paths in DM-Based Subgoal Graphs

	Experiments and Results
	Comparison to Other Algorithms
	Application Tests on Real-Time Pathfinding

	Conclusions
	References

