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Abstract: In this paper, we propose an approach for salient pixel detection using a rule-based system.
In our proposal, rules are automatically learned by combining four saliency models. The learned
rules are utilized for the detection of pixels of the salient object in a visual scene. The proposed
methodology consists of two main stages. Firstly, in the training stage, the knowledge extracted from
outputs of four state-of-the-art saliency models is used to induce an ensemble of rough-set-based rules.
Secondly, the induced rules are utilized by our system to determine, in a binary manner, the pixels
corresponding to the salient object within a scene. Being independent of any threshold value, such a
method eliminates any midway uncertainty and exempts us from performing a post-processing step
as is required in most approaches to saliency detection. The experimental results on three datasets
show that our method obtains stable and better results than state-of-the-art models. Moreover, it can
be used as a pre-processing stage in computer vision-based applications in diverse areas such as
robotics, image segmentation, marketing, and image compression.

Keywords: binary saliency estimation; rough-set-based rules; saliency detection

1. Introduction

It is well-known that humans cannot observe every detail on an entire scene at first glance.
The human visual system focuses its attention on certain regions of a given scene according to their
saliency. Koch et al. [1] defined saliency as the extent to which an object stands out from its surrounding
regions. Visual saliency detection systems aim at identifying the salient regions from a given image,
and it is a fundamental task that has been addressed in recent years. The saliency detection has been
used as an important pre-processing stage in a number of computer vision applications such as image
compression [2–4], object recognition [5–7], marketing or signaling [8–10], and robot navigation [11–13],
among others.

Among the proposals for visual saliency detection, we identify two main approaches: fixation
prediction and salient object detection. The first one is used to determine only the human gaze
locations. The second one is used to extract the most relevant objects within the scene. According to
Borji et al. [14], fixation prediction models are limited because they only provide points and some of
them can be isolated from others. On the other hand, the salient object detection provides a whole
region within the image, which can be used for a higher level process. Predicting accurately the region
that humans will observe is a relevant aspect that any saliency detection approach must accomplish.

Based on the saliency detection approaches that can be found in the existing literature, we may
classify the algorithms into individual or aggregation models. The first category corresponds to
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models that make use of intrinsic information from the image to perform a saliency prediction task,
i.e., using mainly low-level features such as color or contrast, without any prior knowledge about the
image. Generally, individual models use biological theories, purely computational formulations, or a
combination of both [15]. The first individual model is the seminal work presented by Itti et al. [16].
In his research work, Itti estimated the saliency of a given pixel incorporating the cognitive theory
presented by Treisman and Gelade [17], which suggests that the human visual system responds
to contrast stimulus in color, orientation, and intensity. In addition, this model takes into account
the computational architecture proposed by Koch and Ullman [1]. From this work onwards, many
approaches have been proposed based on the same cognitive assumptions. As examples of this
type of approach, we can mention the proposals by Frintrop et al. [18,19], Parkhurst et al. [20], and
Lemur et al. [21]. Additionally, other individual models came up to the scene taking into account
not only pixel-level information but also regional and global cues. As an example of these types
of models, we can mention the approach proposed by Achacnta et al. [15] where the saliency is
estimated as the difference between the pixel color and the color average of the image. In the research
work of Cheng et al. [22], two approaches are introduced. The first approach computes saliency as
the distance in color between pixels. The second approach considers saliency as the weighted color
distance between regions. Perazzi et al. [23] proposed a method for saliency detection based on feature
contrast, where uniqueness and spatial distribution of regions into the image are computed using a
high dimensional Gaussian filter. Based on the concept that salient regions are distinctive to their local
and global surrounding, Goferman et al. [24] proposed their context-aware saliency detection model.
Recently, Huang et al. [25] proposed a model which considers global contrast in different directions
for each pixel in the CIELAB color space.

The main goal of a saliency detection model is to estimate saliency in a scene, determining if a
location of a given image is salient or not. Usually, the saliency information is encoded in a saliency
map (SM) which is a two-dimensional representation given in grayscale [26]. In the SM, the clearest
location corresponds to the most salient region and the darkest location to the less salient region. If we
think of the saliency map as a binary classifier [27], where we represent whether a location of an image
is salient or not, then the individual models offer only partial results. The outcomes from individual
models need post-processing such as thresholding or segmentation to obtain a binary saliency map.

To combine to the best characteristics of individual models, the second category of models is
proposed: aggregation and learning models. Aggregation models or learning techniques, attempt to
combine in different manners the outcomes of individual saliency detection models in order to obtain
a more robust result.

Several direct combination techniques have been proposed to overcome the deficiencies of
individual approaches, such as in the research work of Borji et al. [14]. In that work, Borji presented four
combination techniques for saliency aggregation from a probabilistic point of view. Such techniques are
Naive Bayesian evidence accumulation and linear summation of identity, exponential, and logarithm
functions. Note that the goal of these techniques is to exploit the outcomes of different individual
methods to generate a new saliency map, which gives a more accurate saliency estimation. In the
research work of Mai et al. [28], a data-driven combination approach based on the conditional random
field (CRF) framework is presented. Based on this framework, Mai considered the interaction between
neighboring pixels and modeled the contribution of each individual saliency map. In addition, Mai
presented in the same research work the Pixel-Wise aggregation model (PW). In this approach, the
aggregation is performed by weighting diverse results of individual saliency detection models. The
weights are learned by using a standard logistic regression. Although these approaches are found to be
effective in distinct cases, they present failures when detecting ambiguous cases, since the combination
criterion is not flexible. Additionally, the output of these methods still needs a binarization stage.

Recently, deep learning has been used to address saliency detection tasks. In the proposal
of Wang et al. [29], a deep neural network is used to estimate saliency locally. Then, the obtained
saliency map is refined by exploiting high-level object concepts. Zhao et al. [30] employed global and
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local context in a unified multi-context convolutional neural network. Liu and Han [31] proposed
a two-stage saliency detection frame based on convolutional neural networks. The architecture
proposed estimates saliency by learning from global saliency cues. Then, a refinement process is
carried out incorporating local context information. To obtain more accurate boundaries and compact
saliency maps, Hu et al. [32] proposed a deep network incorporating a level set function. Besides,
a superpixel-based guided filter is incorporated as a layer of the network, allowing to obtain a full
resolution saliency map. Chen et al. [33] applied attention weight in a top-down manner to filter out
a noisy response from the background. In addition, a saliency refinement network is proposed to
improve the resolution of the saliency map by using a second-order term to introduce nonlinearity
in the learning process. Despite the remarkable performance of the learning approaches mentioned
above, the outcome obtained is still given as a gray-level saliency map. Furthermore, the neural
network performs as black-box which makes difficult the human-comprehension of the obtained
saliency model [34].

In this paper, we propose an aggregation system for salient object detection using individual
descriptors in a rule-based approach. According to Napierala and Stefanowski [34], rules are one of
the most popular representations of knowledge. The rules are more human-comprehensible than other
representations of knowledge [35], which is useful when constructing intelligent systems. Specifically,
we explore the use of rough-set-based rules for the saliency determination of a given pixel within an
image. The rough set theory is a mathematical approach introduced by Pawlak [36], useful for dealing
with vagueness and uncertainty in data analysis. The rough sets are useful when it is not possible to
represent a concept with a precise criterion [37]. According to Tay and Shen [38], rough sets discover
patterns hidden in data. Additionally, the set of obtained rules gives an overall description of the
data, eliminating redundancy present in the original data. Exploiting the main advantage of rough
set theory, which is that it does not need any additional information about the data [39], we propose
a combination of four different state-of-the-art methods as feature descriptors included in the rules:
Saliency Filter (SF) [23], Minimum Barrier Salient Object Detection (MBS) [40], Region-based Contrast
(RC) [22], and Minimum Directional Contrast (MDC) [25]. The selection criteria of these methods
correspond to how saliency is computed. MDC and MBS estimate saliency in a pixel-wise manner,
whereas SF and RC compute saliency in a region-based manner. The four models chosen as feature
descriptors perform saliency detection in CIELAB color space, which is a perceptual color space [22].
These features extract different kinds of salient information from the image. Our method automatically
decodes the knowledge found by each individual model and combines the four features in a useful
way. The output obtained from our proposal is given in a binary manner, where each pixel position
is evaluated as salient or not, eliminating any midway uncertainty. Therefore, our proposal exempts
us from implementing any post-processing required to obtain a binary saliency map. The proposed
method was evaluated on three extensive and challenging databases designed for saliency detection.
Experiments showed that our method leads to better results in comparison to other state-of-the-art
methods. From now on, we call our method RSD, for Rough-set-based Saliency Detection.

The remainder of this paper is organized as follows: In Section 2, the proposed approach is
described, along with the methods used to estimate the features. In Section 3, we describe the
experiments performed on three databases to validate our method. Finally, Section 4 presents a
summary of this work and our concluding remarks.

2. Methodology

In this section we introduce the proposed RSD and its theoretical background. An overview
of the proposed approach is illustrated in Figure 1. Firstly, in Figure 1a, the rule-based learning
process is depicted. At the beginning, feature extraction is performed by computing saliency maps of
four state-of-the-art approaches. After that, the four saliency maps are submitted to the rough-set-based
system. The main goal of such system is to obtain knowledge from saliency maps to build rules from
their combination. The resulting saliency prediction rules indicate if a given pixel is salient or not,
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without the need of any post-processing. The process to test the model for saliency detection at
pixel-level on an incoming image is depicted in Figure 1b. Each block of Figure 1 is detailed in the next
subsections.

Figure 1. Overview of our proposed model. (a) Feature extraction is performed. Then, a learning
process is carried out by using the MODLEM algorithm. (b) Using the obtained model, a saliency
prediction is performed and the output is given in a binary form.

2.1. Rough-Set-Based Rules

The rough set theory was introduced by Pawlak [36] as a mathematical tool for dealing with
imperfect and inconsistent data, in order to extract useful knowledge. In a classification process, an
object is described in terms of a set of attributes. The information contained on these sets of attributes
usually has a certain level of vagueness and ambiguity. Rough set approaches handle inconsistencies
of data using two types of approximation sets, the lower and the upper approximations. If we consider
I as the information system used to approximate to decision class X. The lower approximation IX,
determines according to I, the objects that certainly correspond to class X. The upper approximation,
IX, defines the objects that possibly correspond to class X. In Equations (1) and (2), we present
the definition of the lower and upper approximations, respectively, where [x]I is the elementary set
containing x ∈ X.

IX = {x|[x]I ⊆ X}, (1)

IX = {x|[x]I ∩ X 6= ∅}. (2)

The difference between the lower and upper approximations is known as the region boundary
and is defined as in Equation (3). If the region boundary is not empty, the set is a rough set.

INI(X) = IX− IX. (3)

From the given information, the rough set algorithm produces an ensemble of rules. Usually,
the rules obtained are represented in the logical form of IF (antecedent) THEN (consequent). For our
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purposes, the left side of the rule, called antecedent, is an attribute condition or feature. The right side
of the rule is the consequent, i.e., the decision class or saliency.

The rules created by using the rough set algorithm can be categorized into three types of rules
sets [41]. The smallest set of rules needed to describe an object is known as the minimum set of
rules. In contrast, the exhaustive set of rules consist of all the rules that can be generated from the
examples given for learning. Finally, the satisfactory set of rules is conformed by those rules that
satisfy requirements previously defined by the user. Therefore, several methods have been proposed
to rough-set-based rule generation. One of the most commonly used rough-set-based approaches
is the method proposed by Stefanowski, named MODLEM [42].The main advantage of this method
relies on the capability of handling discretization of the information and rule induction simultaneously.
Additionally, the MODLEM algorithm generates a minimal set of rules for every decision class [35].
In the MODLEM algorithm, for numerical attributes, an elementary condition t is defined in the form
of either (a < v) or (a >= v), where v is a threshold on the attribute domain and a is a numerical
attribute value [43]. To determine the elementary condition, the values of a numerical attribute a are
sorted in increasing order to find cut-points. The cut-points correspond to the mid-points between the
sorted values. A cut-point is evaluated using either the class entropy technique or Laplace accuracy,
and the elementary condition is selected by the largest coverage on the given learning examples. This
procedure is repeated until the complete rule is induced and the set of rules obtained is minimum.
In our experiments, we utilized the MODLEM implementation at WEKA [44], an open-source data
mining tool.

2.2. Feature Extraction

Antecedents in rule-based approaches are features that describe a given object or class.
The proposed RSD system uses grayscale saliency maps as input features. We utilize four
state-of-the-art saliency detection models: Minimum Barrier Salient Object Detection (MBS) [40],
Minimum Directional Contrast (MDC) [25], Region-based Contrast (RC) [22], and Saliency Filter
(SF) [23]. As far as we know, these methods are the state-of-the-art of individual models for saliency
detection. In addition, the selected methods are recent and achieve a good performance in the saliency
detection task. The experimentation that led us to select these four saliency models for aggregation
purposes is detailed in Section Below, we present a brief description of these saliency models.

Minimum Barrier Salient Object Detection. The saliency detection model proposed by
Zhang et al. [40] aims to highlight a salient object within a scene. By using the minimum barrier
distance, the Minimum Barrier Salient Object Detection (MBS) model exploits the boundary
connectivity hint. Visiting each x pixel position on the image, each adjacent y pixel is taken into
account to minimize the path cost at x. The minimization function is defined in Equation (4).

D(x)← min

{
D(x),
β I(P(y) ·

〈
x, y
〉
),

(4)

where D(x) is the distance that is desired to calculate, P(y) represents the actual path assigned to pixel
position y and

〈
y, x
〉

is the existing edge from y to x. Being P(y) ·
〈
y, x
〉

denoted by Py(x), the cost
function proposed in this work is represented as in Equation (5).

β I(Py(x)) = max{U(y), I(x)} −min{L(y), I(x)}, (5)

where U(y) is the highest pixel value on P(y) and L(y) is the lowest pixel value on P(y).
The saliency map obtained from this model is given as a gray-level image, where the intensity of

each pixel represents the estimated saliency level. Hence, if a binary output is needed, thresholding
shall be performed.

Minimum Directional Contrast. To detect salient objects in images, Huang and Zhang [25]
proposed the Minimum Directional Contrast (MDC) saliency detection model. The MDC model takes
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into account the spatial distribution of contrast. The main contribution of this model is a metric
to estimate saliency, which is called Minimum Directional Contrast (MDC). Saliency is estimated
in a pixel-wise manner and using an input image in the CIELAB color space. The input image is
divided into four regions, taking the inspected pixel x as the center of the image. Each region is a box
delimited by four points: top left (TL), top right (TR), bottom left (BL), and bottom right (BR). Then,
the directional contrast for each region is defined as in Equation (6).

DCi,Ω =

√√√√∑
j∈Ω

K

∑
ch=1

(Ii,ch − Ij,ch)2. (6)

In this research work, the authors introduced an interesting property about the distribution of
contrast between regions and the examined pixel. If the pixel i belongs to the foreground of the image,
the contrast in all directions is high. On the contrary, if the pixel belongs to the background of the
image, the contrast is low in one direction. The raw saliency measure is estimated as the minimum
contrast of the four regions, which is defined in Equation (7).

S(i) = min
Ω ∈ TL,TR,BL,BR

DCi,Ω

=

√√√√ min
Ω ∈ TL,TR,BL,BR

∑
j∈Ω

K

∑
ch=1

(Ii,ch − Ij,ch)2.
(7)

Because the saliency map is given in grayscale, the authors proposed a saliency enhancement
using a post-processing step.

Region-based Contrast. Cheng et al. [22] proposed the Region Based Contrast (RC) model to
salient object detection. The RC method considers the contrast between regions to estimate saliency.
Firstly, the incoming image in CIELAB color space is segmented into regions. A color histogram of
the obtained regions is computed and is used to estimate color contrast between regions. Hence, the
saliency is computed as in Equation (8).

S(rk) = ∑
rk 6=ri

ω(ri)Dr(rk, ri), (8)

where ω(ri) is the weight assigned to the region ri and Dr(·, ·) is the color distance metric between
two regions.

The outcome of the RC model is a grayscale saliency map. Hence, the authors proposed a
segmentation algorithm named SaliencyCut, which is based on an enhancement of the GrabCut [45]
segmentation approach.

Saliency Filter. The Saliency Filter (SF) method was proposed by Perazzi et al. [23] for salient
object detection. This model considers rarity and spatial distribution to compute saliency. Given an
input image in CIELAB color space, a segmentation of the incoming image is performed by using
geodesic image distance. The uniqueness metric is calculated by Equation (9).

Ui =
N

∑
j=1
‖ ci − cj ‖2 ω(pi, pj)︸ ︷︷ ︸

w(p)
ij

, (9)

where ci is the inspected segment of the image, cj is the rest of the segments of the image, and w(p)
ij is a

Gaussian weight position function to control the influence rarity of the inspected region.
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The spatial distribution of an element is estimated by the spatial variance of its color, according to
Equation (10),

Di =
N

∑
j=1
‖ pj − µi ‖2 ω(ci, cj)︸ ︷︷ ︸

w(c)
ij

, (10)

where w(c)
ij represents a similarity measure of color ci and cj of the segments i and j, pj is the location

of the inspected segment and µi is the Gaussian weighted mean position of color ci. Later, both metrics
obtained are combined for each segment of the image by using Equation (11).

Si = Ui · exp(−k · Di), (11)

where k is a normalization factor for the exponential function. Finally, the saliency estimation of each
pixel is computed as in Equation (12).

S̃i =
N

∑
j=1

ωijSj, (12)

where Sj is the surrounding of the pixel and wij is a Gaussian weight. In the same manner as
the aforementioned models, the final saliency map from SF model is given as a grayscale image.
A post-processing is required to obtain a binary map with the salient regions segmented.

2.3. Learning a Saliency Model

Our goal is to take advantage of the outcomes from individual saliency detection methods to
construct a saliency prediction model by using a rough-set-based learning algorithm. In Figure 2 we
present the illustration of the learning process.

Figure 2. Illustration of the training stage. Firstly, saliency maps are computed. Secondly, sampling is
carried out by using labeled annotations from ground truth. Then, the learning step is performed by
the MODLEM algorithm and the result is a rule-based saliency detection model.
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Basically, the learning process has been divided into three main stages. As the initial stage of
our proposed method, we perform a feature extraction process on a given dataset. To clearly define
the feature extraction process, let us consider four output images from state-of-the-art individual
models: F00(x, y), F01(x, y), F02(x, y), and F03(x, y). They are all SMs with K different gray levels and
(M× N) pixel size. For each pixel P located in the coordinates (x, y), (x, y) ∈ D, D = {0, . . . , M−
1} × {0, . . . , N − 1}, we obtain its corresponding gray value from each saliency map in such a way
that each pixel can be represented by four values or features: P(x, y) = {F00, F01, F02, F03}. Secondly,
we label each P(x, y) taking into account the ground truth. Since the ground truth is provided as a
binary map, we can classify pixels as non-salient or salient using values of 0 and 1, respectively.

Thirdly, to make the training faster, we randomly sample the saliency maps. One hundred samples
per image gave us the best result. We chose 90% of the samples corresponding to the non-salient
class. Conversely, the 10% of the samples belong to the salient class. The set of samples are taken and
submitted to the learning process by using the MODLEM algorithm. In Figure 3, we show an example
of a set of the rules obtained; this set of rules is used in a later stage to saliency prediction.

Rule 01. (F03 < 1.71) => (class = 0)
Rule 02. (F00 in [5.42, 8.14]) => (class = 0)
Rule 03. (F00 < 5.09) & (F01 >= 8.41) => (class = 0)
Rule 04. (F02 in [28.33, 38.86]) & (F01 < 110.81) => (class = 0)
Rule 05. (F02 in [5.25, 7.96]) => (class = 0)
Rule 06. (F00 >= 78.15) => (class = 1)
Rule 07. (F02 >= 241.38) & (F00 >= 42.91) => (class = 1)
&)

Rule 08. (F03 >= 143.89) & (F00 >= 52.95) => (class = 1)
Rule 09. (F01 >= 233.84) & (F00 >= 46.83) => (class = 1)
Rule 10. (F02 in [184.99, 235.13]) & (F00 >= 58.95) => (class = 1)

Figure 3. Ten samples out of the complete set of rules obtained from MODLEM algorithm.

3. Experimental Results

In this section, we present and compare the results obtained by our proposed system RSD and
state-of-the-art methods. In addition, we give a description of the datasets used, parameter settings,
and performance metrics.

3.1. Datasets and Quantitative Metrics

In this work, we used three benchmark datasets typically used to evaluate the performance
of salient object detection methods: MSRA1K [15], ECSSD [46], and iCoseg [47]. We used such
datasets since they have been used in diverse research works, such as those by Borji et al. [48], and
Jiang et al. [49], containing one or multiple salient objects under complex scenarios. Furthermore, the
ground truth is available and given at the pixel level. The MSRA1K [15] dataset contains 1000 images
with unambiguous salient objects under a diversity of scenes, with the binary annotations at the pixel
level. ECSSD [46] dataset includes 1000 images with the binary pixel-wise annotations of the salient
object. This dataset contains images mainly of natural scenarios with a cluttered background. The
iCoseg [47] dataset includes 643 images of a wide variety of scenarios. In addition, this dataset includes
the binary pixel-wise segmentation of one or multiple salient objects present in the images. The object
segmentation was done by a human user. In Figure 4, we show three sample images of each database
and their corresponding ground truth.
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(a) (b) (c)

Figure 4. Three sample images of each dataset used and their corresponding ground truth: (a) MSRA1K
dataset; (b) ECSSD dataset; and (c) iCoseg dataset.

For a quantitative evaluation of the RSD method performance, we adopted, in the evaluation
setup, the F-measure metric. Originally, the F-measure was introduced for evaluation of information
extraction technology [50]. The F-measure is frequently used to measure performance in a variety
of prediction problems [51], such as binary classification and multi-label classification. Considering
saliency detection as a binary classification task, the F-measure has been adopted by diverse authors to
evaluate saliency detection models.

The F-measure depends on two metrics: precision and recall. In the saliency detection task,
the precision value is defined as the ratio of correctly assigned salient pixels and the total number of
salient pixels predicted, while the recall is defined as the proportion of detected salient pixels and the
total number of salient pixels according to the ground truth. The precision and recall are defined as in
Equations (13) and (14), respectively.

precision =
true_positive

true_positive + f alse_positive
, (13)

recall =
true_positive

true_positive + f alse_negative
. (14)

The F-measure is defined as the weighted harmonic mean of precision and recall metrics, with a
non-negative weight of β. In Equation (15) we give the formulation of F-measure.

Fβ =
(1 + β2)precision× recall

β2 × precision + recall
, (15)

where β is a parameter to control the weight of precision and recall metrics. Following the arguments
presented by Borji et al. [48], where it is stated that precision is more important than recall, and in a
similar manner as in Achanta et al. [15], we set β2 with a fixed value of 0.3 to weight precision more
than recall.
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3.2. Parameter Setting

The proposed model makes use of a learning algorithm. In our case, we used the MODLEM
algorithm, whose implementation can be found at WEKA repository. The MODLEM algorithm
implementation at WEKA offers certain parameters that can be selected according to the needs of the
user. The parameters needed are: rules type generation, condition of measure, classification strategy,
and matching type. To avoid any uncertainty, we selected the lower approximation as the rules type.
Preliminary tests were carried out varying the conditions of measure, and those empiric tests led us
to select the Laplace estimator. The nearest rule was selected as the classification strategy and the
matching type was selected as full matching type.

3.3. Evaluation

To calculate the performance of our proposal, we compared RSD against seven state-of-the-art
approaches: Minimum Barrier Salient (MBS) [40], Minimum Directional Contrast (MDC) [25], Saliency
Filters (SF) [23], Histogram-Contrast and Region-Contrast (HC, RC) [22], Frequency-Tuned (FT) [15],
and Context-Aware (CA) [24]. In addition, we considered for comparison purposes a learning-based
aggregation model such as Pixel-Wise (PW) [28]. For a fair comparison, the PW model learns from the
same feature descriptors proposed for our RSD approach.

In Figure 5, we present samples of the binary map obtained by our RSD and the saliency maps
from the methods used for comparison purposes. In this figure, we can observe that the saliency maps
obtained by individual and aggregation methods are given in a grayscale image. Conversely, the
saliency map obtained from our proposed system is given as a binary map.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (k)(j)

Figure 5. Saliency maps of individual and aggregation methods. The binary outcome obtained from
our approach is presented: (a) Input image; (b) Ground truth; (c) FT; (d) CA; (e) RC; (f) HC; (g) SF;
(h) MBS; (i) MDC; (j) PW; and (k) RSD.
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Considering that there is not an optimal threshold to use with each individual method, our
evaluation approach was twofold. In our first experiment, we used one of the most common methods
to automatically obtain the best threshold and to evaluate all the methods under the same specification.
Specifically, we utilized the adaptive threshold [15], which is one of the most popular methods used
for image saliency and it is simple to calculate. The adaptive threshold is defined in Equation (16).

Ta =
2

W × H

W

∑
x=1

H

∑
y=1

S(x, y), (16)

where W and H are the width and height of the saliency map image, respectively, and S(x, y) is the
saliency level of the outcome inspected. In our second experiment, to evaluate all the methods under
their best specific conditions, we obtained the binary result of the saliency maps with all possible
thresholds in the range of [0, 255]. In both experiments, we adopted a cross-validation method to
estimate the performance of our proposed approach with five folds.

3.3.1. Comparison of Diverse Combinations

In this section, we present the procedure to determine the best set of saliency models to be used as
input features by our system. We combined the candidate saliency models incrementally following two
strategies, from best to worst model and from worst to best model, resulting in thirteen representative
combinations. In Table 1, we list the performance of the seven candidate saliency models on the iCoseg
dataset by ranking the F-measure.

Table 1. The list of models ranked by their F-measure. The individual models are ranked according to
the obtained F-measure on the iCoseg dataset from higher to lower score.

Method F-Measure

RC (2011) 0.720
SF (2012) 0.707
MDC (2017) 0.680
MBS (2015) 0.665
FT (2009) 0.601
HC (2011) 0.572
CA (2010) 0.467

In Table 2, we present the F-measure performance obtained on the iCoseg dataset by each
considered combination. The best performance is highlighted in bold. The evaluation and analysis of
the two combination strategies are detailed below.

Superior ranked models aggregation In the first combination strategy, we aggregated models
incrementally, from the model with the best performance to the model with the worst performance.
That is, we selected the best saliency model for the first test, the two best saliency models for the
second test and so forth. The results presented in Table 2 indicate that the combination that obtained
the better performance in F-measure metric includes the four better models RC, SF, MDC, and MBS.

Inferior ranked models aggregation In the second combination strategy, we aggregated models,
from the lowest performance model to the highest performance model. Thus, we utilized the worst
performance model for the first test, the two worst performance models for the second test and so
forth. In Table 2, we can notice that the combination that obtained the best performance includes the
models CA, HC, FT, MBS, MDC, and SF.
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Table 2. Performance comparison of various saliency models combinations. The combination that
includes the RC, SF, MDC, and MBS models obtains the better performance in F-measure score.

Superior

Combination F-Measure

RC 0.633
RC, SF 0.663
RC, SF, MDC 0.715
RC, SF, MDC, MBS 0.736
RC, SF, MDC, MBS, FT 0.730
RC, SF, MDC, MBS, FT, HC 0.726
RC, SF, MDC, MBS, FT, HC, CA 0.725

Inferior

Combination F-Measure

CA 0.191
CA, HC 0.547
CA, HC, FT 0.566
CA, HC, FT, MBS 0.644
CA, HC, FT, MBS, MDC 0.667
CA, HC, FT, MBS, MDC, SF 0.687

According to the results depicted in Table 2, the best combination of inferior models performed
lower than the best combination of superior models. In general, the best performance was achieved by
aggregating the superior models. In view of the obtained results from the two combination strategies,
we selected the models RC, SF, MDC, and MBS as input features of our system. In fact, the highest
score was obtained by the combination including two models that estimate saliency in a region-based
manner and two models that compute saliency in a pixel-wise manner. Additionally, the four models
utilize the CIELAB color space.

3.3.2. Saliency Detection Comparison Using an Adaptive Threshold

In our first experiment, we performed a comparison of the proposed RSD method and other
methods on each dataset. To compute precision, recall, and F-measure, we needed to binarize the
saliency maps from saliency models. We binarized the maps obtained from individual methods by
using the adaptive threshold.From each binarized image, we computed precision, recall, and F-measure
metrics. The overall performance on each dataset was estimated by averaging these metrics obtained
from each image.

The obtained results on the three datasets are depicted in Figure 6. In the MSRA1K dataset, our
RSD model outperformed other models; the F-Measure obtained by our model was 0.897 while the SF
model, which is the most proximate model, obtained 0.858. The highest precision value was achieved
by our approach, which scored 0.929, while the most proximate model, SF, obtaind a precision value of
0.879. The recall measure obtained by our model was 0.723, and the PW model attained the highest
recall measure of 0.927.

From the results obtained on iCoseg dataset, we observed that our proposal obtained an F-measure
value of 0.736, whereas the model RC achieved 0.717. Our proposal obtained the highest precision
value of 0.826 while the SF model performed 0.749. The PW model obtained the highest recall value of
0.756. Finally, the results obtained in ECSSD dataset indicate that the RC model obtained the highest
F-measure value of 0.708, while our approach scored 0.679. In contrast, our proposal attained the
highest precision value of 0.789 while the RC model achieved a precision value of 0.738. The PW model
obtained the highest recall measure of 0.700.
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(a) (b)

(c)

Results comparison on MSRA1K dataset Results comparison on ECSSD dataset

Results comparison on iCoseg dataset

Figure 6. Precision, Recall, and F-measure metrics obtained from the binarized outcomes of the
methods: (a) MSRA1K dataset; (b) ECSSD dataset; and (c) iCoseg dataset.

In Table 3, we present the overall performance of our RSD model and the rest of the models by
averaging the results obtained from the adaptive thresholding test on the three datasets used. As
shown in the table, our proposal obtained the highest F-measure of 0.770. In the case of the precision
metric, the proposed model obtained the highest precision performance of 0.847. The RC model
attained 0.759 and 0.780 for F-measure and precision, respectively. The highest recall of 0.794 was
obtained by PW model, whereas our model performed 0.513. The model that obtained the highest
score on each metric is highlighted in bold.

Table 3. Average performance on the three datasets used. The model with the highest performance on
each metric is highlighted in bold.

Method Average
F-Measure

Average
Precision

Average
Recall

FT (2009) 0.577 0.624 0.481
CA (2010) 0.505 0.540 0.489
RC (2011) 0.759 0.780 0.737
HC (2011) 0.572 0.599 0.559
SF (2012) 0.722 0.760 0.589
PW (2013) 0.734 0.744 0.794
MBS (2015) 0.699 0.736 0.642
MDC (2017) 0.726 0.765 0.640
RSD (ours) 0.770 0.847 0.513
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It is worth mentioning that, according to Liu et al. [52], recall measure is not a meaningful metric
in saliency prediction task. Liu claimed that a 100% recall can be achieved by choosing all image
locations as salient. The challenging task of any saliency detection model should be to detect with high
accuracy, the salient locations into a visual scene.

The obtained results indicate that, even though the outcomes from aggregation and individual
models are binarized by using their best threshold, our proposed RSD model performed better, without
the need of looking for the best threshold.

3.3.3. Saliency Detection Comparison with All Thresholds

As mentioned above, in our second experiment, to evaluate all the methods under their best
specific conditions, we obtained the binary result of the saliency maps with all possible thresholds
in the range of [0, 255]. Results of the second experiment are shown in Figure 7. In this figure,
the horizontal-axis corresponds to the threshold value and the vertical-axis corresponds to the
F-measure resulting from the use of the given threshold. Since our method RSD does not need
a post-processing/thresholding step, the F-measure is the same for all possible thresholds. As shown
in this figure, other methods reached maximum performance in a bounded range of the threshold
values. In contrast, the solution of the proposed approach showed a constant performance due to
thresholding independence.

In the MSRA1K dataset (Figure 7a), our RSD achieved a maximum and steady F-measure value
of 0.896 while the PW model reached a maximum value of 0.910 in a bounded range. The RC and
PW models slightly overcame the proposed model in ECSSD and iCoseg datasets, as presented in
Figure 7b,c, respectively. These models obtained higher F-measure values in a bounded range. In the
ECSSD dataset the RC and PW obtained 0.726 and 0.747, respectively, and our proposal achieved 0.679.
On the other hand, in the iCoseg dataset, our model attained 0.735 while the RC and PW achieved
0.765 and 0.775, respectively.

In Table 4, we present the average F-measure from all the computed values on each threshold. In
this table, we can observe that the average result of our proposed RSD performed higher than the rest
of the models on the three datasets used. The model with the highest performance is highlighted in
bold.

Table 4. The averaged F-measure of the results obtained on each fixed threshold. The model with the
highest performance is highlighted in bold.

Method (year)
MSRA1K ECSSD iCoseg

F-Measure F-Measure F-Measure
Average Average Average

FT (2009) 0.481 0.280 0.434
CA (2010) 0.439 0.374 0.407
RC (2011) 0.761 0.628 0.675
HC (2011) 0.652 0.388 0.553
SF (2012) 0.733 0.489 0.611
PW (2013) 0.816 0.637 0.677
MBS (2015) 0.596 0.415 0.516
MDC (2017) 0.584 0.447 0.515
RSD (ours) 0.896 0.679 0.735

The maximum F-measure rate reached at the curve by individual and aggregation models occured
in a bounded threshold range. This aspect of the behavior of the models produced a peak when
plotting the F-measure curve. An ascending and descending slope is the typical shape observed of
the F-measure curve, which implies that there exist threshold values where the performance of the
model is minimum. In contrast, the binary outcome produced by the RSD model maintained the same
performance across the whole threshold range. The results obtained point out that the outcome from
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our RSD model performed steadily, being insensitive to the threshold. In contrast, the individual and
aggregation models achieved their best performance at a certain range of threshold values, which was
a bounded and ambiguous range. The output obtained from our RSD model gave us the certainty of
constant performance.

(a)

(b)

(c)

Figure 7. Comparison of the F-measure curve obtained with different thresholds for eight state-of-
the-art algorithms and our approach RSD on three representative benchmark datasets: (a) MSRA1K
dataset; (b) ECSSD dataset; and (c) iCoseg dataset.
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4. Conclusions

In this paper, we present a rule-based approach for saliency detection. In our method, features are
learned automatically using a rough-set-based approach. Our rule-based system provides a practical
tool for building automated methods where high performance is required. The contribution of this
paper is twofold. Firstly, we extract salient information from an image and our method automatically
decodes the knowledge found in each individual model and combines the four features in a useful
way. The use of a rough-set-based approach allows our RSD system to represent the characteristics of
saliency using a simple set of rules. Besides, the output obtained from our proposal is given in a binary
manner, where each pixel position is evaluated as salient or not, eliminating any uncertainty. Therefore,
the second contribution of our proposal eliminates the need to implement any post-processing to obtain
a binary saliency map. The evaluation of the proposed method was carried out with experiments on
real datasets. Quantitative results show that our method is robust and flexible in finding the salient
pixels within an image, is not threshold dependant and is more accurate than other state-of-the-art
methods.

Author Contributions: Conceptualization, R.E.S.-Y.; Investigation, A.L.-A.; Project administration, R.A.L.-M.;
and Software, D.E.M.-R. and M.A.C.-C.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest with respect to this study.

References

1. Koch, C.; Ullman, S. Shifts in selective visual attention: Towards the underlying neural circuitry.
Hum. Neurobiol. 1985, 4, 219–227. [PubMed]

2. Guo, C.; Zhang, L. A novel multiresolution spatiotemporal saliency detection model and its applications in
image and video compression. IEEE Trans. Image Process. 2010, 19, 185–198.

3. Stentiford, F. An estimator for visual attention through competitive novelty with application to image
compression. In Proceedings of the Picture Coding Symposium 2001, Seoul, Korea, 25–27 April 2001;
pp. 101–104.

4. Ouerhani, N.; Bracamonte, J.; Hügli, H.; Ansorge, M.; Pellandini, F. Adaptive color image compression based
on visual attention. In Proceedings of the 11th International Conference on Image Analysis and Processing,
Palermo, Italy, 26–28 September 2001; Volume 11, pp. 416–421.

5. Ren, Z.; Gao, S.; Chia, L.; Tsang, I.W. Region-based saliency detection and its application in object recognition.
IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 769–779. [CrossRef]

6. Gao, D.; Han, S.; Vasconcelos, N. Discriminant saliency, the detection of suspicious coincidences, and
applications to visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 989–1005.

7. Rutishauser, U.; Walther, D.; Koch, C.; Perona, P. Is bottom-up attention useful for object recognition?
In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2004. CVPR 2004, Washington, DC, USA, 27 June–2 July 2004.

8. Mei, T.; Hua, X.S.; Yang, L.; Li, S. VideoSense: Towards effective online video advertising. In Proceedings
of the 15th ACM international conference on Multimedia, Augsburg, Germany, 25–29 September 2007;
pp. 1075–1084.

9. Chang, C.H.; Hsieh, K.Y.; Chung, M.C.; Wu, J.L. ViSA: Virtual spotlighted advertising. In Proceedings
of the 16th ACM international conference on Multimedia, Vancouver, BC, Canada, 26–31 October 2008;
pp. 837–840.

10. 3M. Visual Attention System (VAS). Available online: https://www.3m.com/3M/en_US/visual-attention-
software-us (accessed on 3 October 2018).

11. Frintrop, S.; Jensfelt, P. Attentional landmarks and active gaze control for visual SLAM. IEEE Trans. Robot.
2008, 24, 1054–1065. [CrossRef]

12. Siagian, C.; Itti, L. Biologically inspired mobile robot vision localization. IEEE Trans. Robot. 2009, 25, 861–873.
[CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/3836989
http://dx.doi.org/10.1109/TCSVT.2013.2280096
https://www.3m.com/3M/en_US/visual-attention-software-us
https://www.3m.com/3M/en_US/visual-attention-software-us
http://dx.doi.org/10.1109/TRO.2008.2004977
http://dx.doi.org/10.1109/TRO.2009.2022424


Appl. Sci. 2019, 9, 2015 17 of 18

13. Chang, C.; Siagian, C.; Itti, L. Mobile robot vision navigation & localization using Gist and Saliency.
In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei,
Taiwan, 18–22 October 2010; pp. 4147–4154.

14. Borji, A.; Sihite, D.N.; Itti, L. Salient object detection: A benchmark. In Proceedings of the European
Conference on Computer Vision, (ECCV), Florence, Italy, 7–13 October 2012; pp. 414–429.

15. Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami
Beach, FL, USA, 20–25 June 2009; pp. 1597–1604.

16. Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans.
Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [CrossRef]

17. Treisman, A.M.; Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 1980, 12, 97–136.
[CrossRef]

18. Frintrop, S.; Klodt, M.; Rome, E. A real-time visual attention system using integral images. In Proceedings
of the 5th International Conference on Computer Vision Systems, Bielefeld, Germany, 21–24 March 2007;
pp. 1–10.

19. Frintrop, S.; Werner, T.; Garcia, G.M. Traditional saliency reloaded: A good old model in new shape.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 82–90.

20. Parkhurst, D.; Law, K.; Niebur, E. Modeling the role of salience in the allocation of overt visual attention.
Vis. Res. 2002, 42, 107–123. [CrossRef]

21. Le Meur, O.; Le Callet, P.; Barba, D.; Thoreau, D. A coherent computational approach to model the bottom-up
visual attention. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 802–817. [CrossRef] [PubMed]

22. Cheng, M.M.; Mitra, N.J.; Huang, X.; Torr, P.H.S.; Hu, S.M. Global contrast based salient region detection.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 569–582. [CrossRef] [PubMed]

23. Perazzi, F.; Krahenbuhl, P.; Pritch, Y.; Hornung, A. Saliency filters: Contrast based filtering for salient
region detection. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, 16–21 June 2012; pp. 733–740.

24. Goferman, S.; Zelnik-Manor, L.; Tal, A. Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach.
Intell. 2012, 34, 1915–1926. [CrossRef] [PubMed]

25. Huang, X.; Zhang, Y.J. 300-FPS salient object detection via minimum directional Contrast. IEEE Trans.
Image Process. 2017, 26, 4243–4254. [CrossRef] [PubMed]

26. Itti, L.; Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2001, 2, 194–203. [CrossRef]
27. Bylinskii, Z.; Judd, T.; Oliva, A.; Torralba, A.; Durand, F. What do different evaluation metrics tell us about

saliency models?. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 740–757. [CrossRef]
28. Mai, L.; Niu, Y.; Liu, F. Saliency aggregation: A data-driven approach. In Proceedings of the 2013 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013;
pp. 1131–1138.

29. Wang, L.; Lu, H.; Ruan, X.; Yang, M.H. Deep networks for saliency detection via local estimation and global
search. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 7–12 June 2015; pp. 3183–3192.

30. Zhao, R.; Ouyang, W.; Li, H.; Wang, X. Saliency detection by multi-context deep learning. In Proceedings of
the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 1265–1274.

31. Liu, N.; Han, J. DHSNet: Deep hierarchical saliency network for salient object Detection. In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30
June 2016; pp. 678–686.

32. Hu, P.; Shuai, B.; Liu, J.; Wang, G. Deep level sets for salient object detection. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 540–549.

33. Chen, S.; Wang, B.; Tan, X.; Hu, X. Embedding attention and residual network for accurate salient object
detection. IEEE Trans. Cybern. 2018. [CrossRef]

34. Napierala, K.; Stefanowski, J. BRACID: A comprehensive approach to learning rules from imbalanced data.
J. Intell. Inf. Syst. 2012, 39, 335–373. [CrossRef]

http://dx.doi.org/10.1109/34.730558
http://dx.doi.org/10.1016/0010-0285(80)90005-5
http://dx.doi.org/10.1016/S0042-6989(01)00250-4
http://dx.doi.org/10.1109/TPAMI.2006.86
http://www.ncbi.nlm.nih.gov/pubmed/16640265
http://dx.doi.org/10.1109/TPAMI.2014.2345401
http://www.ncbi.nlm.nih.gov/pubmed/26353262
http://dx.doi.org/10.1109/TPAMI.2011.272
http://www.ncbi.nlm.nih.gov/pubmed/22201056
http://dx.doi.org/10.1109/TIP.2017.2710636
http://www.ncbi.nlm.nih.gov/pubmed/28650801
http://dx.doi.org/10.1038/35058500
http://dx.doi.org/10.1109/TPAMI.2018.2815601
http://dx.doi.org/10.1109/TCYB.2018.2879859
http://dx.doi.org/10.1007/s10844-011-0193-0


Appl. Sci. 2019, 9, 2015 18 of 18

35. Stefanowski, J. On Combined Classifiers, Rule Induction and Rough Sets. Trans. Rough Sets VI LNCS 2007,
4374, 329–350.

36. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
37. Swiniarski, R. Rough sets methods in feature reduction and classification. Int. J. Appl. Math. Comput. Sci.

2001, 11, 565–582.
38. Tay, F.E.; Shen, L. Economic and financial prediction using rough sets model. Eur. J. Oper. Res. 2002, 141,

641–659. [CrossRef]
39. Pawlak, Z. Why rough sets? Proc. IEEE Int. Fuzzy Syst. 1996, 2, 738–743.
40. Zhang, J.; Sclaroff, S.; Lin, Z.; Shen, X.; Price, B.; Mech, R. Minimum barrier salient object detection at 80 FPS.

In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (ICCV), Santiago,
Chile, 11–18 December 2015; pp. 1404–1412.

41. Stefanowski, J. On rough set based approaches to induction of decision rules. Rough Sets Knowl. Discov.
1998, 1, 500–529.

42. Stefanowski, J. The rough set based rule induction technique for classification problems. In Proceedings
of the 6th European Conference on Intelligent Techniques and Soft Computing EUFIT, Aachen, Germany,
7–10 September 1998; Volume 98, pp. 109–113.

43. Grzymala-Busse, J.W.; Stefanowski, J. Three discretization methods for rule induction. Int. J. Intell. Syst.
2001, 16, 29–38. [CrossRef]

44. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software:
An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

45. Rother, C.; Kolmogorov, V.; Blake, A. GrabCut: Interactive foreground extraction using iterated graph cuts.
ACM Trans. Graph. 2004, 23, 309–314. [CrossRef]

46. Shi, J.; Yan, Q.; Xu, L.; Jia, J. Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern
Anal. Mach. Intell. 2016, 38, 717–729. [CrossRef]

47. Batra, D.; Kowdle, A.; Parikh, D.; Luo, J.; Chen, T. iCoseg: Interactive co-segmentation with intelligent
scribble guidance. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 3169–3176.

48. Borji, A.; Cheng, M.M.; Jiang, H.; Li, J. Salient object detection: A benchmark. IEEE Trans. Image Process.
2015, 24, 5706–5722. [CrossRef]

49. Jiang, H.; Wang, J.; Yuan, Z.; Wu, Y.; Zheng, N.; Li, S. Salient object detection: A discriminative regional
feature integration approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 2083–2090.

50. Powers, D.M.W. Evaluation : From precision, recall and f-factor to roc, informedness, markedness and
correlation. J. Mach. Learn. Technol. 2011, 2, 37–63.

51. Dembczynski, K.J.; Waegeman, W.; Cheng, W.; Hüllermeier, E. An exact algorithm for f-measure
maximization. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY,
USA, 2011; pp. 1404–1412.

52. Liu, T.; Yuan, Z.; Sun, J.; Wang, J.; Zheng, N.; Tang, X.; Shum, H. Learning to Detect a Salient Object. IEEE
Trans. Pattern Anal. Mach. Intell. 2011, 33, 353–367. [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1016/S0377-2217(01)00259-4
http://dx.doi.org/10.1002/1098-111X(200101)16:1<29::AID-INT4>3.0.CO;2-0
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1015706.1015720
http://dx.doi.org/10.1109/TPAMI.2015.2465960
http://dx.doi.org/10.1109/TIP.2015.2487833
http://www.ncbi.nlm.nih.gov/pubmed/21193811
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Rough-Set-Based Rules
	Feature Extraction
	Learning a Saliency Model

	Experimental Results
	Datasets and Quantitative Metrics
	Parameter Setting
	Evaluation
	Comparison of Diverse Combinations
	Saliency Detection Comparison Using an Adaptive Threshold
	Saliency Detection Comparison with All Thresholds


	Conclusions
	References

