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Abstract: Based on the Snyder and Mitchell model, a closed-form propagation expression of
astigmatic sin-Gaussian beams through strongly nonlocal nonlinear media (SNNM) is derived.
The evolutions of the intensity distributions and the corresponding wave front dislocations are
discussed analytically and numerically. It is generally proved that the light field distribution varies
periodically with the propagation distance. Furthermore, it is demonstrated that the astigmatism and
edge dislocation nested in the initial sin-Gaussian beams greatly influence the pattern configurations
and phase singularities during propagation. In particular, it is found that, when the beam parameters
are properly selected, a vortex beam with perfect doughnut-shaped profile can be obtained for
astigmatic sin-Gaussian beams with two-lobe pattern propagating in SNNM.

Keywords: nonlocal nonlinear medium; astigmatic sin–Gaussian beam; screw dislocation;
edge dislocation; vortex

1. Introduction

In the past decades, self-trapped optical beams in nonlocal nonlinear media, especially in strongly
nonlocal nonlinear media (SNNM), have been a topic of considerable interest due to their theoretical
importance and many experimental observations [1,2]. SNNM is a novel kind of media in which the
characteristic length of the nonlocal response is much larger than the beam width. Distinct from the
conventional local nonlinearity, the nonlocality allows the refractive index of the media at a particular
point to be related to the beam intensity at all other points. Note that the nonlocal nonlinearity which
can support a variety of nonlocal spatial optical solitons exhibits in many physical systems, and some of
them have been observed experimentally [3–10]. Moreover, it has been reported that a great number of
optical beams can steadily propagate in SNNM under sufficient conditions, including Gaussian beams
and higher-order Gaussian beams, four-petal Gaussian beams, Lorentz-Gaussian beams, the beams
carrying wave front dislocations such as Hermite-, Hermite-cosh- or Laguerre-Gaussian beams, and so
on [11–26]. As well known, pure wave front dislocations in a monochromatic wave are divided into
two types: one is the longitudinal screw dislocation which is also known as the optical vortex with
spiral phase, and the other is the transverse edge dislocation with π-phase shift located along a line
in the transverse plane. During the past years, most of the previous investigations on propagation
of beams in SNNM have been focused on those beams whose pattern structure remains invariant
although the pattern size may change during propagation. Due to the complexity of evolution of
beams in the nonlocal domain, it is interesting to find that the changes of wave front dislocations are
possible, which turns out to be very important for the propagation characteristics and will modify the
pattern structure for a laser beam in SNNM [24,27,28].
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Like Hermite-Gaussian beams, sin-Gaussian beams carrying edge dislocations are the special
case of the Hermite-sinusoidal-Gaussian beams whose propagation dynamics through various optical
systems had been studied widely [29–37]. However, their propagation in SNNM remains unexplored.
In this work, we aim to study the propagation of sin-Gaussian beams with astigmatism in SNNM.
A closed-form propagation equation of astigmatic sin-Gaussian beams in SNNM is derived and
illustrated with numerical examples. Our results show some novel variations of wave front dislocations
occur for astigmatic sin-Gaussian beams propagating in SNNM. The remainder parts of this paper are
organized as follows: Section 2 represents the theoretical formulation for astatic sin-Gaussian beams
propagating in SNNM. In Section 3 main characters associated with intensity and phase distributions
of a propagating sin-Gaussian beam are analytically investigated and a large number of numerical
calculations are performed based on the obtained formulae in Section 2. Finally, in Section 4 the main
results obtained in this paper are summarized.

2. Theoretical Formulation

In the Cartesian coordinate system, a sin–Gaussian beam with astigmatism in the source plane
z = 0 takes the form as

E(x, y, 0) = exp

[
− x2 + y2

w2
0
− ik

2

(
x2

R0x
+

y2

R0y

)]
sin
(

βxx + βyy
w0

)
(1)

where βx and βy represent the parameters associated with the sin part, k = 2π/λ and λ is the
wavelength, w0 is the spot size of the beam, and R0x and R0y are respectively the curvatures along the
x and y directions at z = 0. The astigmatism is represented by the curvature difference between x and y
directions and can be easily realized in experiment [38,39].

Because the nonlocal nonlinear Schrodinger equation governing the evolution dynamics of optical
beams propagating in nonlocal nonlinear medium remains mathematically complicated, in this paper
the medium is assumed to be SNNM and, then, Snyder and Mitchell model is appropriate. In fact,
it has been found that the analytical solutions obtained from Snyder and Mitchell model and the
numerical simulations based on the nonlocal nonlinear Schrodinger equation are in good agreement in
the case of strong nonlocality [12,16,18]. The relation between optical beams propagating in SNNM
and in quadratic-index media or through optical fractional Fourier transform systems has also been
determined [40,41].

The propagation of a sin-Gaussian beam in SNNM is governed by the following equation:

2ik
∂

∂z
E(x, y, z) +

(
∂2

∂x2 +
∂2

∂y2

)
E(x, y, z)− k2γ2 p0

(
x2 + y2

)
E(x, y, z) = 0 (2)

where γ is the material constant relating to the response function, and p0 is the input power in the
source plane. The solution of Equation (2) can be expressed as [15,21,22]

E(x, y, z) = i
λB exp
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2B
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where the ABCD transfer matrix for SNNM has been obtained with the following:(
A B
C D

)
=
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cos(πzs) −zp sin(πzs)
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)
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γ2 p0 and zs = z/
(
πzp

)
being the scaled propagation distance.
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Substituting Equation (1) into Equation (3) and performing some mathematical manipulations
we have

E(x, y, z) = 1
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uw = u/w0 (u = x and y) being scaled transversal coordinates and zR = kw2
0/2 = πw2

0/λ being the
Rayleigh distance. Making use of the Gaussian integral formula

∫ ∞

−∞
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One obtains
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is an axial symmetry factor on a specified observation plane. Equation (8) is the main result obtained
in this paper and is also the starting equation to discuss the evolution property of the propagating
beam in the next section.

3. Evolutions of Wave Front Dislocations and Intensity Patterns Occurring in an Astigmatic
Sin-Gaussian Beam

In this section, we mainly study the evolution of the intensity pattern as well as the wave front
dislocation for a sin-Gaussian beam with astigmatism propagating in SNNM using the analytical
formulae derived in previous section. According to Equation (8) and the relations of A, B, D, αx and αy

with the scaled propagation distance zs, one can generally prove

E(x, y, zs) = E(x, y, zs + 1) (10)

Equation (10) reveals that the evolution of the field distribution with the scaled propagation
distance zs is periodic and the period of the field distribution evolution equals to 1 corresponding
to the propagation distance πzp = πzR

√
pGc/p0where pGc = 1/

(
γ2z2

R
)

is the critical power of
Gaussian or higher-order Gaussian beams. Obviously, zp = zR corresponds to p0 = pGc while zp < zR
corresponds to p0 > pGc.

It is known that a sin-Gaussian beam carries an edge dislocation along the straight line
βxx + βyy = 0 where βx and βy determines the orientation of the edge dislocation and its intensity
pattern is a two-lobe configuration for sufficiently small βx and βy. For R0x = R0y (i.e., αx = αy)
corresponding to beams without astigmatism, Equation (8) turns to

E(x, y, z) = E0 exp

[
−

z2
R
(
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w + y2
w
)

B2(1− iαx)

]
sinh
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)
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]
(11)
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Regardless of astigmatism, for βx or βy being 0, to be specific, assuming βy = 0,
Equation (8) becomes

E(x, y, z) = E0 exp

[
−

z2
R

B2

(
x2

w
1− iαx

+
y2

w
1− iαy

)]
sinh

[
zRβxxw

B(1− iαx)

]
(12)

Therefore, Equations (11) and (12) clearly demonstrate that the initial edge dislocation remains
unchanged for beams without astigmatism propagating in SNNM.

Figure 1 shows typical evolutions of the intensity distributions of sin-Gaussian beams
without astigmatism propagating in SNNM at various scaled propagation distance zs for different
values of R0x (R0y) and zp (zR) with sufficiently small βx and βy. Note that only for zp = zR
(i.e., p0 = pGc) and R0x = R0y = ∞, sin-Gaussian beam can roughly keep its structure and size
unchanged during propagation in SNNM, seeing Row 2 in Figure 1. Otherwise, the pattern size
varies with a period of πzp although the intensity pattern continues to be a two-lobe structure
during propagation. This is consistent with those of Gaussian and higher-order Gaussian beams
in SNNM [1]. Moreover, the calculations also indicate that the edge dislocation nested in the input
sin-Gaussian beam always remains during propagation. However, for sufficiently large values of
βx and βy, the intensity pattern changes periodically and is independent from the input power p0,
which can be seen from Figure 2. In the following we only consider the case of small βx and βy.

Figure 1. Evolution of intensity distributions of sin-Gaussian beams with the scaled propagation
distance zs for βx = 0.6, βy = 0.6. The other parameters are for Row 1: R0x = R0y = ∞ and zp =

√
2zR;

Row 2: R0x = R0y = ∞ and zp = zR; Row 3: R0x = R0y = ∞ and zp = zR/
√

2 and Row 4: R0x = R0y = zR

and zp = zR, respectively.

Figure 2. Evolution of intensity distributions of sin-Gaussian beams with the scaled propagation
distance zs for βx = 4, βy = 3. The other parameters are R0x = R0y = ∞ and zp = zR.
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On the other hand, for βx 6= 0, βy 6= 0 and R0x 6= R0y (i.e., αx 6=αy) corresponding to beams with
astigmatism, Equation (8) turns into:

E(x, y, z) = E0 exp
[
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y
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x
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1+α2
y
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Since the necessary condition of wave front singularity occurrence is E(x, y, z) = 0, it must
simultaneously require

βxxw

1 + α2
x
+

βyyw

1 + α2
y

= 0
αxβxxw

1 + α2
x
+

αyβyyw

1 + α2
y

= nπ n = 0, ±1, ±2, . . . (14)

Solving Equation (14) one obtains

βxxw,n

1 + α2
x

= −
βyyw,n

1 + α2
y

=
nπ

αx − αy
(15)

These are discrete points at which the intensity is null on the observation plane. Especially, n = 0
corresponds to a solitary zero intensity point at (xw, yw) = (0, 0). This implies that, due to the
simultaneous existence of an edge dislocation and astigmatism in an input beam, the wave front
dislocation structure varies and the zero-intensity line of an input edge dislocation can evolve into
some discrete null intensity points during propagation. Obviously, an astigmatism (R0x 6= R0y) as well
as the orientation of the initial edge dislocation determined by βx (βy) are very key factors for the
variation of wave front dislocation embedded in a propagating sin-Gaussian beam.

Based on the analytical discussions previously mentioned, a large number of numerical
calculations are performed and typical numerical examples are chosen to illustrate the general
propagation features for the astigmatic sin-Gaussian beam in SNNM. For the case of R0xR0y > 0
or R0x and R0y having the same sign as shown in Figure 3, the input astigmatic sin-Gaussian beam is a
two-lobe pattern only carrying an edge dislocation. Such propagating beam evolves into one with a
dark-hollow pattern and a screw dislocation (vortex) because the lines of zero real- and imaginary-part
associated with the propagating field distribution intersect at the origin. It can be seen that the pattern
configuration changes with period πzp during propagation, and so do the phase singularities varying
between an edge-dislocation and a screw dislocation.

Figure 3. Evolution of field distributions of a sin-Gaussian beam with the scaled propagation distance
zs for zp = zR, βx = βy = 2, R0x = 3zR/4, R0y = 10zR. Upper row: Intensity distribution |E(x, y, z)|2;
Bottom row: Re{E(x, y, z)} = 0 (solid lines) and Im{ E(x, y, z)} = 0 (dashed lines), respectively.

When the signs of R0x and R0y are different or one of them is ∞, the input sin-Gaussian beam
carries a mixed dislocation consisting of a vortex and an edge dislocation at the origin because there is

an intersection point at (0,0) of both the straight lines βxx + βyy = 0 and x2

|R0x |
− y2

|R0y| = 0 which
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respectively relate to the zero real- and imaginary-part of the input beam. Figure 4 shows a typical
example for βx = βy = 1/3, R0x = 3zR/4 and R0y = ∞, revealing that the mixed dislocations in the source
plane turns into a vortex with period πzp during propagation. The calculations further confirm that
the size of the patterns also depends on the values of the input power p0.

Figure 4. Same as Figure 3 but for zp = zR, βx = βy = 1/3, R0x = 3zR/4, R0y = ∞.

For specified choices of R0x = −R0y and smaller values of βx = ± βy, interestingly, it can be
observed that an astigmatic sin-Gaussian beam evolves into a doughnut-shaped pattern with a
uniform bright enclosure. Figures 5 and 6 show evolutions of the intensity distributions of astigmatic
sin-Gaussian beams in SNNM for different values of zp with R0x = −R0y = zR, βx = βy = 1/3.
Obviously, the propagating beam forms a perfect doughnut-shaped pattern across the transverse
plane at zs = 1/2. Note that the size of the preferred doughnut-shaped pattern at zs = 1/2 sensitively
depends on the values of the parameter zp, or to be more specific, the size of the doughnut-shaped
pattern decreases with an increase of the input power p0. Moreover, we also investigate the wave front
dislocation evolutions of the propagation field, demonstrating that the canonical vortex is invariant for
zp = zR but evolves into noncanonical for other values of zp, which can be seen from these figures.

Figure 5. Same as Figure 4 but for βx = βy = 1/3, zp = R0x = −R0y = zR.

Figure 6. Same as Figure 5 but forzp = zR/
√

3.
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.
In fact, for the specified choice R0x = -R0y = zR, zs = 1/2 and βx = ±βy = β, we have αx,y = ±1,

A = 0, B = -zp. With the cylindrical coordinates xw = rcosθ and yw = rsinθ, Equation (8) transforms to:

E(r, θ, z) = E0 exp

[
−

z2
Rr2(1− i cos 2θ)

2z2
p

]
sinh

(
zRβ√

2zp
re±i(θ+π/4)

)
(16)

For sufficiently small zR β√
2zp

, Equation (16) can approximate to:

E(r, θ, z) ≈ E0
zRβ√

2zp
exp

(
−

z2
Rr2

2z2
p

)
re±i(θ+π/4) (17)

which just represents a vortex beam and agrees with the numerical results.
Finally, it should be pointed out that, for λ = 500 nm and w0 = 1 mm, one has zR ≈ 6.28 m and the

curvatures R0x and R0y approximate to zR, which is realizable in experiment. When the sin-Gaussian
beam is produced with a sine-amplitude modulated grating, |βx| = |βy| < 1/3 implies that the spatial
frequency of the sine-amplitude modulated grating should be below 0.05lp/mm and is ultra-low,
which seems to be a challenging task in manufacturing technology nowadays.

4. Conclusions

In summary, the propagation of astigmatic sin-Gaussian beams in SNNM is investigated in detail.
Based on the Snyder and Mitchell model, a closed-form propagation expression of astigmatic
sin-Gaussian beams in SNNM is derived. The effect of astigmatism embedded in the input sin-Gaussian
beams on the propagation properties is discussed analytically and numerically. It generally proves
that the evolution of the field distribution with the propagation distance is periodic. For small values
of βx (βy), a sin-Gaussian beam with or without astigmatism propagating in SNNM may retain a
two-lobe pattern, or transform into a dark hollow pattern and even into a preferred doughnut-shaped
profile depending on other parameter choices. Similarly, the phase singularity nested on the input
sin-Gaussian beam can maintain its initial dislocation, or change from an edge dislocation to a vortex
and even from canonical vortex to a noncanonical one periodically. In particular, theoretical analysis
and the numerical simulative results demonstrate that astigmatism and the transversal orientation
of the edge dislocation line of the initial sin-Gaussian beam play a key role in realizing these novel
transformations during propagation in SNNM. It has been shown theoretically and experimentally
that the nematic liquid crystals and the lead glasses are the SNNMs [42–44]. Therefore, the results
presented here is intriguing for it reveals that the propagating astigmatic sin-Gaussian beam can
transform between a two-lobe pattern and doughnut-shaped pattern in SNNM and furnishes an
additional way to realize a doughnut-shaped beam with vortex using a sin-Gaussian beam with
edge dislocations.
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