
applied
sciences

Article

Accurate Computation of Airfoil Flow Based on the
Lattice Boltzmann Method

Liangjun Wang 1, Xiaoxiao Zhang 1, Wenhao Zhu 1, Kangle Xu 2, Weiguo Wu 3, Xuesen Chu 4 and
Wu Zhang 1,5,*

1 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
shu_wlj@shu.edu.cn (L.W.); 7758721@shu.edu.cn (X.Z.); whzhu@i.shu.edu.cn (W.Z.)

2 Shanghai Aircraft Design and Research Institute, Shanghai 201206, China; xukangle@comac.cc
3 Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;

wgwu@xjtu.edu.cn
4 National Supercomputing Center in Wuxi, Wuxi 214072, China; cxs503@163.com
5 Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200444, China
* Correspondence: wzhang@shu.edu.cn; Tel.: +86-021-56331451

Received: 30 April 2019; Accepted: 13 May 2019; Published: 16 May 2019
����������
�������

Abstract: The lattice Boltzmann method (LBM) is an important numerical algorithm for computational
fluid dynamics. This study designs a two-layer parallel model for the Sunway TaihuLight supercomputer
SW26010 many-core processor, which implements LBM algorithms and performs optimization.
Numerical experiments with different problem sizes proved that the proposed model has better
parallel performance and scalability than before. In this study, we performed numerical simulations
of the flows around the two-dimensional (2D) NACA0012 airfoil, and the results of a series of flows
around the different angles of attack were obtained. The results of the pressure coefficient and lift
coefficient were in good agreement with those in the literature.

Keywords: parallel computing; Pflops supercomputer; LBM; NACA airfoil

1. Introduction

With the development of the supercomputer theory and computer hardware technology, numerical
computation has become an important technical mechanism in scientific work. Computational fluid
dynamics (CFD) is a significant research field. Among the many numerical methods in the CFD
field, the lattice Boltzmann method (LBM) [1,2] is a numerical simulation method with great potential.
It is derived from a lattice gas automaton, which is based on the microscopic thermal motion in
fluid molecules. The statistical average describes mesoscopically the macroscopic motion of the fluid.
The method treats fluid as a mass of small particles with only the mass and no volume. These small
particles move on a regular grid, collide with surrounding particles, and transfer statistical data.
The movement of a large number of particles helps in obtaining macroscopic properties of the fluid,
such as density, velocity, and pressure.

The collision migration idea of LBM elementary particles, and the use of Cartesian mesh division,
enable simple boundary condition processing and natural parallelism, which is suitable for large-scale
numerical computation on the supercomputer [3]. Ulrich Rüde et al. presented a novel multi-physics
coupled algorithm based on the LBM, which employs an Eulerian description of fluid and ions,
combined with a Lagrangian representation of moving charged particles, and achieved excellent
performance and scaling on up to 65,536 cores of a current supercomputer [4]. For large-scale grids,
Manfred Krafczyk et al. discussed modeling and computational aspects of their approach, and
presented computational results, including experimental validations [5]. G Wellein et al. introduced the

Appl. Sci. 2019, 9, 2000; doi:10.3390/app9102000 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/10/2000?type=check_update&version=1
http://dx.doi.org/10.3390/app9102000
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 2000 2 of 14

lattice Boltzmann benchmark kernels, a suite for benchmarking simple LBM kernels, which may be used
for performance experiments or can act as a blueprint for an implementation [6]. Hager et al. analyzed
the performance and energy to solution properties of a lattice Boltzmann flow solver on the chip and
highly parallel levels for an Intel Sandy Bridge (SNB) EP (Xeon E5-2680)-based system [7]. Obrecht et
al. introduced a decomposition approach for generic three-dimensional (3D) stencil problems with
formulations for calculating dynamically copied position indexes, subdomain addresses, subdomain
size, and halo cells, and the new pipelined 3D LBM code outperforms the original OpenCL version by
33%, by overlapping computation and communication [8]. Lintermann et al. proposed a new robust
algorithm to automatically generate hierarchical Cartesian meshes on distributed multi-core HPC(High
Performance Computing) systems with multiple levels of refinement [9]. Song Liu et al. proposed an
effective approach to accelerate the LBM computing by fully exploiting temporal locality on a shared
memory multi-core platform [10].

The supercomputer research community of China is already ranked among the top in the world.
China’s supercomputer has ranked first in the TOP500 ranking 10 consecutive times, from June
2013 to November 2017. In the TOP500 list in November 2018, China’s Sunway TaihuLight and
Tianhe-2A supercomputers ranked third and fourth, respectively [11]. Sunway TaihuLight is also
the first system with a peak performance of more than 100 PFlops in the world. It uses the SW26010
many-core processor, which contains a management processing element (MPE) and 64 computing
processing elements (CPEs)—a core-group (CG)—and one node has four CGs, totaling 260 processing
units. The Sunway TaihuLight has a total of 40,960 SW26010 processors with superior computing
power. Based on the Sunway TaihuLight, “10M-core scalable fully-implicit solver for nonhydrostatic
atmospheric dynamics” and “nonlinear earthquake simulation on Sunway TaihuLight” won the highest
award in the field of high-performance computing—the Gordon Bell Award [12]—in 2016 and 2017.

In terms of aeronautical-engineering computations, the wing is the main device for generating lift.
Its structure is complex, and has become the focus of research [13,14]. The numerical simulation of the
two-dimensional (2D) airfoil simplifies the complexity of wind tunnel experiments and obtains better
experimental results. It is the primary means of designing various high-lift airfoil types. Among the
various airfoils, the most representative is the National Advisory Committee for Aeronautics (NACA)
airfoil series [15]. This series of airfoils has been used in the aviation field for many years and has good
aerodynamics performance. In this series, NACA0012 has become the actual standard for numerical
method research and verification owing to its symmetry and appropriate relative thickness.

2. The Lattice Boltzmann Method

The LBM can be seen as a special discrete format for solving continuous Boltzmann equations [16,17].
In 1954, Bhatnagar, Gross, and Krook proposed the famous Bhatnagar–Gross–Krook (BGK) collision
model [18], which replaced the nonlinear term in the original Boltzmann equation with a simple collision
operator, and it guaranteed some conditions, such as mass momentum and energy conservation.
According to the BGK collision model, the lattice Boltzmann equation with the discretization of velocity
and time can be obtained as the evolution equation of the particle:

fα(x + eαδt, t + δt) − fα(x, t) = −
1
τ

[
fα(x, t) − f eq

α (x, t)
]
+ δtFα(x, t), (1)

where τ is the relaxation time and f eq
α is the equilibrium distribution function. According to the DnQm

series model proposed by Qian et al. [19] (where n and m are respectively represented as the spatial
dimension and the discrete velocity number), the equilibrium distribution function is unified and
expressed as

f eq
α = ρωα[1 +

eα · u
c2

s
+

(eα · u)
2

2c4
s
−

u2

2c2
s
], (2)

Appl. Sci. 2019, 9, 2000 3 of 14

where cs =
√

RT is the lattice sound velocity and the value is 1
√

3
, u is the velocity, ωα is the weight

coefficient, and eα is the direction vector. In this paper, the D2Q9 model is used (Figure 1), and the
parameters are selected as follows:

ωi =

4/9, e2

i = 0
1/9, e2

i = c2

1/36, e2
i = 2c2

e = c(
0 1 0
0 0 1

−1 0 1
0 −1 1

−1 −1 1
1 −1 −1

)

where c = δx/δt, δx, δt are the grid step size and time step, respectively. Velocity and density can be
obtained from the following formula:

ρ =
∑
α

f eq
α ,ρu =

∑
α

eα f eq
α .

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 13

where RTcs = is the lattice sound velocity and the value is
3

1
, u is the velocity, is the

weight coefficient, and e is the direction vector. In this paper, the D2Q9 model is used (Figure 1),

and the parameters are selected as follows:

=

=

=

=
22

22

2

236/1

9/1

09/4

ce

ce

e

i

i

i

i

，

，

，

)
111

111

110

101

100

010
(

−−

−−

−

−
= ce

where txtxc 、,/= are the grid step size and time step, respectively. Velocity and density can

be obtained from the following formula:

 ==

 eqeq feuf , .

Figure 1. The two dimensional and nine velocity (D2Q9) model.

3. Computation Model

3.1. Generation of Airfoil, Judgment of Grid Point Type

Figure 2. NACA0012 airfoil grid point type judgment diagram.

As shown in Figure 2, we select the NACA0012 airfoil as the computation object. The airfoil

consists of a series of line segments connected by scatter points. After partitioning the Cartesian grid,

a known point A is determined inside the airfoil, and, in turn for each grid point, a type judgment is

made. For the grid point B to be judged, it is only necessary to calculate whether the line segment AB

intersects the line segment constituting the airfoil. If it does intersect, point B is then considered an

Figure 1. The two dimensional and nine velocity (D2Q9) model.

3. Computation Model

3.1. Generation of Airfoil, Judgment of Grid Point Type

As shown in Figure 2, we select the NACA0012 airfoil as the computation object. The airfoil
consists of a series of line segments connected by scatter points. After partitioning the Cartesian grid,
a known point A is determined inside the airfoil, and, in turn for each grid point, a type judgment is
made. For the grid point B to be judged, it is only necessary to calculate whether the line segment
AB intersects the line segment constituting the airfoil. If it does intersect, point B is then considered
an external point, i.e., it is a fluid point. If it does not intersect, then point B is an internal point, i.e.,
a solid point. After finding all solid points, a circle of grid points around the solid point is considered
the boundary point.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 13

where RTcs = is the lattice sound velocity and the value is
3

1
, u is the velocity, is the

weight coefficient, and e is the direction vector. In this paper, the D2Q9 model is used (Figure 1),

and the parameters are selected as follows:

=

=

=

=
22

22

2

236/1

9/1

09/4

ce

ce

e

i

i

i

i

，

，

，

)
111

111

110

101

100

010
(

−−

−−

−

−
= ce

where txtxc 、,/= are the grid step size and time step, respectively. Velocity and density can

be obtained from the following formula:

 ==

 eqeq feuf , .

Figure 1. The two dimensional and nine velocity (D2Q9) model.

3. Computation Model

3.1. Generation of Airfoil, Judgment of Grid Point Type

Figure 2. NACA0012 airfoil grid point type judgment diagram.

As shown in Figure 2, we select the NACA0012 airfoil as the computation object. The airfoil

consists of a series of line segments connected by scatter points. After partitioning the Cartesian grid,

a known point A is determined inside the airfoil, and, in turn for each grid point, a type judgment is

made. For the grid point B to be judged, it is only necessary to calculate whether the line segment AB

intersects the line segment constituting the airfoil. If it does intersect, point B is then considered an

Figure 2. NACA0012 airfoil grid point type judgment diagram.

Appl. Sci. 2019, 9, 2000 4 of 14

3.2. Data Partition and Communication

When using MPI (Message Passing Interface) to accelerate the program in parallel, there are
two ways to partition the mesh, namely, one-dimensional (1D) partitioning and 2D partitioning, as
shown in Figure 3a,b. According to the literature [20], 2D partitioning is more advantageous than 1D
partitioning. Therefore, this paper adopts the 2D partitioning method; at each peripheral boundary of
each MPI process, a layer of data buffer is set to store the boundary data transmitted by the adjacent
process. The computation area of the original size is NX ×NY, and the size with the buffer is changed
to (NX + 2) × (NY + 2) (NX and NY are the number of grids in the horizontal and vertical directions,
respectively).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 13

external point, i.e., it is a fluid point. If it does not intersect, then point B is an internal point, i.e., a

solid point. After finding all solid points, a circle of grid points around the solid point is considered

the boundary point.

3.2. Data Partition and Communication

When using MPI (Message Passing Interface) to accelerate the program in parallel, there are

two ways to partition the mesh, namely, one-dimensional (1D) partitioning and 2D partitioning, as

shown in Figure 3a,b. According to the literature [20], 2D partitioning is more advantageous than 1D

partitioning. Therefore, this paper adopts the 2D partitioning method; at each peripheral boundary

of each MPI process, a layer of data buffer is set to store the boundary data transmitted by the adjacent

process. The computation area of the original size is NYNX , and the size with the buffer is

changed to)2()2(++ NYNX (NX and NY are the number of grids in the horizontal and vertical

directions, respectively).

Figure 3. Data partitioning methods: (a) one-dimensional (1D) partitioning; (b) two-dimensional

(2D) partitioning.

3.3. Many-Core Structure and Communication of the Sunway TaihuLight

In the SW26010 heterogeneous many-core processor, each CG contains one MPE and one

operational core array, which consists of 64 CPEs, an array controller, and a secondary instruction

cache. Therefore, the parallelism of MPI exists only between the MPEs, and the computational tasks

on each MPE need to be further divided into CPEs.

(a) (b)

Figure 4. (a) General data transfer mode; (b) Double cache data transfer mode.

Figure 3. Data partitioning methods: (a) one-dimensional (1D) partitioning; (b) two-dimensional
(2D) partitioning.

3.3. Many-Core Structure and Communication of the Sunway TaihuLight

In the SW26010 heterogeneous many-core processor, each CG contains one MPE and one
operational core array, which consists of 64 CPEs, an array controller, and a secondary instruction
cache. Therefore, the parallelism of MPI exists only between the MPEs, and the computational tasks on
each MPE need to be further divided into CPEs.

Since each CPE has only 64 K of memory, the MPE cannot transfer the calculated data to the
CPEs at one time. Instead, the MPE transfers part of the calculated data to the CPEs after the CPEs
computation is completed, and the data is written into the MPE’s memory. Then, we proceed to the
processing of the next part of the computation data (Figure 4a). However, this will result in frequent
data communication between the MPE and CPEs, which increases the time cost. In order to solve this
problem, this paper adopts a double-buffer mechanism (Figure 4b, Table 1). Each time the computation
data is transmitted, about half of the memory is reserved from the core. The next data are transmitted
while the data are being calculated on the CPEs. After the computation is complete, we check if the
data transmission is completed; if it is completed, the next computation is performed. The computation
of one data part at the same time starts the transmission of the next data part at the same time, and,
if it is not completed, the CPEs wait. The double-buffer model can effectively reduce most of the
communication time to improve the computation efficiency.

For the computation of the grid point migration part, the information of the eight neighboring
grid points around the current grid point is required. However, the neighboring grid point is discretely
stored in the MPEs memory and cannot be transferred to the CPEs memory by direct memory access
(DMA) at one time; therefore, it leads to multiple accesses to the MPEs memory and a higher time
cost. To solve this problem, MPEs adjust the grid point data of the current grid point’s neighbor from
discrete storage to continuous storage before the data are transmitted between the MPEs and CPEs.
The MPEs are responsible for adjusting the storage each time when the data are being computed by the
CPEs, and, therefore, no additional time is required (as shown in Figure 5).

Appl. Sci. 2019, 9, 2000 5 of 14

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 13

external point, i.e., it is a fluid point. If it does not intersect, then point B is an internal point, i.e., a

solid point. After finding all solid points, a circle of grid points around the solid point is considered

the boundary point.

3.2. Data Partition and Communication

When using MPI (Message Passing Interface) to accelerate the program in parallel, there are

two ways to partition the mesh, namely, one-dimensional (1D) partitioning and 2D partitioning, as

shown in Figure 3a,b. According to the literature [20], 2D partitioning is more advantageous than 1D

partitioning. Therefore, this paper adopts the 2D partitioning method; at each peripheral boundary

of each MPI process, a layer of data buffer is set to store the boundary data transmitted by the adjacent

process. The computation area of the original size is NYNX , and the size with the buffer is

changed to)2()2(++ NYNX (NX and NY are the number of grids in the horizontal and vertical

directions, respectively).

Figure 3. Data partitioning methods: (a) one-dimensional (1D) partitioning; (b) two-dimensional

(2D) partitioning.

3.3. Many-Core Structure and Communication of the Sunway TaihuLight

In the SW26010 heterogeneous many-core processor, each CG contains one MPE and one

operational core array, which consists of 64 CPEs, an array controller, and a secondary instruction

cache. Therefore, the parallelism of MPI exists only between the MPEs, and the computational tasks

on each MPE need to be further divided into CPEs.

(a) (b)

Figure 4. (a) General data transfer mode; (b) Double cache data transfer mode. Figure 4. (a) General data transfer mode; (b) Double cache data transfer mode.

Table 1. Pseudo-code of double cache data transfer mode.

.
do k = kmin, kmax
if (mod((k-kmin),corenum)+1.eq.slavecore_id) then
j = jmin
index = mod((j-jmin),2) + 1
put_reply(mod((j-jmin)+1,2)+1)=1
! Read in the first batch of data
get_reply(index)=0
call athread_get(0,a(imin,j,k), a_slave(imin,index), (imax-imin+1)*4, get_reply(index), 0, 0, 0)
call athread_get(0,b(imin,j,k), b_slave(imin,index), (imax-imin+1)*4, get_reply(index), 0, 0, 0)

do j = jmin,jmax
index = mod((j-jmin),2)+1
next = mod((j-jmin)+1,2)+1
last = next
! Read in the data needed for the next round of calculation
if (j.lt.jmax) then
get_reply(next)=0
call athread_get(0,a(imin,j+1,k),a_slave(imin,next), (imax-imin+1)*4,get_reply(next),0,0,0)
call athread_get(0,b(imin,j+1,k),b_slave(imin,next), (imax-imin+1)*4,get_reply(next),0,0,0)
endif

do while (get_reply(index).ne.2)
enddo ! Wait for the data required for this round of calculation to be read in
do i = imin, imax
c_slave(i,index)=a_slave(i,index)*a_slave(i,index)+b_slave(I,index)*b_slave(i,index)
enddo

put_reply(index)=0
call athread_put(0,c_slave(imin,index),c(imin,j,k),(imax-imin+1)*4,put_reply(index),0,0)
do while (ptu_reply(last).ne.1)
Enddo
! waiting for the last round of data to be written back
! the first round does not have to wait for the direct pass.
enddo
do while (ptu_reply(index).ne.1)
enddo ! waiting for the last batch of data to be written back
endif
enddo
.

Appl. Sci. 2019, 9, 2000 6 of 14Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 13

Figure 5. Data storage order adjustment

Figure 6. Boundary communication hiding.

For the computation of the grid point migration part, the information of the eight neighboring

grid points around the current grid point is required. However, the neighboring grid point is

discretely stored in the MPEs memory and cannot be transferred to the CPEs memory by direct

memory access (DMA) at one time; therefore, it leads to multiple accesses to the MPEs memory and

a higher time cost. To solve this problem, MPEs adjust the grid point data of the current grid point’s

neighbor from discrete storage to continuous storage before the data are transmitted between the

MPEs and CPEs. The MPEs are responsible for adjusting the storage each time when the data are

being computed by the CPEs, and, therefore, no additional time is required (as shown in Figure 5).

In order to further reduce the communication time, we divide the data in each MPE into the

form shown in Figure 6, which are internal data and boundary data, respectively, where boundary

data is the part that needs to communicate with other processes. When CPEs conduct internal data

computation, the MPE is responsible for communicating the boundary data with related processes.

In addition to the double-buffering mode, we can further reduce the communication time by

using register communication between CPEs, as shown in Figure 7 (only the first line CPE is

displayed, lines 2 to 8 are similar).

Step 1: The data of CPEs 1, 3, 5, and 7 are transmitted to the CPEs 0, 2, 4, and 6 through register

communication.

Step 2: The data of CPEs 2 and 6 are transmitted to the CPEs 0 and 4 through register communication.

Step 3: The data of CPE 4 are transmitted to the CPE 0 through register communication.

Step 4–Step 6: Similar to Step 1 to Step 3, Step 4 to Step 6 operate on the column, and finally all the

data that needs to pass will be transmitted from 64 CPEs to CPE 0.

Step 7: CPE 0 communicates with the main memory by DMA.

With this approach, CPE 0 is mainly responsible for the communication between the CPEs and

MPE, so CPE 0 will be responsible for fewer computation tasks than other CPEs to achieve the

purpose of reducing the communication time. Since register communication is much faster than

access to the main memory, this method can greatly reduce the communication time.

Figure 5. Data storage order adjustment.

In order to further reduce the communication time, we divide the data in each MPE into the
form shown in Figure 6, which are internal data and boundary data, respectively, where boundary
data is the part that needs to communicate with other processes. When CPEs conduct internal data
computation, the MPE is responsible for communicating the boundary data with related processes.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 13

Figure 5. Data storage order adjustment

Figure 6. Boundary communication hiding.

For the computation of the grid point migration part, the information of the eight neighboring

grid points around the current grid point is required. However, the neighboring grid point is

discretely stored in the MPEs memory and cannot be transferred to the CPEs memory by direct

memory access (DMA) at one time; therefore, it leads to multiple accesses to the MPEs memory and

a higher time cost. To solve this problem, MPEs adjust the grid point data of the current grid point’s

neighbor from discrete storage to continuous storage before the data are transmitted between the

MPEs and CPEs. The MPEs are responsible for adjusting the storage each time when the data are

being computed by the CPEs, and, therefore, no additional time is required (as shown in Figure 5).

In order to further reduce the communication time, we divide the data in each MPE into the

form shown in Figure 6, which are internal data and boundary data, respectively, where boundary

data is the part that needs to communicate with other processes. When CPEs conduct internal data

computation, the MPE is responsible for communicating the boundary data with related processes.

In addition to the double-buffering mode, we can further reduce the communication time by

using register communication between CPEs, as shown in Figure 7 (only the first line CPE is

displayed, lines 2 to 8 are similar).

Step 1: The data of CPEs 1, 3, 5, and 7 are transmitted to the CPEs 0, 2, 4, and 6 through register

communication.

Step 2: The data of CPEs 2 and 6 are transmitted to the CPEs 0 and 4 through register communication.

Step 3: The data of CPE 4 are transmitted to the CPE 0 through register communication.

Step 4–Step 6: Similar to Step 1 to Step 3, Step 4 to Step 6 operate on the column, and finally all the

data that needs to pass will be transmitted from 64 CPEs to CPE 0.

Step 7: CPE 0 communicates with the main memory by DMA.

With this approach, CPE 0 is mainly responsible for the communication between the CPEs and

MPE, so CPE 0 will be responsible for fewer computation tasks than other CPEs to achieve the

purpose of reducing the communication time. Since register communication is much faster than

access to the main memory, this method can greatly reduce the communication time.

Figure 6. Boundary communication hiding.

In addition to the double-buffering mode, we can further reduce the communication time by
using register communication between CPEs, as shown in Figure 7 (only the first line CPE is displayed,
lines 2 to 8 are similar).Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 13

Figure 7. Register communication.

4. Experiment and Results

4.1. Experimental Environment

The Sunway TaihuLight computer system uses the SW26010 heterogeneous many-core

processor, using the 64-bit independent SW (Sunway) instruction set, full-chip 260 cores, a chip

standard operating frequency of 1.5 GHz, and a peak computing speed of 3.168 TFLOPS. The Sunway

TaihuLight high-speed computing system has a peak computing speed of 125.436 PFLOPS, a total

memory capacity of 1024 TB, a total memory access bandwidth of 4473.16 TB/s, a high-speed

interconnection network halved bandwidth of 70 TB/s, and an input/output (I/O) aggregation

bandwidth of 341 GB/s. The measured LINPACK continuous operation speed is 93.015 PFLOPS, the

LINPACK efficiency is 74.153%, the system power consumption is 15.371 MW, the performance

power consumption ratio is 6051.131 MFLOPS/W, the auxiliary computing system’s peak operation

speed is 1.085 PFLOPS, the total memory capacity is 154.5 TB, and the total disk capacity is 20 PB.

The Sunway TaihuLight computer system supports parallel programming models that are

internationally integrated, including MPI3.0, OpenMPI3.1, Pthreads, and OpenACCess2.0, and it also

supports message parallel programming models, shared parallel programming models, and

accelerated parallel programming models. It also provides an accelerated thread library

programming interface customized for the structural characteristics of the SW26010 heterogeneous

many-core processor.

4.2. Numerical Experimental Results

4.2.1. Parallel Efficiency

In order to test the acceleration effect under different computations, this paper selects the grid

size of 50 million, 100 million, and 200 million; the maximum number of MPEs is 2048, and the

maximum total number of cores is 133,120. The acceleration effects of only the MPEs and the MPEs

plus CPEs mode are counted separately.

Figure 8 shows the speedup and parallel efficiency for only MPEs operations at three problem

sizes. Figure 9 shows the percentage of communication time spent on only MPEs for the three

problem sizes. As can be seen in Figure 8, both the speedup ratio and the efficiency decrease as the

number of computational cores increases. This is because, for the same problem size, as the number

of computational cores increases, the number of computational grids on each core decreases. For one

computational core, if we assume the size of the computation area to be NYNX , the number of

grid points that the current computation core needs to send data to the adjacent computation core is

)2()2(−−− NYNXNYNX , and the ratio of the grid points that need to send data to the total

grid point of the calculated core is R, where

Figure 7. Register communication.

Step 1: The data of CPEs 1, 3, 5, and 7 are transmitted to the CPEs 0, 2, 4, and 6 through register
communication.
Step 2: The data of CPEs 2 and 6 are transmitted to the CPEs 0 and 4 through register communication.
Step 3: The data of CPE 4 are transmitted to the CPE 0 through register communication.
Step 4–Step 6: Similar to Step 1 to Step 3, Step 4 to Step 6 operate on the column, and finally all the
data that needs to pass will be transmitted from 64 CPEs to CPE 0.

Appl. Sci. 2019, 9, 2000 7 of 14

Step 7: CPE 0 communicates with the main memory by DMA.

With this approach, CPE 0 is mainly responsible for the communication between the CPEs and
MPE, so CPE 0 will be responsible for fewer computation tasks than other CPEs to achieve the purpose
of reducing the communication time. Since register communication is much faster than access to the
main memory, this method can greatly reduce the communication time.

4. Experiment and Results

4.1. Experimental Environment

The Sunway TaihuLight computer system uses the SW26010 heterogeneous many-core processor,
using the 64-bit independent SW (Sunway) instruction set, full-chip 260 cores, a chip standard
operating frequency of 1.5 GHz, and a peak computing speed of 3.168 TFLOPS. The Sunway TaihuLight
high-speed computing system has a peak computing speed of 125.436 PFLOPS, a total memory capacity
of 1024 TB, a total memory access bandwidth of 4473.16 TB/s, a high-speed interconnection network
halved bandwidth of 70 TB/s, and an input/output (I/O) aggregation bandwidth of 341 GB/s. The
measured LINPACK continuous operation speed is 93.015 PFLOPS, the LINPACK efficiency is 74.153%,
the system power consumption is 15.371 MW, the performance power consumption ratio is 6051.131
MFLOPS/W, the auxiliary computing system’s peak operation speed is 1.085 PFLOPS, the total memory
capacity is 154.5 TB, and the total disk capacity is 20 PB.

The Sunway TaihuLight computer system supports parallel programming models that are
internationally integrated, including MPI3.0, OpenMPI3.1, Pthreads, and OpenACCess2.0, and it also
supports message parallel programming models, shared parallel programming models, and accelerated
parallel programming models. It also provides an accelerated thread library programming interface
customized for the structural characteristics of the SW26010 heterogeneous many-core processor.

4.2. Numerical Experimental Results

4.2.1. Parallel Efficiency

In order to test the acceleration effect under different computations, this paper selects the grid size
of 50 million, 100 million, and 200 million; the maximum number of MPEs is 2048, and the maximum
total number of cores is 133,120. The acceleration effects of only the MPEs and the MPEs plus CPEs
mode are counted separately.

Figure 8 shows the speedup and parallel efficiency for only MPEs operations at three problem
sizes. Figure 9 shows the percentage of communication time spent on only MPEs for the three problem
sizes. As can be seen in Figure 8, both the speedup ratio and the efficiency decrease as the number
of computational cores increases. This is because, for the same problem size, as the number of
computational cores increases, the number of computational grids on each core decreases. For one
computational core, if we assume the size of the computation area to be NX ×NY, the number of
grid points that the current computation core needs to send data to the adjacent computation core is
NX×NY− (NX− 2)× (NY− 2), and the ratio of the grid points that need to send data to the total grid
point of the calculated core is R, where

R =
NX ×NY − (NX − 2) × (NY − 2)

NX ×NY
=

2(NX + NY + 2)
NX ×NY

. (3)

It can be seen from Equation (3) that, as the number of computational cores increases, both NX
and NY decrease, and the ratio R increases. That is, the percentage of communication time in total time
increases (Figure 9). Therefore, parallel efficiency will gradually decline.

Similarly, for the same number of computational cores, as the problem size increases, the
amount of computational grid allocated to each computational core increases, and the percentage of
communication time as a percentage of total time decreases (Figure 9); therefore, the acceleration ratio

Appl. Sci. 2019, 9, 2000 8 of 14

and parallelism efficiency will increase (Figure 8). When the problem size is 200 million, the parallel
efficiency is over 94%.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 13

NYNX

NYNX

NYNX

NYNXNYNX
R

++
=

−−−
=

)2(2)2()2(

.
(3)

It can be seen from Equation (3) that, as the number of computational cores increases, both NX

and NY decrease, and the ratio R increases. That is, the percentage of communication time in total

time increases (Figure 9). Therefore, parallel efficiency will gradually decline.

Similarly, for the same number of computational cores, as the problem size increases, the amount

of computational grid allocated to each computational core increases, and the percentage of

communication time as a percentage of total time decreases (Figure 9); therefore, the acceleration

ratio and parallelism efficiency will increase (Figure 8). When the problem size is 200 million, the

parallel efficiency is over 94%.

(a) (b)

Figure 8. For only management processing elements (MPEs) at three problem sizes: (a) Acceleration

ratio; (b) Parallel efficiency.

Figure 9. Communication time as a percentage of total time for only MPEs at three problem sizes.

As the problem size is 200 million, only MPEs have the highest parallel efficiency. Therefore, this

paper uses the 200 million problem size to test the acceleration effect of the CPEs, and tests up to

133,120 cores.

Based on a single CG (1 MPE and 64 CPEs, a total of 65 cores), the number of CGs is increased

gradually. The acceleration ratio and parallel efficiency are shown in Table 2 and in Figure 10a. The

Mega Lattice Site Updates Per Second (MLUPS) is shown in Figure 10b. As the number of CGs

increases, the parallel efficiency and MLUPS decrease, and the speedup and parallel efficiency also

decrease compared with the only MPE mode. This is mainly attributed to the startup and shutdown

of the CG operation thread group and the communication between the MPE and CPEs. However,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
ta

ge
 o

f
co

m
m

u
n

ic
at

io
n

 t
im

e
in

th

e
 t

o
ta

l t
im

e

Number of MPEs

50
million

Figure 8. For only management processing elements (MPEs) at three problem sizes: (a) Acceleration
ratio; (b) Parallel efficiency.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 13

NYNX

NYNX

NYNX

NYNXNYNX
R

++
=

−−−
=

)2(2)2()2(

.
(3)

It can be seen from Equation (3) that, as the number of computational cores increases, both NX

and NY decrease, and the ratio R increases. That is, the percentage of communication time in total

time increases (Figure 9). Therefore, parallel efficiency will gradually decline.

Similarly, for the same number of computational cores, as the problem size increases, the amount

of computational grid allocated to each computational core increases, and the percentage of

communication time as a percentage of total time decreases (Figure 9); therefore, the acceleration

ratio and parallelism efficiency will increase (Figure 8). When the problem size is 200 million, the

parallel efficiency is over 94%.

(a) (b)

Figure 8. For only management processing elements (MPEs) at three problem sizes: (a) Acceleration

ratio; (b) Parallel efficiency.

Figure 9. Communication time as a percentage of total time for only MPEs at three problem sizes.

As the problem size is 200 million, only MPEs have the highest parallel efficiency. Therefore, this

paper uses the 200 million problem size to test the acceleration effect of the CPEs, and tests up to

133,120 cores.

Based on a single CG (1 MPE and 64 CPEs, a total of 65 cores), the number of CGs is increased

gradually. The acceleration ratio and parallel efficiency are shown in Table 2 and in Figure 10a. The

Mega Lattice Site Updates Per Second (MLUPS) is shown in Figure 10b. As the number of CGs

increases, the parallel efficiency and MLUPS decrease, and the speedup and parallel efficiency also

decrease compared with the only MPE mode. This is mainly attributed to the startup and shutdown

of the CG operation thread group and the communication between the MPE and CPEs. However,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
ta

ge
 o

f
co

m
m

u
n

ic
at

io
n

 t
im

e
in

th

e
 t

o
ta

l t
im

e

Number of MPEs

50
million

Figure 9. Communication time as a percentage of total time for only MPEs at three problem sizes.

As the problem size is 200 million, only MPEs have the highest parallel efficiency. Therefore,
this paper uses the 200 million problem size to test the acceleration effect of the CPEs, and tests up to
133,120 cores.

Based on a single CG (1 MPE and 64 CPEs, a total of 65 cores), the number of CGs is increased
gradually. The acceleration ratio and parallel efficiency are shown in Table 2 and in Figure 10a. The
Mega Lattice Site Updates Per Second (MLUPS) is shown in Figure 10b. As the number of CGs
increases, the parallel efficiency and MLUPS decrease, and the speedup and parallel efficiency also
decrease compared with the only MPE mode. This is mainly attributed to the startup and shutdown of
the CG operation thread group and the communication between the MPE and CPEs. However, when
the number of CGs is 2048 (133,120 cores total), the efficiency can still reach more than 72%, and our
simulation performs at 285,600 MLUPS on 2048 CGs, corresponding to 54.8% of the effective memory
bandwidth performance.

Appl. Sci. 2019, 9, 2000 9 of 14

Table 2. Acceleration ratio and efficiency based on a single core-group (CG) with the highest number of 2048 CGs (a total of 133,120 cores).

CGs 1 2 4 8 16 32 64 128 256 512 1024 2048

Cores 65 130 260 520 1040 2080 4160 8320 16640 33280 66560 133120
Theoretical

acceleration ratio 1 2 4 8 16 32 64 128 256 512 1024 2048

acceleration ratio 1 1.9983096 3.9549608 7.84065056 15.6233262 30.9049656 60.5670289 117.7244635 228.170942 440.4674223 841.5104023 1492.812774
Parallel efficiency (%) 100 99.915482 98.874021 98.0081321 97.645789 96.5780176 94.6359827 91.9722371 89.1292742 86.02879342 82.17875022 72.89124874

Appl. Sci. 2019, 9, 2000 10 of 14

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 13

when the number of CGs is 2048 (133,120 cores total), the efficiency can still reach more than 72%,

and our simulation performs at 285,600 MLUPS on 2048 CGs, corresponding to 54.8% of the effective

memory bandwidth performance.

Table 2. Acceleration ratio and efficiency based on a single core-group (CG) with the highest number

of 2048 CGs (a total of 133,120 cores).

CGs 1 2 4 8 16 32 64 128 256 512 1024 2048

Cores 65 130 260 520 1040 2080 4160 8320
1664

0

3328

0

6656

0

1331

20

Theoretical

acceleration

ratio

1 2 4 8 16 32 64 128 256 512 1024 2048

acceleration

ratio
1

1.99

830

96

3.95

496

08

7.84

0650

56

15.6

2332

62

30.9

0496

56

60.5

6702

89

117.7

2446

35

228.1

7094

2

440.4

6742

23

841.5

1040

23

1492.

8127

74

Parallel

efficiency（%）
100

99.9

154

82

98.8

740

21

98.0

0813

21

97.6

4578

9

96.5

7801

76

94.6

3598

27

91.97

2237

1

89.12

9274

2

86.02

8793

42

82.17

8750

22

72.89

1248

74

(a) (b)

Figure 10. (a) Acceleration ratio and efficiency with computing processing elements (CPEs); (b)

Mega Lattice Site Updates Per Second (MLUPS) with CPEs.

4.2.2. Airfoil Computation Results

The computation area when calculating the flow around the 2D NACA0012 airfoil is shown in

Figure 11. C is the airfoil length, and C = 400dx, where dx is the grid size. The entire computation

comprises 200 million grids. A velocity boundary condition and non-equilibrium extrapolation

boundary condition are respectively used on the inlet boundary and outlet boundary. The standard

bounce back boundary condition is used for the upper, lower, and airfoil edges [14]. The inflow Mach

number M = 0.1, the Reynolds number Re = 1000, and a total of 1 million time steps are calculated;

and the angles of attack are calculated as 0°, 4°, 6°, 8°, 10°, 12°, 15°, 17°, 20°, 22°, 25°, and 28°.

Figure 10. (a) Acceleration ratio and efficiency with computing processing elements (CPEs); (b) Mega
Lattice Site Updates Per Second (MLUPS) with CPEs.

4.2.2. Airfoil Computation Results

The computation area when calculating the flow around the 2D NACA0012 airfoil is shown in
Figure 11. C is the airfoil length, and C = 400dx, where dx is the grid size. The entire computation
comprises 200 million grids. A velocity boundary condition and non-equilibrium extrapolation
boundary condition are respectively used on the inlet boundary and outlet boundary. The standard
bounce back boundary condition is used for the upper, lower, and airfoil edges [14]. The inflow Mach
number M = 0.1, the Reynolds number Re = 1000, and a total of 1 million time steps are calculated; and
the angles of attack are calculated as 0◦, 4◦, 6◦, 8◦, 10◦, 12◦, 15◦, 17◦, 20◦, 22◦, 25◦, and 28◦.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 13

Figure 11. Computation area. The left side is the inflow and the right side is the outflow.

Figures 12 and 13 show the pressure and velocity clouds at several representative angles of

attack with angles of attack of 0°, 4°, and 8° and 12°, 15°, and 20°, respectively. It can be seen from

Figure 12 that the flow tends to be stable for angles of attack of 0° and 4°, and there is no flow

separation phenomenon, which is consistent with the literature [21–23]. When the angle of attack is

8° or higher, unsteady vortex shedding occurs after the airfoil tail, and, as the angle of attack

increases, the vortex shedding becomes more obvious than before and the flow instability becomes

larger. It can also be seen from Figures 12 and 13 that, with an increase in the angle of attack, the

pressure difference between the lower side and the upper side of the airfoil increases gradually;

therefore, it can be qualitatively known that the lift coefficient will also increase, which can be

understood as the vortex lift generated by the shedding vortex.

(a)

(b)

Figure 12. Pressure and velocity clouds at different angles of attack: (a) pressure distribution on the

upper side; (b) lower right side of the foil. The angles of attack are 0°, 4°, and 8° (left to right).

Figure 11. Computation area. The left side is the inflow and the right side is the outflow.

Figures 12 and 13 show the pressure and velocity clouds at several representative angles of attack
with angles of attack of 0◦, 4◦, and 8◦ and 12◦, 15◦, and 20◦, respectively. It can be seen from Figure 12
that the flow tends to be stable for angles of attack of 0◦ and 4◦, and there is no flow separation
phenomenon, which is consistent with the literature [21–23]. When the angle of attack is 8◦ or higher,
unsteady vortex shedding occurs after the airfoil tail, and, as the angle of attack increases, the vortex
shedding becomes more obvious than before and the flow instability becomes larger. It can also be seen
from Figures 12 and 13 that, with an increase in the angle of attack, the pressure difference between the
lower side and the upper side of the airfoil increases gradually; therefore, it can be qualitatively known
that the lift coefficient will also increase, which can be understood as the vortex lift generated by the
shedding vortex.

Appl. Sci. 2019, 9, 2000 11 of 14

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 13

Figure 11. Computation area. The left side is the inflow and the right side is the outflow.

Figures 12 and 13 show the pressure and velocity clouds at several representative angles of

attack with angles of attack of 0°, 4°, and 8° and 12°, 15°, and 20°, respectively. It can be seen from

Figure 12 that the flow tends to be stable for angles of attack of 0° and 4°, and there is no flow

separation phenomenon, which is consistent with the literature [21–23]. When the angle of attack is

8° or higher, unsteady vortex shedding occurs after the airfoil tail, and, as the angle of attack

increases, the vortex shedding becomes more obvious than before and the flow instability becomes

larger. It can also be seen from Figures 12 and 13 that, with an increase in the angle of attack, the

pressure difference between the lower side and the upper side of the airfoil increases gradually;

therefore, it can be qualitatively known that the lift coefficient will also increase, which can be

understood as the vortex lift generated by the shedding vortex.

(a)

(b)

Figure 12. Pressure and velocity clouds at different angles of attack: (a) pressure distribution on the

upper side; (b) lower right side of the foil. The angles of attack are 0°, 4°, and 8° (left to right).

Figure 12. Pressure and velocity clouds at different angles of attack: (a) pressure distribution on the
upper side; (b) lower right side of the foil. The angles of attack are 0◦, 4◦, and 8◦ (left to right).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 13

(a)

(b)

Figure 13. Pressure and velocity clouds at different angles of attack: (a) pressure distribution on the

upper side; (b) velocity distribution on the lower right side of the foil. The angles of attack are 12°,

15°, and 20° (left to right).

In order to further quantify the main characteristics of the flow and evaluate the aerodynamic

performance of the airfoil, the lift coefficient
LC and the pressure coefficient pC of the upper and

lower surfaces of the airfoil are calculated, respectively, as

Cu

F
C L

L
2

00
2

1

=

,

2

00

0

2

1
u

pp
C p

−
=

,

where the subscript 0 represents the value under far-field conditions, respectively, C is the size of the

airfoil, and
LF is the lift, i.e., the vertical component of the aerodynamic force acting on the airfoil

chord.

(a) (b)

Figure 14. (a) Average pressure coefficient (pC) distribution at an angle of attack of 8°; (b) The trend

of the lift coefficient (
LC) with the angle of attack.

Figure 14a shows the average pressure coefficient distribution of the upper and lower surfaces

when the angle of attack is 8°. Owing to the angle of attack, the average pressure coefficients for the

upper and lower surfaces are different at the front of the airfoil, and they gradually change with the

position; this appears to be a consistent trend. The trend and the extreme value of the computation

result are in good agreement with those in the literature [22], and a mean error less than 1.5%. Figure

14b shows the trend of the lift coefficient as a function of the angle of attack. This result is also in good

agreement with the results in the literature [24], and a mean error less than 5%. Once the angle of

Figure 13. Pressure and velocity clouds at different angles of attack: (a) pressure distribution on the
upper side; (b) velocity distribution on the lower right side of the foil. The angles of attack are 12◦, 15◦,
and 20◦ (left to right).

In order to further quantify the main characteristics of the flow and evaluate the aerodynamic
performance of the airfoil, the lift coefficient CL and the pressure coefficient Cp of the upper and lower
surfaces of the airfoil are calculated, respectively, as

CL =
FL

1
2ρ0u2

0C
, Cp =

p− p0
1
2ρ0u2

0

,

where the subscript 0 represents the value under far-field conditions, respectively, C is the size of the
airfoil, and FL is the lift, i.e., the vertical component of the aerodynamic force acting on the airfoil chord.

Figure 14a shows the average pressure coefficient distribution of the upper and lower surfaces
when the angle of attack is 8◦. Owing to the angle of attack, the average pressure coefficients for the
upper and lower surfaces are different at the front of the airfoil, and they gradually change with the
position; this appears to be a consistent trend. The trend and the extreme value of the computation
result are in good agreement with those in the literature [22], and a mean error less than 1.5%. Figure 14b
shows the trend of the lift coefficient as a function of the angle of attack. This result is also in good
agreement with the results in the literature [24], and a mean error less than 5%. Once the angle of
attack is greater than 25◦, the vortex may be broken, and the lift coefficient is reduced; this result agrees
well with the critical angle of the stall phenomenon in [25].

Appl. Sci. 2019, 9, 2000 12 of 14

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 13

(a)

(b)

Figure 13. Pressure and velocity clouds at different angles of attack: (a) pressure distribution on the

upper side; (b) velocity distribution on the lower right side of the foil. The angles of attack are 12°,

15°, and 20° (left to right).

In order to further quantify the main characteristics of the flow and evaluate the aerodynamic

performance of the airfoil, the lift coefficient
LC and the pressure coefficient pC of the upper and

lower surfaces of the airfoil are calculated, respectively, as

Cu

F
C L

L
2

00
2

1

=

,

2

00

0

2

1
u

pp
C p

−
=

,

where the subscript 0 represents the value under far-field conditions, respectively, C is the size of the

airfoil, and
LF is the lift, i.e., the vertical component of the aerodynamic force acting on the airfoil

chord.

(a) (b)

Figure 14. (a) Average pressure coefficient (pC) distribution at an angle of attack of 8°; (b) The trend

of the lift coefficient (
LC) with the angle of attack.

Figure 14a shows the average pressure coefficient distribution of the upper and lower surfaces

when the angle of attack is 8°. Owing to the angle of attack, the average pressure coefficients for the

upper and lower surfaces are different at the front of the airfoil, and they gradually change with the

position; this appears to be a consistent trend. The trend and the extreme value of the computation

result are in good agreement with those in the literature [22], and a mean error less than 1.5%. Figure

14b shows the trend of the lift coefficient as a function of the angle of attack. This result is also in good

agreement with the results in the literature [24], and a mean error less than 5%. Once the angle of

Figure 14. (a) Average pressure coefficient (Cp) distribution at an angle of attack of 8◦; (b) The trend of
the lift coefficient (CL) with the angle of attack.

5. Conclusions

This paper discussed the implementation and optimization of the LBM based on the Sunway
TaihuLight SW26010 heterogeneous multi-core processor architecture and the simulation computation
of NACA0012 2D airfoil flow. In parallel computing, the focus is on two-layer parallel design, the
parallelism between CGs, and the parallelism between MPEs and CPEs. Parallelism between CGs
is achieved by MPI, and that between MPEs and CPEs is achieved by the accelerating thread library.
We adopted the double-buffer mode to reduce the communication time and adjust the discrete storage
structure along with other optimization methods; these achieved a good parallel efficiency and speedup
ratio for the Sunway TaihuLight. In terms of airfoil computation, the pressure and velocity distributions
at different angles of attack were calculated respectively; and the average pressure coefficient and
lift coefficient were obtained for an angle of attack of 8◦. The results were in good agreement with
the literature.

Future work will focus on optimizing procedures, improving efficiency—especially the efficiency
of CPEs—exploring 3D models, more large-scale numerical computation of airfoils, and increasing
the number of MPEs to one million. We will also explore the application of the LBM in flow noise.
A common method for solving flow noise is to solve the Ffowcs Williams and Hawkings (FW-H)
equation. High accuracy of the flow field information is required for solving the FW-H equation. The
LBM is a discrete format of the Boltzmann equation. Computation results from the LBM can reflect
the fine structure of the flow field and provide accurate numerical results for the computation of
aerodynamic noise. Long-term research shows that the LBM is indeed suitable for the computation of
aerodynamic noise [26,27].

Author Contributions: Conceptualization, L.W. and W.Z. (Wu Zhang); Formal analysis, X.Z.; Funding acquisition,
W.Z. (Wenhao Zhu) and W.Z. (Wu Zhang); Investigation, L.W.; Methodology, L.W., W.W. and X.C.; Project
administration, W.Z. (Wu Zhang); Resources, W.Z. (Wenhao Zhu) and K.X.; Supervision, L.W.; Validation, K.X.;
Visualization, W.W.; Writing—original draft, L.W.; Writing—review & editing, L.W.

Funding: This research was funded by the National Natural Science Foundation of China major research project
key project (91630206).

Acknowledgments: Firstly, we would like to thank Wu Zhang, Weiguo Wu and Wenhao Zhu for providing us
with the basic theoretical knowledge of LBM and financial support. We learned a lot from Kangle Xu about airfoils
flow and aerodynamics. We express our sincere thanks to Xuesen Chu for his help in achieving better parallel
performance on the Sunway TaihuLight supercomputer. Finally,we should express our gratitude to Liangjun
Wang and Xiaoxiao Zhang for the implementer of the experiment and writing.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2019, 9, 2000 13 of 14

References

1. Succi, S. Lattice Boltzmann 2038. EPL 2015, 109, 50001. [CrossRef]
2. He, Y.; Wang, Y.; Li, Q. Theory and Application of Lattice Boltzmann Method; Science Press: Beijing, China, 2009.

(In Chinese)
3. Guo, S.; Wu, J. Acceleration of lattice Boltzmann simulation via Open ACC. J. Harbin Inst. Technol. 2018, 25,

44–52.
4. Bartuschat, D.; Rüde, U. A scalable multiphysics algorithm for massively parallel direct numerical simulations

of electrophoretic motion. J. Comput. Sci. 2018, 27, 147–167. [CrossRef]
5. Kutscher, K.; Geier, M.; Krafczyk, M. Multiscale simulation of turbulent flow interacting with porous media

based on a massively parallel implementation of the cumulant lattice Boltzmann method. Comput. Fluids
2018. [CrossRef]

6. Wittmanna, M.; Haagb, V.; Zeisera, T.; Köstlerb, H.; Welleinc, G. Lattice Boltzmann benchmark kernels as a
testbed for performance analysis. Comput. Fluids 2018. [CrossRef]

7. Wittmann, M.; Hager, G.; Zeiser, T.; Treibig, J.; Wellein, G. Chip-level and multi-node analysis of
energy-optimized lattice Boltzmann CFD simulations. Concurr. Comput.-Pract. Exp. 2016, 28, 2295–2315.
[CrossRef]

8. Ho, M.Q.; Obrecht, C.; Tourancheau, B.; de Dinechin, B.D.; Hascoet, J. Improving 3D lattice boltzmann
method stencil with asynchronous transfers on many-core processors. In Proceedings of the 2017 IEEE 36th
International Performance Computing and Communications Conference (IPCCC), San Diego, CA, USA,
10–12 December 2017; pp. 1–9.

9. Lintermann, A.; Schlimpert, S.; Grimmen, J.; Günther, C.; Meinke, M.; Schroder, W. Massively parallel grid
generation on HPC systems. Comput. Methods Appl. Mech. Eng. 2014, 277, 131–153. [CrossRef]

10. Song, L.; Nian, Z.; Yuan, C.; Wei, W. Accelerating the Parallelization of Lattice Boltzmann Method by
Exploiting the Temporal Locality. In Proceedings of the 2017 IEEE International Symposium on Parallel and
Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing
and Communications (ISPA/IUCC), Guangzhou, China, 12–15 December 2017.

11. Top500. Available online: www.top500.org (accessed on 28 December 2018).
12. Fu, H.; Liao, J.; Yang, J.; Wang, L.; Song, Z.; Huang, X.; Yang, C.; Xue, W.; Liu, F.; Qiao, F.; et al. The Sunway

TaihuLight supercomputer: System and applications. Sci. China Inf. Sci. 2016, 59, 072001. [CrossRef]
13. Li, W.; Li, X.; Ren, J.; Jiang, H. Length to diameter ratio effect on heat transfer performance of simple and

compound angle holes in thin-wall airfoil cooling. Int. J. Heat Mass Transf. 2018, 127, 867–879. [CrossRef]
14. Jafari, M.; Razavi, A.; Mirhosseini, M. Effect of airfoil profile on aerodynamic performance and economic

assessment of H-rotor vertical axis wind turbines. Energy 2018, 165, 792–810. [CrossRef]
15. Cao, Y.; Chao, L.; Men, J.; Zhao, H. The efficiently propulsive performance flapping foils with a modified

shape. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–4.
16. He, X.; Luo, L.S. A proiori derivation of the lattice Boltzmann equation. Phys. Rev. E 1997, 55, 6333–6336.

[CrossRef]
17. He, X.; Luo, L.S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice

Boltzmann equation. Phys. Rev. E 1997, 56, 6811–6817. [CrossRef]
18. Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision processes in gases. Phys. Rev. 1954, 94, 511–525.

[CrossRef]
19. Qian, Y.H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. EPL (Europhys. Lett.)

1992, 17, 479. [CrossRef]
20. Liu, Z. Improved Lattice Boltzmann Method and Large-Scale Parallel Computing; Shanghai University: Shanghai,

China, 2014. (In Chinese)
21. Di Ilio, G.; Chiappini, D.; Ubertini, S.; Bella, G.; Succi, S. Fluid flow around NACA 0012 airfoil at low-Reynolds

numbers with hybrid lattice Boltzmann method. Comput. Fluids 2018, 166, 200–208. [CrossRef]
22. Ma, Y.; Bi, H.; Gan, R.; Li, X.; Yan, X. New insights into airfoil sail selection for sail-assisted vessel with

computational fluid dynamics simulation. Adv. Mech. Eng. 2018, 10, 1687814018771254. [CrossRef]
23. Liu, Y.; Li, K.; Zhang, J.; Wang, H.; Liu, L. Numerical bifurcation analysis of static stall of airfoil and dynamic

stall under unsteady perturbation. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3427–3434. [CrossRef]

http://dx.doi.org/10.1209/0295-5075/109/50001
http://dx.doi.org/10.1016/j.jocs.2018.05.011
http://dx.doi.org/10.1016/j.compfluid.2018.02.009
http://dx.doi.org/10.1016/j.compfluid.2018.03.030
http://dx.doi.org/10.1002/cpe.3489
http://dx.doi.org/10.1016/j.cma.2014.04.009
www.top500.org
http://dx.doi.org/10.1007/s11432-016-5588-7
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.08.086
http://dx.doi.org/10.1016/j.energy.2018.09.124
http://dx.doi.org/10.1103/PhysRevE.55.R6333
http://dx.doi.org/10.1103/PhysRevE.56.6811
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1209/0295-5075/17/6/001
http://dx.doi.org/10.1016/j.compfluid.2018.02.014
http://dx.doi.org/10.1177/1687814018771254
http://dx.doi.org/10.1016/j.cnsns.2011.12.007

Appl. Sci. 2019, 9, 2000 14 of 14

24. Kurtulus, D.F. On the unsteady behavior of the flow around NACA 0012 airfoil with steady external
conditions at Re = 1000. Int. J. Micro Air Veh. 2015, 7, 301–326. [CrossRef]

25. Akbari, M.H.; Price, S.J. Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method. J. Fluids
Struct. 2003, 17, 855–874. [CrossRef]

26. Li, X.M.; Leung, K.; So, R.M.C. One-step aeroacoustics simulation using lattice Boltzmann method. AIAA J.
2016, 44, 78–89. [CrossRef]

27. Orselli, R.M.; Carmo, B.S.; Queiroz, R.L. Noise predictions of the advanced noise control fan model using
lattice Boltzmann method and Ffowcs Williams–Hawkings analogy. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 34.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1260/1756-8293.7.3.301
http://dx.doi.org/10.1016/S0889-9746(03)00018-5
http://dx.doi.org/10.2514/1.15993
http://dx.doi.org/10.1007/s40430-018-0982-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Lattice Boltzmann Method
	Computation Model
	Generation of Airfoil, Judgment of Grid Point Type
	Data Partition and Communication
	Many-Core Structure and Communication of the Sunway TaihuLight

	Experiment and Results
	Experimental Environment
	Numerical Experimental Results
	Parallel Efficiency
	Airfoil Computation Results

	Conclusions
	References

