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Abstract: In systems with non-local potentials or other kinds of non-locality, the Landauer-Büttiker
formula of quantum transport leads to replacing the usual gauge-invariant current density J with a
current Jext which has a non-local part and coincides with the current of the extended Aharonov-Bohm
electrodynamics. It follows that the electromagnetic field generated by this current can have
some peculiar properties and in particular the electric field of an oscillating dipole can have a
long-range longitudinal component. The calculation is complex because it requires the evaluation
of double-retarded integrals. We report the outcome of some numerical integrations with specific
parameters for the source: dipole length ~10−7 cm, frequency 10 GHz. The resulting longitudinal
field EL turns out to be of the order of 102 to 103 times larger than the transverse component (only
for the non-local part of the current). Possible applications concern the radiation field generated by
Josephson tunnelling in thick superconductor-normal-superconductor (SNS) junctions in yttrium
barium oxide (YBCO) and by current flow in molecular nanodevices.

Keywords: extended Aharonov-Bohm electrodynamics; local conservation laws; quantum transport;
schrödinger equation with non-local potential

1. Introduction

The extended Maxwell equations by Aharonov and Bohm [1–10] are employed for the calculation
of electromagnetic fields generated by sources which violate the local charge conservation condition
∂tρ +∇ · J = 0. Barring exceptional situations in cosmology where such violations may occur at the
macroscopic level, a possible microscopic failure of local conservation has been predicted in quantum
mechanics in the following situations:

1. In systems described by fractional quantum mechanics [11–17].
2. In ordinary quantum mechanics, in the presence of non-local potentials [17–26], and in particular

in first-principles calculations of transport properties using density functional theory and
non-equilibrium Green functions [27–29]. The latter approach has been very successful for
the exact description of quantum transport in nano-devices, which is otherwise not viable in
terms of local quantum field theories.

3. For the proximity effect in superconductors, especially in thick superconductor-normal-
superconductor (SNS) junctions in cuprates, where the Gorkov equation cannot be properly
approximated by a local Ginzburg-Landau equation [9,17,30,31].

Concerning Point 2, we recall that the Landauer-Büttiker formula for the current in quantum
transport, when applied to wavefunctions in the presence of a non-local potential [27,28], inevitably
leads to the definition of a non-local charge density ρext and current density Jext which differ from
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the usual gauge-invariant expression, and coincide with those of the extended Aharonov-Bohm
electrodynamics, namely

ρext = ρ + ρnon−loc = ρ− 1
4πc2

∂

∂t

∫
d3y

I (tret, y)
|x− y| (1)

Jext = J + Jnon−loc = J +
1

4πc
∇
∫

d3y
I (tret, y)
|x− y| (2)

where tret = t− c−1|x− y| and the “extra-source” I(t, x) is the function which quantifies the violation
of local current conservation:

I(t, x) =
∂ρ

∂t
+∇ · J (3)

ρ = |Ψ|2; J =
−ih̄
2m

(Ψ∗∇Ψ−Ψ∇Ψ∗) (4)

The current J, which can be interpreted as ~ρv in a classical limit, is locally non-conserved and
has in this case “sources and sinks” which are, however, invisible to an electromagnetic probe (this is
the so-called “censorship property” of Aharonov-Bohm electrodynamics and constitutes a safeguard
of the locality of the electromagnetic field).

In terms of the extended charge density ρext and extended current Jext the
Aharonov-Bohm-Maxwell equations in CGS units are then written in the familiar form

∇ · E = 4πρext (5)

∇× E = −1
c

∂B
∂t

(6)

∇ · B = 0 (7)

∇× B− 1
c

∂E
∂t

=
4π

c
Jext (8)

The Landauer-Büttiker formula employed in [27] gives the current Iα flowing through a lead α

coupled to another lead β as

Iα =
2e
h̄

∫
dE ( fα − fβ)Tr

[
GrΓαGaΓβ

]
(9)

where Γα, Γβ are the linewidths of the leads, fα, fβ their Fermi distributions, Gr is the retarded Green
function of the scattering region and Ga the corresponding advanced Green function. The authors
of [27] prove that the current calculated from the surface integral of Jext over the interface between
the scattering region and the lead α is equal to the that obtained from Equation (9). For this purpose,
they express Jext in terms of Green functions, generalizing the standard method of [32] to the case of a
non-local potential.

Other authors ([29] and references) define the extended current in a different way from
References [27,28], and take into account the possibility of adding to it a solenoidal component.
The correct definition of the physical current is still an open question, also regarding the dissipation
properties of the non-local part: should the latter be interpreted as a “virtual” current or as a real
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current with real dissipation? In this context, a detailed calculation and experimental verification of
the predictions of Aharonov-Bohm extended electrodynamics would clearly be of special interest.

In this work, we are concerned with the computation of the electromagnetic field generated by the
non-local part of the current. This field is independent from any solenoidal component, and therefore
the ambiguities mentioned above do not directly affect our results. It turns out that the radiation field
generated by an oscillating dipole with a failure in local conservation (the most obvious example,
apart from the quasi-static case examined in [9]) has very interesting features: namely, it contains an
anomalous longitudinal electrical component with large strength and long range.

For the frequency considered (10 GHz) we found that the strength of the longitudinal component
at a distance between 3λ and 13λ is in the order of 102 to 103 times the standard transverse component.
This factor must be weighted with a small factor that measures the importance of the non-local current
in comparison to the standard current. According to [27], first principles calculations of conventional
current density can give errors for current as large as 20% for molecular devices. However, most
molecular devices do not carry currents large enough to generate macroscopic fields. An exception
could be graphene [33]. Other materials which exhibit macroscopic quantization, large currents, and
possibly non-local currents are, as mentioned, cuprate superconductors.

The computation of the radiation field is technically very difficult due to the presence of
double-retarded integrals and “secondary sources” ρext, Jext extended in space. So we had to
resort to a complex integro-dipolar expansion and to long 6-dimensional Monte Carlo integrations,
obtaining numerical results for some fixed values of the source parameters, chosen in view of plausible
experimental situations.

It is likely that in future developments, the finite-elements integration techniques currently used
for the standard Maxwell equations can be extended to Aharonov-Bohm electrodynamics, but this
extension is far from obvious because the familiar vector-analysis features of the Maxwell equations are
strongly affected by the removal of the local charge conservation condition. Therefore any technique
based on the usual properties of the divergence of E and circuitation of B must be reconsidered, and in
a first approach, we deemed it safer to use only the retarded integral solutions, which, for the non-local
part of the sources, can be written in terms of the potentials as (we set k = c−1):

φnon−loc =
1

4π

∫ d3y
|x− y|

[
−k2 ∂

∂t

∫ d3z
|y− z| I (t− k|y− z|, z)

]
t→t−k|x−y|

(10)

Anon−loc =
1

4π

∫ d3y
|x− y|

[
k∇y

∫ d3z
|y− z| I (t− k|y− z|, z)

]
t→t−k|x−y|

(11)

In the following, the suffix non-loc will be omitted.
The extra-source I(t, x) is represented by two opposite Gaussian peaks which can have spherical

or ellipsoidal symmetry. This choice is based on Reference [17], where we have found I explicitly from
the solutions of fractional wave equations and of wave equations with non-local potential.

The paper is organized as follows: In Section 2 we first recall a formal argument showing that the
extended equations in vacuum can have solutions with a longitudinal propagating component; then
we define the non-conserved dipolar source used for the numerical calculation and we list the formal
steps necessary for computing the electric field and we illustrate the method followed in the Monte
Carlo integration. In Section 3, we set out a new integro-dipolar expansion, which is needed in order
to eliminate from the numerical integrations the large opposite fluctuations due to the monopolar
terms. In Section 3, we compute the electric field generated by a conserved source which serves as a
benchmark for the amplitude of the anomalous longitudinal component. Sections 5 and 6 contain our
results and conclusions.
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2. Oscillating Dipolar Source and Integral Expressions for the Radiation Field

In many papers on extended Maxwell equations it is noticed that, unlike the standard
Maxwell equations, they admit wave solutions with a longitudinal electric component [3,5,8,10].
Some authors cite experimental evidence reportedly showing the existence of electromagnetic waves
with non-transverse components [34–36]. Such evidence is scarce, compared to the immense body of
precision measurements and technological applications of transverse electromagnetic waves [37,38].
This implies, however, that the potential practical interest for such propagation modes is large, in case
their existence is confirmed. It is immediately seen how the prediction of longitudinal electromagnetic
waves emerges from the extended Maxwell equations. The first Maxwell equation in vacuum states
that ∇ · E = 0, so for a plane wave E = E0ei(kx−ωt) (or locally) one obtains the transversality condition
E0 · k = 0, where k defines the propagation direction of the wave. The first equation of the extended
Aharonov-Bohm theory in vacuum is instead

∇ · E = −1
c

∂S
∂t

(12)

where S is a scalar field which satisfies the equation

1
c2

∂2S
∂t2 −∇

2S = I = ∂tρ +∇ · J (13)

The “extra-current” I is non zero at the points where the local conservation of charge fails. If
the charge is locally conserved everywhere, then the S field is completely decoupled from matter.
In this case, even in the extended theory no longitudinal components should be expected.

Equation (13) can be solved for S, obtaining the first extended Maxwell equation in vacuum with
a non-local source term:

∇ · E = −1
c

∂

∂t

∫
d3y

I (tret, y)
|x− y| (14)

This shows that the divergence of E in vacuum is equal to a term that we can call “secondary
charge density” or “cloud charge”, generated in the surrounding space by the local non-conservation
of the “primary current’.’ Therefore, in a wave solution in vacuum the electric field can have a
longitudinal component.

In order to find the concrete predictions of the theory and assess the feasibility of an experimental
check, it is necessary to compute exactly the longitudinal electric radiation field EL generated by
an appropriate source, compare its magnitude order with that of the transverse field ET and make
sure that it does not vanish for some reason not apparent from the general form of the equations.
Symmetry can play a crucial role here. We have previously proven in [9], for instance, that in the case
of a quasi-stationary extra-source I representing a Josephson weak link with local non-conservation,
the anomalous magnetic field generated by I is zero and there is indeed an observable effect because
the corresponding Biot-Savart field is missing. This happens, however, for a source I with spherical
symmetry; otherwise the anomalous field partially replaces the missing Biot-Savart field.

Steps Needed to Write the Integral Expression for the Electric Field

With reference to Figure 1, consider an oscillating dipolar source with two opposite charges at
x = −a and x = +a, of the following form:

ρ(t, x) = q cos(ωt) f (x); J = 0 (15)

where f (x) is essentially a regularized double-δ, whose support can be adapted to describe a sphere or
a disk (see below, Equation (22))

f (x) ' δ3(x− a)− δ3(x + a) (16)
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The absence of current (J = 0) violates local conservation and can be described as the consequence
of a “strong-tunnelling” process [17]. In a real source, only a small part of the total charge will oscillate
without a current, so we focus our attention on the field generated by that part.

Figure 1. Geometrical setting for the calculation of the extra-current I (17) produced by the failure
of local conservation. The charge q oscillates between points placed on the x3-axis, at −a and +a.
The field is computed in the plane x1–x3, with angle θ = 45◦.

In order to compute the field of the source (15) using the extended Maxwell equations we must
write the potentials φ and A as double-retarded integrals like in Equations (10) and (11), and then we
have E = Eφ + EA = −∇φ− k∂tA.

The integrand in Equations (10) and (11) is given by I = ∂tρ +∇ · J; therefore, since J = 0, one
has here

I(t, x) = ∂tρ(t, x) = −qω sin(ωt) f (x) (17)

The steps needed to obtain the contribution Eφ
i are then the following:

• Retardate t→ t− k|y− z| in I(t, z), divide I by |y− z| and integrate in d3z.
• Differentiate with respect to t and multiply by (−k2).
• Retardate t→ t− k|x− y|.
• Multiply by 1/|x− y| and integrate in d3y.
• Differentiate with respect to xi and multiply by (−1).

The steps needed to obtain the contribution EA
i are the following:

• Retardate t→ t− k|y− z| in I(t, z), divide I by |y− z| and integrate in d3z.
• Differentiate with respect to yi and multiply by (−k).
• Retardate t→ t− k|x− y|.
• Multiply by 1/|x− y| and integrate in d3y.
• Differentiate with respect to t and multiply by (−k).

Through these steps one arrives, after long but straightforward manipulations, at the following
expression for the electric field, as a double retarded integral:

Ei(t, x) = Eφ
i (t, x) + EA

i (t, x) (18)
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where Eφ
i (t, x) is the contribution of the scalar potential:

Eφ
i (t, x) = −qK2

∫
d3z

∫
d3y

f (z)(xi − yi)

|y− z||x− y|3 (K|x− y| sin Ω− cos Ω) (19)

and the contribution of the vector potential is

EA
i (t, x) = −qK2

∫
d3z

∫
d3y

f (z)(yi − zi)

|y− z|3|x− y| (K|y− z| sin Ω− cos Ω) (20)

Here K is the wavenumber: K = kω = c−1ω = 2πλ−1; the phase Ω is given by

Ω = ω(t− k|x− y| − k|y− z|) (21)

and f (z) is a regularized representation of the double δ-function of the dipolar source in Equation (15)
(because, as discussed in [17], extra-sources originating from a non-local wavefunction are smooth):

f (z) =
1√

(2π)3εd2

e
− 1

2

(
z2
1

d2 +
z2
2

d2 +
(z3−a)2

ε2

)
− e
− 1

2

(
z2
1

d2 +
z2
2

d2 +
(z3+a)2

ε2

) (22)

The parameter a represents the length of the dipole and is taken to equal 2.5× 10−7 cm (in the
following, a1 = a2 = 0; a3 = a). The parameter ε represents the size in the 3-direction of the dipole
charges, and d their size in the 1- and 2-directions. At the beginning, the oscillation frequency is set to
ω = 2π × 1010 Hz and d = ε = 10−7 cm.

The field is computed at the point x =
(

r√
2
, 0, r√

2

)
; at the beginning we set r = 10 cm

(approximately equal to three wavelengths), then r is increased to 40 cm. The transverse and
longitudinal components of the electric field at this position are defined by the expressions

ET =
1√
2
(−E1 + E3); EL =

1√
2
(E1 + E3) (23)

In addition to the integral in Equation (19) there is also another contribution to Eφ, due to
the normal density ρ (not ρnon−loc) of the source (15). The corresponding φ is given in Section 4
(Equation (60)), in the limit when the function f becomes a double delta-function. It turns out to be of
the order of Ec,rms

T and will therefore be disregarded here in the computation of EL.
The presence of the Gaussian function f (z) restricts the effective range of the integration in d3z

approximately to ε in directions 1, 2, and to (a + ε) in direction 3. Therefore, in the Monte Carlo
integration procedure we just set the range of z accordingly, and the corresponding integration volume
is small. Setting the range of y is much more difficult, because there is no exponential cutoff in y in
the integrand, but only a decrease according to a power law. So we can only proceed empirically by
integrating over an increasing range Ry until the result stabilizes. All our trials give a stabilization
value of Ry (with the parameters employed) between approx. 100 and 200 cm.

3. Integro-Dipolar Expansion

We divide the y integration region using cubes centered at the origin. When we compute the
contributions of the regions with 0 ≤ yi ≤ 10−6, then 10−6 ≤ yi ≤ 10−5 etc. (values in cm), we obtain
precise results up to approximately 10−5; then the fluctuations become large, even in long runs (1011 to
1012 sampling points). This happens because the two opposite monopolar contributions in the integral
are large and when the sampling points are spread over bigger volumes, their cancellation is affected
by large casual errors. We therefore make recourse to a dipolar expansion in the integration region
far from the primary source. This is a non-standard expansion because of the presence of the double
retarded integration, so it needs special care and must be cross-checked numerically by comparing its
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results to those of the full integral in the intermediate integration region where |y| is small enough that
the fluctuations are still under control but large enough that the assumption |y| � a for the dipolar
expansion is valid.

Let us first consider the case of dipole charges having spherical symmetry, so that d = ε in the
definition of f (z). We rewrite the integral for Eφ

i as the sum of two integrals Eφ,a
i and Eφ,−a

i for the
sources at a and −a, in which the z variable is shifted by −a and a, respectively:

Eφ
i = Eφ,a

i + Eφ,−a
i (24)

For the first integral, with shift −a, we define a new variable u = z− a. Define a regularized
δ-function for a source centered at the origin:

F(u) =
1√

(2π)3ε3
e−

1
2

u2

ε2 (25)

The electric field generated by the scalar potential of the source at a can be written as

Eφ,a
i = −qK2

∫
M−a

d3u
∫

d3yHφ
i (x, y, u)Gφ(t, x, y, u + a) (26)

where

Hφ
i (x, y, u) =

F(u)(xi − yi)

|x− y|3 (27)

Gφ(t, x, y, u + a) =
K|x− y| sin Ω− cos Ω

|y− u− a| (28)

Ω = ω(t− k|x− y| − k|y− u− a|) (29)

We have symbolically denoted the integration range of u as “M− a”, meaning that it is equal to
the integration range M of z (−Rz ≤ zi ≤ Rz) shifted by a quantity −a.

The function Gφ(t, x, y, u + a) can be expanded as a term of order zero in a = |a| and a term of
order 1:

Gφ(t, x, y, u + a) ' Gφ
0 (t, x, y, u) + a · Gφ

1 (t, x, y, u) (30)

Actually, the small quantity in which we make the expansion is a/|y| and we therefore expect
that the expansion is accurate where |y| � a, which is what we need, as explained above.

Let us expand the factor 1/|y− u− a| to first order in a. Define v = y− u. |v| is of order |y|,
because F(u) has range ' ε < a; therefore |v| � a. In the following we denote v = |v|.

Defining

∆a =
v · a

v
= (y− u) · a

v
= (y3 − u3)

a
v

(31)

we have

|v− a| = v

√
1 +

a2

v2 − 2
∆a

v
(32)

and we find the following first order approximations:

|v− a|−1 ' 1
v

(
1 +

∆a

v

)
(33)

and
sin Ω ' sin Ω0 + cos Ω0∆Ω (34)

where
Ω0 = ω(t− k|x− y| − k|y− u|) (35)
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and
∆Ω = −ωk∆|y− u− a| = −K∆|v− a| = K∆a (36)

Similarly,
cos Ω ' cos Ω0 − sin Ω0K∆a (37)

Now we can rewrite the function Gφ(t, x, y, u + a) as follows:

Gφ(t, x, y, u + a) =
1
v

(
1 +

∆a

v

)
[K|x− y|(sin Ω0 + cos Ω0K∆a)− cos Ω0 + sin Ω0K∆a] (38)

Therefore, in the decomposition of Gφ, the part Gφ
0 , with the terms independent from a is

Gφ
0 =

1
v
(K|x− y| sin Ω0 − cos Ω0) (39)

and the part of first order in a is given by

aGφ
1 =

∆a

v

[
1
v
(K|x− y| sin Ω0 − cos Ω0) + K2|x− y| cos Ω0 + K sin Ω0

]
(40)

In the sum Eφ
i = Eφ,a

i + Eφ,−a
i the terms with Gφ

0 cancel, because the integral over the region
“M− a” is equal to an integral over M, due to the short range of the function F(u). The remaining
term of first order in a gives

Eφ
i = −2qK2

∫
M

d3u
∫

d3yHφ
i (x, y, u) · aGφ

1 (t, x, y, u) + o(a2) (41)

The electric field generated by the vector potential of the source at a can be written as

EA,a
i = −qK2

∫
M−a

d3u
∫

d3yHA(x, y, u)GA
i (t, x, y, u + a) (42)

where

HA(x, y, u) =
F(u)
|x− y| (43)

GA
i (t, x, y, u + a) = K

(yi − ui − ai)

|y− u− a|2 sin Ω− (yi − ui − ai)

|y− u− a|3 cos Ω (44)

The function GA
i can be approximately decomposed in a part independent from a and a part

linear in a, as done before for Gφ:

GA
i (t, x, y, u + a) ' GA

0,i(t, x, y, u) + a · GA
1,i(t, x, y, u) (45)

In order to find GA
0,i and GA

1,i we expand the factors present in GA
i to first order in a. Start with

1
|y− u− a|2 =

1
|v− a|2 '

1
v2

(
1 + 2

∆a

v

)
(46)

For the component i = 1, ai = 0, therefore the factor (yi − ui − ai) does not have components of
order a. We obtain

GA
i=1 ' K

v1

v2

(
1 + 2

∆a

v

)
(sin Ω0 + cos Ω0K∆a)−

v1

v3

(
1 + 3

∆a

v

)
(cos Ω0 − sin Ω0K∆a) (47)
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whose first order part is

GA
1,i=1 =

v1

v2 ∆a

(
K cos Ω0 +

2
v

sin Ω0

)
− v1

v3 ∆a

(
−K sin Ω0 +

3
v

cos Ω0

)
(48)

The case of i = 3 is more involved, because ai = a in that case. We write

y3 − u3 − a3

|y− u− a|2 '
(v3

v
− a

v

) 1
v

(
1 + 2

∆a

v

)
(49)

and similarly for the term with |y− u− a|3 in (44). Expanding to first order in a, and keeping the
linear terms, we obtain

GA
1,i=3 =

1
v2

(
v3 cos Ω0K∆a + 2

v3

v
sin Ω0∆a − a sin Ω0

)
(50)

− 1
v3

(
−v3 sin Ω0K∆a + 3

v3

v
cos Ω0∆a − a cos Ω0

)
(51)

Then we proceed as in (40), (41) to obtain

EA
i = −2qK2

∫
M

d3u
∫

d3yHA(x, y, u) · aGA
1 (t, x, y, u) + o(a2) (52)

The integrals (41), (52) are performed via a standard Monte Carlo algorithm. Results (compared
to a proper benchmark value, see Section 4) are given in Section 5. In the regions with yi < 10−5, it is
possible to compare numerically the integrals of some of the terms of the dipolar expansion with the
corresponding terms of the full integrals (19), (20). This gives a cross-check of the dipolar expansion.
Terms beyond the first order in a are certainly not needed in our case, because the only significant
contributions to the integrals come from the regions with yi > 0.1 cm (see Table A1), where the ratio
a/|y| is very small.

4. Benchmark Values of ET , EL from a Conserved Source

The numerical solution of the extended Maxwell equations found through the double-retarded
integrals described in the previous Section, the raw results of which (only for EL) are given in the
Appendix A, gives the components of the electric field in CGS units, referred to a source equal to 1 in
the same units. From this solution, we can see that EL � ET , and this certainly signals that something
interesting occurs, compared to the usual propagation of ET , which only occurs in the Maxwell theory
with locally conserved sources. The absolute value of the fields, however, provides little information
in itself, and we need some benchmark. For this purpose, we shall now compute the field generated
at the same position (r = 10 cm, θ = 45◦) by a standard oscillating dipole with the same frequency and
amplitude. By standard, we mean that its current is locally conserved. A textbook formula for this
case is

ET =
qv̇ sin θ

c2r
(53)

and yields an amplitude ET ' q · 0.8× 10−7 (CGS units), supposing an harmonic oscillation with
amplitude a = 2.5× 10−7 cm, ω = 2π × 1010 Hz. Since EL is of the order of q · 10−4 (see raw data in
Table A1 of the Appendix A), this shows that the anomalous longitudinal field EL of an oscillating
dipole with “full” strong tunnelling (i.e., one in which all charge oscillates between −a and a without
an intermediate current) is about 2 or 3 orders of magnitude larger than the regular transverse field ET
of a corresponding conserved source.

In order to obtain a more precise estimate of the benchmark transverse field, we shall next
compute it from the standard solution of the Maxwell equations with a source which is exactly equal
to the source (15) “completed” with a current that ensures local conservation. This also makes the
entire computation self-contained and yields a consistency check for the formalism employed.
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After writing the time derivative of the charge density ρ in (15), we set it equal, by definition,
to −∇Jc and in this way obtain the conserved current density Jc. It is straightforward to check that
from the condition

∂ρc

∂t
=

∂

∂t
q cos(ωt)

[
δ3(x− a)− δ3(x + a)

]
≡ − ∂

∂x3
Jc
3 (54)

one has

Jc
3 = −qω sin(ωt) [θ(x3 + a) + θ(−x3 + a)− 1] δ(x1)δ(x2) (55)

The standard Maxwell equations in Lorenz gauge in CGS units for the potentials φc, Ac are (the
subscript c stays for “conserved”)

1
c2

∂2φc

∂t2 −∇
2φc = 4πρc (56)

1
c2

∂2Ac

∂t2 −∇
2Ac =

4π

c
Jc (57)

and their solutions (k = c−1)

φc(x, t) =
∫

d3y
1

|x− y|ρ
c(y, t− k|x− y|) (58)

Ac(x, t) =
∫

d3y
1

|x− y| J
c(y, t− k|x− y|) (59)

The integral for φc gives

φc =
q

|x− a| cos [ω(t− k|x− a|)]− q
|x + a| cos [ω(t− k|x + a|)] (60)

The corresponding contribution to the electric field is obtained from −∇φ.
The integral for Ac

3 gives (the other components of Ac vanish)

Ac
3(x, t) = −qk

∫
dy3

[
ω sin [ω(t− k|x− y|)]

|x− y|

]
y1=y2=0

[θ(y3 + a) + θ(−y3 + a)− 1] (61)

The corresponding contribution to the electric field is obtained with −k∂t and is

EA,c
3 (x, t) = q(kω)2

∫ a

−a
ds

cos
[
ω(t− k

√
x2

1 + x2
2 + (x3 − s)2)

]
√

x2
1 + x2

2 + (x3 − s)2
(62)

These formulas allow the obtaining of the components Ec
T , Ec

L, taking into account that we have
fixed for simplicity θ = 45◦. Setting the distance at r = 10 cm for comparison with the anomalous
fields, we can compute the field components for different values of t. Since all components oscillate
at a high frequency, we take the root mean square of Ec

T , Ec
L over many values of t. With 1000 values

we obtain

q−1Ec,rms
T = 1.54× 10−7; q−1Ec,rms

L = 1.49× 10−8 (CGS units) (63)

As expected, Ec
L � Ec

T , since we are at a distance r ' 3λ.
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5. Results of the Retarded Integrals for the Anomalous Longitudinal Field. Discussion

5.1. Dependence on the Distance

The double-retarded integrals, computed numerically as described in the previous sections, give a
longitudinal (i.e., radial) component of the electric field of the order of 102 to 103 times greater than the
standard transverse component. The computation is done along a radial line forming an angle θ = 45◦

with respect to the oscillation axis of the dipole. Initially, we take the oscillation frequency equal to 1010

Hz and the field is computed at the instant t = 0. In order to check that the two field components ET ,
EL oscillate in the wave zone with a wavelength λ = 3 cm, corresponding to the chosen frequency, we
have computed these components at distance r = 10 cm and have then increased the distance in steps
of λ/4. The results (Table 1) actually show an oscillating behavior, as expected, within the uncertainties.
All values in the table are normalized to Ec,rms

T (10), which is the r.m.s. value of the transverse field
generated at distance r = 10 cm by a standard “completed” oscillating dipole, as described in Section 4.
The values of ET obtained for the anomalous source are of the same magnitude order as those of the
standard source and are not reported in the table.

Table 1. Normalized longitudinal field at t = 0 as a function of the distance r. See explanations in the
main text. Source parameters: a = 2.5× 10−7 cm, d = ε = 10−7 cm, f = 1010 Hz.

r = 10 cm r = 10.75 cm r = 11.5 cm
(∼ 3λ) (10 cm + λ/4) (10 cm + λ/2)

EL(r)
Ec,rms

T (10) 9.5× 102 −6.5× 102 −10.8× 102

With a further increase in the distance we then pass to r = 25 cm (10 cm + 5λ) and r = 40 cm
(10 cm + 10λ). Like for r = 10 cm, we find values of EL close to the maxima of the oscillation but the
oscillation amplitude appears to have increased: we have, respectively:

EL(25)
Ec,rms

T (10)
' 2.2× 103;

EL(40)
Ec,rms

T (10)
' 3.4× 103 (64)

The raw data (non normalized) of the contributions to EL coming from the various integration
regions (Table A1 of the Appendix A) show that the secondary charge which generates the large
values of EL at r = 25 cm and r = 40 cm is located farther away from the dipole, in comparison to
the secondary charge generating EL at r = 10 cm. In other words, as we move farther away from the
dipole, the longitudinal field increases because it is generated by a larger portion of the “cloud” of
secondary charge. It is not easy, however, to understand intuitively exactly how the different portions
of the cloud contribute to the field, because we are not in a stationary state but everything oscillates at
a high frequency, including the charge cloud itself, and the phase Ω = ω(t− k|x− y| − k|y− z|) in
the integrals (19), (20) produces double-retarded interference effects.

From the present data, it is not possible to assess the behavior of the longitudinal field at greater
distances, because the uncertainties in the integrals in the regions with distance above approx. 100 cm
are too large. We expect, of course, an eventual decrease of EL.

Notice that while the ET component of a standard e.m. radiation field must decrease steadily at
1/r in order to maintain the Poynting flux constant, the EL component does not contribute to this flux.
However, it is not yet clear, in our opinion, what the correct expressions for the e.m. densities of energy
and momentum are in the extended Aharonov-Bohm electrodynamics, even though this issue has
been addressed in some of the cited works.

5.2. Dependence on Time and on the Shape of the Sources

Concerning the dependence on time, at a fixed distance, we have checked that it is periodic as
expected, with frequency ω. For instance, at time t = 0.5× 10−10 s, the figures of Table 1 change signs.
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In order to vary the shape of the sources, we change the parameter d in the Gaussian charge density
Ansatz (22); this parameter fixes the size of the source in directions z1 and z2, that is, transversally
with respect to the oscillation direction of the dipole. The data in Table 1 have been obtained setting
d = ε = 10−7 cm, thus with sources having spherical symmetry.

One observes that the longitudinal emission is independent from d, at least up to
d = 20× 10−7 cm, which corresponds in practice to having two parallel discs instead of two pointlike
sources. For practical applications in superconductors this is important, because wide junctions are
more likely to carry a large current, in comparison to pointlike contacts. This independence from d
at a high frequency should be contrasted with the behavior of the anomalous magnetic field in the
quasi-static case [9]: in that case, increasing d rapidly leads to the suppression of the anomaly.

5.3. Dependence on the Frequency

The choice of the oscillation frequency in the calculation is crucial because it defines the
wavelength and therefore the integration regions. The value f = 1010 Hz seems to be a good
compromise, because such a frequency can be easily obtained in the self-oscillation of a Josephson
junction and is still accessible as an external bias for a molecular nanodevice.

We also made some variations of f in the calculation. Setting for instance f = 0.5× 1010 Hz,
we evaluated the longitudinal field at distance r = 20 cm, which corresponds to little more than 3λ (like
r = 10 cm for f = 1010 Hz), and similarly with f = 2× 1010 Hz. In each case, the value of EL found
was compared to the r.m.s. of Ec

T at the same distance for a standard conserved source. The resulting
ratios show only a weak dependence on the frequency in this range.

6. Conclusions

At the level of fundamental interactions there are no doubts about the full validity of quantum
field theory, and in particular of QED and the principle of local charge conservation. Nevertheless,
in the presence of non-local interactions (either as an effective descriptive model, or with fundamental
motivations like in fractional quantum mechanics), the failure of local conservation of the “ρv current”
inevitably leads to a new “emergent” phenomenology, characterized by secondary currents which
may extend outside the primary source and generate non-standard fields. The real physical properties
of these secondary currents are not yet properly understood. We think that experiments will play a
fundamental role in clarifying this issue. In our latest work [9], we proposed a design for a device for the
detection of anomalous magnetic fields generated by quasi-stationary non-conserved currents. For the
case of an high-frequency oscillating source considered in this paper, the choice of the experimental
strategy is more obvious, namely a search for longitudinal electric fields in the radiation zone. We plan
to discuss this in more detail in forthcoming work.

Another crucial question is for which materials are the non-local part of the current expected
to achieve the level sufficient for detection (at least 1 part in 105, if we admit, for instance, that a
longitudinal field of the order of 1% of the transverse field can be safely detected).

The choice of the dipole length a for our numerical solution has been motivated by a possible
application to Josephson tunnelling in yttirum barium oxide (YBCO). In the case of molecular
nanodevices, the typical sizes and shapes of current sources and sinks arising in the case of local
non-conservation should be estimated through the density functional theory; on the experimental side,
trials with, for example, graphene antennas emitting in the GHz range, could provide useful insights.
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Appendix A

Appendix A.1 Raw Results of the Monte Carlo Integration for the Longitudinal Field Component

Table A1. Contributions to the longitudinal electric field from the four main integration regions of the y
variable in the integrals (41), (52). Data in CGS units, multiplied by 106 and referred to a source charge
q = 1. For the total field properly normalized to a transverse component see Section 5. The integration
regions with yi < 0.1 cm and yi > 100 cm do not give significant contributions. The values of the
transverse field are not reported and are typically of the order of 1, in the same units, or less.

Integr. Region r = 10 cm r = 10.75 r = 11.5 r = 25 r = 40

[0.1, 1] cm 6 1 −5 2 1
[1, 10] 144 −98 −159 107 60
[10, 40] −2 −2 −3 225 455
[40, 100] 0± 1 0± 5 0± 3 0± 4 0± 10
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