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Abstract: In this work, transparent, stable coplanar top-gate thin film transistors (TFTs) with an active
layer of neodymium-doped indium oxide and zinc oxide (Nd-IZO) were successfully fabricated on
a glass substrate by all sputtering processes. The devices with a post-annealing temperature of 400 °C
exhibited good electrical performances with a saturation mobility (psat) of 4.25 em?- V1871 10 /T4
ratio about 10°, Vi, of —0.97 V and SS about 0.34 V/decade. Furthermore, the devices exhibited
excellent negative and positive bias stability (NBS, PBS) of only a AVy, shift of about —0.04 V and
0.05V after 1 h, respectively. In addition, the devices showed high transparency about 96% over the
visible-light region of 400-700 nm, which indicates a great potential in transparent displays.
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1. Introduction

Amorphous oxide semiconductors (AOS) have attracted significant attention due to their
superior advantages such as high mobility, high transparency, good uniformity and low processing
temperature [1,2]. As an alternative material for amorphous silicon (a-5i) and low temperature poly
silicon (LTPS), AOS faces potential application in active matrix (AM) flat-panel displays (FPDs) [3].
Although AOS has numerous promising properties in dark conditions (without illumination), its bias
stress-induced instability is still a critical issue [4]. In general, TFTs for driving unit must keep
stable over time as a minor Vy, shift would change the brightness of an individual pixel and would
cause display nonuniformity. Traditional bottom gate TFTs show a large Vy, shift under bias due
to a donor effect of charged chemisorbed HyO or O, molecules in the back-channel region [5].
Therefore, a passivation layer is essential for preventing the active layer from experiencing the ambient
impact [6]. However, top-gate structure TFTs have attracted lots of attention with the merits of
being self-passivated and compatible with the AMOLED process [7,8]. Jeong et al. have reported
top-gate InGaZnO thin film transistors with Al,O3 and Al,O3/SiNx gate dielectrics and found larger
degradation in devices with a SiN interfacial layer due to the trapped charge located at energetically
shallower states [9]. Lin et al. have reported top-gate staggered IGZO TFTs by adopting the SiOx /SiNx
bilayer gate-insulator stack, and finally integrated the devices into a working OLED panel [10].
Work by Fakhri et.al reported ozone based atomic layer deposition at low temperature for fabricating
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top-gate dielectric, and the resulting devices showed outstanding stability vs bias stress due to its
self-encapsulation [11].

According to our previous study, bottom gate TFTs with Nd-IZO active layer on polyimide
(PI) substrate were fabricated and it showed large Vy, shifts under PBS/NBS [12]. As we know,
sputtering technique is a convenient and efficient method for large area fabrication. Here we report
an all sputtering way to fabricate high transparency, good stability top-gate metal oxide thin film
transistors. The devices exhibited excellent negative/positive bias stability due to isolating with the
atmosphere. But the negative/positive bias stability under illumination (NBIS, PBIS) still shifted
—2.3 Vand —0.78 V due to the trapping of the photogenerated holes in the gate insulator and/or at
the insulator/channel interface. Moreover, the transparency exceeds 96% over the visible-light region
of 400-700 nm, which indicates a great potential in transparent displays.

2. Experimental

The structure of all-sputtered TFTs is illustrated in Figure 1, in which the fabricated process is
given as follows. First, a thickness of 30 nm SiO, buffer layer was deposited on the pre-cleaned glass by
radio frequency (RF) sputtering that isolates the H,O or O, to penetrate the functional layers, which is
critical to the sensitive channel layer as adsorbed H;O or O; could induce electrical properties that are
variational. Second, an active layer about 7 nm was deposited on SiO; buffer layer with the condition
of 5 mTorr, 80 W and O,/ Ar ratio of about 5%. This was followed by an annealing process at 300 °C
for 30 min in ambient for eliminating part of defects in the semiconductor. Then, the source/drain
electrodes were prepared using an ITO target by DC sputtering. The channel length (L) and width (W)
were 160 and 635 um, respectively. Next, a 350-nm-thick Al,O3 layer was deposited by RF sputtering as
an insulator layer. Subsequently, top-gate electrode was defined in the same way with S/D electrodes.
All the layers were patterned by shadow masks and the sputtering conditions of functional layers
were listed in Table 1. For reducing the plasma bombardment on the active layer [13], the devices were
post-annealed at 200 °C, 300 °C and 400 °C for 1 h, respectively.
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Figure 1. The cross-sectional image of the all sputtered Nd:IZO TFT with coplanar top-gate configuration.

Table 1. The detailed sputtering conditions of each functional layer.

Layer Pressure (mTorr) Power (W)  Oj/Arratio (%) Time (s) Thickness (nm)
5i0, 1 100 0 900 30
Nd-1ZO 5 80 5 300 7
ITO 5 100 0 600 140
Al,O3 1 120 0 12600 350
ITO 5 100 0 600 140

All the functional layers were deposited by using the physics vapor deposition equipment
(Kurt Lesker). The electrical characteristics of TFTs were measured using a semiconductor parameter
analyzer (Agilent 4155C) in ambient condition at room temperature. TEM with an energy dispersive
X-ray spectrometer (EDS) was used to analyze the distribution of elements. The optical characteristics
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of fabricated devices were investigated by an Ultraviolet spectrophotometer (SHIMADZU UV2600,
SHIMADZU, Tokyo, Japan).

3. Results and Discussion

Figure 2 exhibits the characteristics of corresponding TFTs after post-annealed at 400 °C. Figure 2a
shows the Ip-Vp output curves of the coplanar top-gate TFTs, it exhibited good gate-control properties.
But there is no gate control for the devices with no post-annealing or post-annealed at 200 °C and 300 °C
as shown in Figure 3. This may be due to serious ion damage on the active layer when depositing
the insulator layer and the damage could not yet be recovered at a lower annealing temperature.
The transfer characteristics (Ip-Vg) of fabricated devices are given in Figure 2b. The transfer curves
were measured with Vg swept from negative to positive with negligible gate leakage (<10~ 1°A
as shown in the inset of Figure 2b). This enables a mobility of 4.25 cm? V~! s71, on/off current
ratio exceeds 10°, Vg, of —0.97 V and subthreshold swing (SS) about 0.34 V/decade. No obvious
hysteresis was observed, which indicates less electron traps at the interfaces between active layer and
dielectric [14], and the remarkably improved storage stability of the device.
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Figure 2. (a) Output characteristic curves (Ipg-Vpg) and (b) transfer characteristic curve (Ipg-Vgg) of
manufactured coplanar top-gate Nd-IZO TFTs. Vg is varied from —20 to 20 V with Vpg =10.1V,
and the inset was the gate leakage current.
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Figure 3. Transfer characteristic curve (Ips-Vgs) of manufactured coplanar top gate Nd-IZO TFTs

under different post-annealing temperatures (a) without annealing, (b) 200 °C (c) 300 °C. Vg is varied

from —20 to 20 V with Vpg =10.1 V.

Figure 4 shows BF STEM image together with the elemental distribution detected by EDS in the
channel region of the coplanar top-gate Nd-IZO TFTs. The STEM result shows that the Nd-IZO film
was continuous and compact sandwiched between the buffer layer and insulating layer, suggesting
good thickness uniformity and no obvious intermixing between adjacent layers. It is known that clear
interface and uniform thin films help devices to achieve high performance [15]. The small amount
of Nd acted as a superior oxygen binder required to suppress the formation of oxygen vacancies
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and control the carrier concentration can be ascribed to its low electronegativity (~1.1) and stronger
bonding strength of Nd-O (703 kJ /mol) [16,17].
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Figure 4. BF STEM image together with the elemental distribution (from left to right: Al, O, In, Zn, Nd,
Si) detected by EDS.

The electrical stability of the coplanar top-gate TFTs was investigated by stressing a prolonged
combined gate/drain bias on the device. The devices were stressed under the following conditions:
Vgs = £20 V, Vpg = 10 V and applied Vg = £10 V, which was applied for 3600 s. Figure 5 shows
electrical stability under NBS, PBS, NBIS and PBIS, respectively. The corresponding Vy, is shown
in Table 2, where the all sputtered coplanar top-gate TFTs exhibited a slight negative NBS shift and
positive PBS shift. The Vy, shift after 1 h under NBS and PBS was only —0.04 V and 0.05 V, respectively.
This is remarkable for a TFT device. It is also noted that there was no significant degradation in
saturation mobility and SS, indicating that no new defects were created when applying gate bias
and self-passivated property could effectively prevent the semiconductor from ambience interaction,
which is very critical for the stability of devices. The declined I,¢ in NBS indicated that the devices
tend to be more stable after negative bias was applied for one hour. However, once illumination
was introduced, the transfer curves exhibited a —0.78 V shift after 1 h under positive Vg stress with
illumination. Moreover, larger negative shifts in Vy, were observed under negative Vg stress with
illumination. The most plausible degradation mechanism of the Nd-IZO TFTs under NBIS conditions
was suspected to be photogenerated holes being trapped at the gate insulator and /or insulator /channel
interface, and there was no hole recombination with the redundant photogenerated electrons once
the gate bias was withdrawn, finally resulting in a negative shift of Vy, [18]. As reported by other
groups, the NBIS could be improved by a high-pressure annealing process [19], long-time annealing
process [20], ozone treatment [21] or by adding a buffer layer [22].

Figure 6a shows the time dependence of AVy, for Nd-IZO TFTs under NBS, PBS, NBIS and
PBIS at room temperature. It can be clearly seen that the NBS and PBS curves are approximately
two straight lines. The NBIS and PBIS decline a lot from the original values. Figure 6b shows the
transmittances of all sputtered coplanar top-gate TFTs of SiO, /Nd-IZO/ITO/Al,O3 /ITO on glass
substrate with different post-annealing temperatures. The transmittance increased with the increasing
of the post-annealing temperature, which may due to the high annealing temperature prompting more
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transparency of ITO [23]. Moreover, the maximum transparency exceeded 96% under a wide visible
light region, which indicates a great potential for transparent displays.
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Figure 5. Variations of the transfer curves under (a) negative bias stress, (b) negative bias stress
under illumination, (c) positive bias stress, (d) positive bias stress under illumination. During the test,
a positive gate bias (Vg =10 V, Vpg = 10 V) and a negative gate bias (Vg = =10 V, Vpg = 10 V) was
applied as an electrical stress for 1 h, respectively. Transfer curves were recorded every 15 min.
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Figure 6. (a) Variations of Vy, at the applied NBS time, NBIS time, PBS time and PBIS time, respectively.
(b) Optical transmittance spectra of fabricated devices at different post-annealing temperature, no
annealing, 200 °C, 300 °C, and 400 °C, respectively. The inset is the devices post annealed at 400 °C.
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Table 2. Summary of the Vy, of the coplanar top-gate TFTs under various bias stress.

Time (s) Vi (V)NBS Vi, (V) NBIS Vin(V) PBS Vi (V) PBIS
Initial —0.03 ~1.81 —0.06 —0.52
900 —0.06 —3.21 —0.03 —0.81
1800 —0.06 ~3.62 —0.03 ~1.02
2700 —0.07 —3.88 —0.02 ~1.17
3600 —0.07 —411 —0.01 ~1.30

4. Conclusions

In summary, we have fabricated coplanar top-gate Nd-1ZO TFTs using all sputtering processes.
After 400 °C post-annealing for 1 h, the devices exhibited good electrical performance with
a saturation mobility of 4.25 cm?-V~1.571 I, /I ratio about 10°, Vg, of —0.97 V and SS about
0.34 V/decade. In addition, the devices showed excellent PBS and NBS stability that are likely due
to its self-encapsulation. But PBIS and NBIS instability is still a problem due to the photogenerated
holes trapped in the gate insulator and/or at the insulator/channel interface. In addition, the devices
showed high transparency of about 96% over the visible-light region of 400-700 nm, which perfectly
fits the needs of transparent display.
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