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Abstract: Precise automatic vertebra segmentation in computed tomography (CT) images is important
for the quantitative analysis of vertebrae-related diseases but remains a challenging task due to
high variation in spinal anatomy among patients. In this paper, we propose a deep learning
approach for automatic CT vertebra segmentation named patch-based deep belief networks (PaDBNs).
Our proposed PaDBN model automatically selects the features from image patches and then measures
the differences between classes and investigates performance. The region of interest (ROI) is obtained
from CT images. Unsupervised feature reduction contrastive divergence algorithm is applied for
weight initialization, and the weights are optimized by layers in a supervised fine-tuning procedure.
The discriminative learning features obtained from the steps above are used as input of a classifier to
obtain the likelihood of the vertebrae. Experimental results demonstrate that the proposed PaDBN
model can considerably reduce computational cost and produce an excellent performance in vertebra
segmentation in terms of accuracy compared with state-of-the-art methods.

Keywords: vertebrae segmentation; deep belief networks; supervised learning

1. Introduction

An accurate segmentation of individual vertebra in computed tomography (CT) images is an
essential step for the clinical diagnosis and treatment of pathologic conditions. It is used in various
applications of image-based vertebrae assessment, biomechanical modeling, and surgery planning [1].
It plays a vital role in computer-aided diagnoses (CAD) as it used for different clinical tasks to diagnose
various diseases like scoliosis, kyphosis, spondylolisthesis, degenerative disc disease, etc. However,
the exact vertebral boundaries cannot be determined due to the articulation of the vertebrae with
each other that may induce vertebral overlaps in the segmentation of adjacent vertebrae. Despite
an increasing attention in vertebra segmentation recently, robust and accurate spine segmentation
methodologies are still deficient. Previous works on vertebra segmentation have used a multistep
approach incorporating localization of spine and vertebra detection, followed by segmentation [2,3].
Multiple techniques have been applied to vertebra segmentation, such as active shape model and
snake-based methods [4,5], level sets, or graph-based techniques using normalized cuts [6,7]. Most
of these models depend on prior knowledge in the form of a statistical shape model or spine atlases.
The performance of such methods is high on healthy spines with a good score of DICE coefficient.
However, some of these methods fail in accurate segmentation with patients of osteoporotic fractures
because such patients often suffer vertebral fractures in different stages and spinal deformities, such as
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scoliosis. In such kind of fractures, model-dependent segmentation may fail due to that the variability
of a unique shape is different from the mean shape model.

Machine learning methods can fulfill these requirements in the condition that sufficient datasets
are available for their training. Without sufficient data [8], the machine learning methods can find
many different hypotheses, that all give the same accuracy on training data and the problem appears
when data available is too small. Many methods work by performing in local search form that gets
stuck in local optima. For instance, neural network algorithms minimize an error function over
training data by employ gradient descent, and decision tree algorithms employ a greedy splitting
rule for growing of decision tree. In addition, in cases where there is enough training data, it may
still computationally very difficult for the learning algorithm to find the best hypothesis. A previous
work [9,10] proposed to solve the vertebra detection issue on arbitrary FOVs using random forests
and multilayer perceptron. In the current scanning techniques, CT is an accurate modality to access
the vertebral morphology. Several vertebra segmentation techniques from CT images have been
proposed in the recent years. In an earlier study, vertebra segmentation is achieved by unsupervised
approaches, such as region growing, adaptive threshold, boundary adjustment [11], graph cut [12],
and watershed [13]. Lim et al. [14] presented the Willmore flow technique in a level set method
to conduct a surface model evaluation. The edge- and region-based level set function combination
approach [6] for vertebra segmentation is proposed in CT images. The hybrid morphological filter
and Gaussian mixture for automatic initialization of level set is presented in [15] to handle topological
variations. In region-based approach, vertebral body segmentation is conducted to detect the key
features from statistical and heuristic methods in [16]. Another technique based on a watershed
algorithm for automatic spinal column segmentation has been proposed previously [17].

The vertebra segmentation and labeling methodology presented from the watershed and
mathematical morphology was proposed by Naegel et al. [18]. Klinder et al. [2] presented a method
based on statistical shape model (SSM) by integrating detection, identification, and segmentation of
the spine. A methodology-based edge detection and registration of a deformable surface model for the
thoracic segmentation was proposed in a previous work [19]. Rasoulian et al. [20] incorporated both
pose statistic and shape for lumbar vertebra segmentation. A deformed fence model for separation of
lumbar vertebra from surrounding tissues is proposed in the study [21]. High order Markov random
field (MRF) was used for individual vertebra segmentation from an articulated spine model [22].
A landmark-based shape model vertebra is achieved by using the transportation theory and aligned
the model to a vertebra from CT images using game theory [23]. Spine segmentation [24] is conducted
by partitioning the vertebra into several parts using an active shape model. The work [25] for the
vertebral segmentation is presented from 3D superquadric model. It is presented as an atlas approach
in the osteoporotic vertebra segmentation in a past work [26]. Vertebra detection is conducted from a
statistical learning approach based on Adaboost proposed in [27].

Related Work

The success of deep learning methods in medical imaging has facilitated the use of these
techniques in various applications, such as image detection, classification, and segmentation. Given
that deep learning is an automatic feature learning method, it has become a major topic in machine
learning [28], computer vision [29], and various other areas, including medical diagnosis [30].
Professional knowledge is needed to extract features and apply generalization capability to different
domains. Deep learning algorithms automatically learn effective features from the datasets and thus
draw an increasing interest in the new era of research. Researchers express that excellent modeling
accuracy can be achieved by the deep learning-based deep belief network (DBN) with fewer hidden
nodes [31,32]. The deep belief network (DBN) is a deep learning model that consists of stacking
Restricted Boltzmann Machines (RBMs) [31]; RBM is a primary unit of DBN. An RBM has a generative
undirected graphical modeling type. It is defined that the lower layer is called a visible layer and a top
layer called the hidden layer. The nodes of the visible and hidden layers are stochastic variables and
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the weights are undirected between visible and hidden layer. The two-step DBN learning consists of
unsupervised and supervised. Unsupervised feature learning is implemented by the CD algorithm
which trains the stacked RBMs to obtain the initial weight, and supervised learning is implemented by
the back-propagation algorithm.

Patch-based methods have obtained effective results for segmentation from medical images [33,34].
These methods label each voxel in the target images by image patch comparison, center on the voxel
with patches from an atlas library, and allocate the most probable label in accordance with the closest
and best match. Patch-based methods of label fusion have been presented and have given robust
segmentation. These methods recently show improved results in different computer vision tasks,
including super-resolution [35] and texture synthesis [36]. Image denoising [37] has given a promising
performance and led to various patch-based segmentation tool development for the facilitation of
medical imaging application methods [33,34,38,39]. In a previous study [40], the corner detection
of cervical vertebrae using the patch-based methodology in X-ray images is proposed. This work
is extended for cervical vertebra segmentation in X-ray images by using a deep fully convolutional
neural network (CNN) and has achieved a DICE similarity coefficient of 84% with a shape error of
1.69 mm [41]. In this work, twelve patches around the vertebra are generated to provide the spatial
context, and the vertebra corners are detected using a machine learning method. A liver segmentation
from CT images is presented in [42] from deep stack autoencoder (DSAE). This deep learning-based
method learns features from unlabeled data by using autoencoder and fine-tuned these features for
segmentation the liver from other abdominal organs. An iterative convolutional neural network based
automatic method for vertebrae identification and segmentation is proposed previously [43] to achieve
a mean DICE coefficient of 0.948 and a mean surface distance of 0.29 mm. This method used the
inherent order of vertebral column to make solve of detection problem and the interactive procedure is
utilized for vertebrae identification and segmentation one by one in sequential order. In this method
for enabling the contextual information, the vertebra in the low-resolution images is first roughly
identified and localized, and afterward reanalyzed in the original high-resolution images to achieve a
fine segmentation. A DBN based vertebrae segmentation is proposed in our preliminary work from
CT images in [44].

Unlike feature representation by the convolutional neural network (CNN) that comprises
convolutional and subsampling tasks in learning a set of locally connected nodes through the locally
receptive field for features extraction, our proposed PaDBN model is a full connection method for
high-level feature learning. Unsupervised feature learning is implemented by the CD algorithm
which trains the stacked RBMs to obtain the initial weight and supervised learning is implemented by
the back-propagation algorithm to fine-tune the whole network and can optimize the deep-learned
features for certain tasks, such as segmentation. While CNN is a partially connected approach that
stresses the importance of locality while PaDBN is a fully connected approach which gets learning a
single global weight matrix for features representation. The size of overlapping patches was set to 32
× 32 pixels. Therefore, we choose PaDBN instead of CNN in our work.

The objective we purse is to achieve the segmentation of vertebrae from CT images. In the
present study, we propose based on our preliminary work [44], a new hierarchical deep learning
feature representation PaDBN method for vertebrae segmentation. We adapted square and rectangular
ROI extraction from input CT image for overlapping patch generation and used balance classes in
training set to get high classification accuracy that was not done in our preliminary work [44]. Note,
no matter what the proportion of samples in testing set, smaller and compact deep belief network
architecture is adopted to minimize resources with better accuracy than our previous architecture.
Our preliminary work describes a proof-of-concept strategy for improving vertebrae segmentation
and result suggests that a fast correction method improves the segmentation and has potential to
be incorporated as an additional implement into clinical usage. These preliminary results further
motivated us to perform a full evaluation of PaDBN model for vertebrae segmentation accuracy.
Moreover, this work also reported known limitation of the previous version and proposed a variation
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of the method to circumvent them. Our proposed model is an unsupervised learning of input feature
statistics from CT images. We transfer the obtained network weight matrix to back-propagation neural
network with the same structure to start the supervised learning step. In supervised learning step,
conjugate gradient is tested for back-propagation neural network learning. These learned features are
further integrated into the patch matching framework to find patches for label propagation. Then,
a deformable model is adopted for the vertebra segmentation by the vertebra likelihood mapping
driven from patch matching. Finally, the postprocessing stage improves the segmentation by removing
the overflow portion by different morphological operations. The output of the postprocessing step is
the final vertebra segmentation. The proposed method is extensively evaluated on CT datasets from
the 2014 MICCAI workshop on the spine (CSI 2014) [45]; these datasets are available on SpineWeb [46].
The experimental results show that the deep learning features of PaDBN achieve excellent segmentation
accuracy. Compared with state-of-the-art vertebra segmentation methods, our algorithm obtains
competitive segmentation accuracy.

2. Methodology

Similar to other deep learning-based frameworks, our PaDBN framework can be divided into two
stages: training and testing. The PaDBN model for automatic vertebra segmentation further comprises
the preprocessing phase, patch generation, PaDBN, and segmentation steps. An overview of our
proposed method is shown in Figure 1.
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Figure 1. The proposed patch-based deep belief networks (PaDBN) model for vertebrae segmentation.

2.1. Preprocessing

The CT dataset can be represented by f: Ω × {1 . . . s} ⊂ R2 × N→ R, where ‘s’ is the number of
slice images in a volume dataset, Ω is domain, and f : Ω→ R is a bivariate function on a domain Ω⊂ R2.
Prior to segmentation, the preprocessing phase is necessary for preparing the relevant information from
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the CT images of the vertebra. This procedure includes different steps for preparing the meaningful
features to train the model. We reduce the image size to the region of interest (ROI) by cropping the
empty borders. The original 512 × 512 pixel images shown in Figure 2 are cropped to bounding box
around the vertebra in different pixel image sizes, and the datasets are shown in Figure 3.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 17 
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Figure 3. Preprocessing phase: (a) ROIs by cropping the images using a bounding box; (b) applying
threshold window; (c) Gaussian smoothing filter; and (d) respective ground truths.

The bounding box surrounding the vertebrae decreases the patch numbers for fast and efficient
computation. We focus on segmenting the vertebrae and image patch containing the vertebra region.
The bounding box size is sufficiently large to adjust the vertebra spatial variation across the images of
the CT dataset. The overlapping patches are created from the ROI around the vertebrae. Two types
of ROI geometry are considered square and rectangular ROIs. We applied the Gaussian filter to the
CT images with a fixed kernel size to control the smoothness of images for achieving segmentation
accuracy and attenuating the effect of noisy pixels. The large value of the Gaussian kernel is correlated
with the large deformation, and the estimated transformation is used as the input of a small kernel of
smoothness. As a preprocessing step, a rough threshold is applied on the entire CT volume to remove
noise artifacts. The purpose of the threshold window is to distinguish the vertebrae from other soft
tissues [47]. The reason for applying threshold is that vertebrae have higher intensities than other
tissues in CT images but are also similar to other bony structure, such as ribs. The network learns the
difference between vertebra positive samples from other bony structure as negative samples.
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2.2. Patch Generation

We divide the cropped CT images into m ×m overlapping patches in accordance with the label
on each pixel that is connected to a long-dimensional vector sequence and used as input for the
network. The entire patches are created as binary class datasets, namely, vertebrae (positive sample)
and nonvertebrae (negative samples), as shown in Figure 4. The overlapping patch of CT images is
shuffled and then packed into the same size batches to the feed input of the PaDBN model.
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To achieve optimal training, we use balanced training classes with equal number of samples
(vertebra and background). This approach has a potential sampling bias in removing and selecting
regions of sampling cases from the class with a large number of samples. The number of positive
samples is equivalent to that of negative samples as balance training class that proves beneficial
for model training. These steps reduce the computational time, generalization, and stability of the
trained model. The purpose is to discriminate the vertebra from other objects in the CT image.
Thus, the problem is two-class classification. Notably, no balanced class is done in the testing stage.
For verification on balanced and unbalanced training classes, we conduct experiments to compare the
accuracy on both datasets but achieve better results on balanced training class.

2.3. PaDBN Model

2.3.1. Patch to Feature Vector Conversion

The image informative representation is a feature that facilitates robust image segmentation.
Deep learning, a subfield of machine learning, is used in the identification of meaningful features
of the image. DBNs recently show impressive performance in various image analysis tasks [48–50].
In this study, DBN is used to convert the overlapped patches into feature vectors. To train and test
our model, the image patches are converted into feature vectors. The proposed PaDBN model is
used to extract the abstract features from CT images. The DBNs [31] have learning ability to extract
a deep hierarchical representation of data images. Here, DBN is used as feature extractor because
it can generate robust features that lead to the improvement in classification performance [48–51].
Preprocessing, i.e., cropping, normalization, smoothing, and balancing, is used to achieve the best
representative features of raw images. This procedure is followed by utilizing the unsupervised
modeling for extraction of deep structural features. The two hidden layers are used to extract the
features from the vertebrae. The input visible layer and first hidden layer construct RBM1, and the first
and second hidden layers form the RBM2 structure. The previous layer in RBM is used as a visible
layer for the subsequent RBM. Considering CPU limitations and computational cost, the CT images
after preprocessing are divided into 32 × 32 overlapped patches to prevent any distortions. Thus,
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each individual patch is presented by a row vector with 1024 dimensions. A total of 1024 dimension
features from each individual patch are used in training the model. The model starts with 1024 units
in the visible layer that shows high efficiency in feature selection and then finds the suitable number
for these hyperparameters.

2.3.2. Training Scheme

A model is performed on the learned features x to generate the high-level features of patches p for
characterizing the PaDBNs of vertebra CT images. The output of the former layer in DBN is used as an
input for the subsequent layer after several RBMs are stacked in a hierarchical manner.

Particularly, DBN lth layer can be shown as

Ml =
{

Wl , bl , cl
}

(1)

where Wl weight matrix shows the association between input and output nodes and bl and cl are
the bias vector correspondence of lth RBMs input and output layer, respectively. The given input
hl−1 =

(
hl−1

l , hl−2
2 , . . . . . . , hl−1

hl−1

)
, the Ml output can denoted as

hl = s
(

Ml , hl−1
)
=
(

hl
l , hl

2, . . . ., hl
hl

)
(2)

where s
(

Ml , hl−1
)

shows the RBMs sampling procedure Ml with input nodes hl−1
l . For training of a

RBMs, the joint probability of lth layer can be represented as

P
(

hl−1, hl
)
=

1
Z

e−L
(

hl−1, hl
)

(3)

The energy function can be modeled as

L
(

hl−1, hl
)
= −

Hl−1

∑
i=1

Hl

∑
j=1

wl
ijh

l−1
i hl

j −
Hl−1

∑
i=1

bl
i h

l−1
i −

Hl

∑
j=1

cl
jh

l
j (4)

where wl
ij belongs to real-valued weight linked between the nodes hl−1

i and hl
j. There are many ways

to learn an RBM. Finally, the PaDBN is constructed by stacking of all learned RBMs using divergence
procedure to learn the parameters of each RBMs [52]. The overlapping patches (m ×m) are fed as the
input to RBMs in a hierarchical manner. The two nodes output layer of PaDBN can be greedily trained
as shown in Figure 5.

2.3.3. Regression Model and Classification

Two methods can be used to convert the DBN into the regression model. In the first method,
the DBN is trained in an unsupervised manner and then converted into the neural network (NN)
without adding any other layer. In this way, all the samples are fed forward through this NN, and the
output is treated as samples for the regression model. In the second method, DBN is converted into
the NN after its supervised training by adding an output layer (with two neurons) for regression on
the top. Thereafter, NN is trained with the labeled dataset for fine tuning and treated as a regression
model. In our work, we use the second method for the regression model. For classification, we used
the sigmoid function for two-class logistic regression. Sigmoid function utilization is suitable for our
binary classification problem because it maps the predicted values to probabilities. The two nodes
in the output layer enable the network to select the most relevant features for representation of each
image patch. Thus, the deep learning features have two dimensions. The function can be written
as follows

σ(z) =
1

(1 + e−z)
(5)
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where z =
n
∑

i=1
wixi + bias.
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2.4. Segmentation

At the testing stage, image patches from unseen vertebra are fed into the model. The prediction
stage first predicts the test image class patch along with the trained model. After placing a distribution
at each of the feature vectors, the final probability map is generated by adding all distributions.
The proposed network focuses on vertebra segmentation. The segmented image is obtained from
the reconstruction of test patch probability map distribution. However, some flaws are observed in
segmented images in boundary detection, and the results are poor. Some pixels of the background are
segmented as vertebrae because of high contrast among vertebrae, ribs, and some other bony structure
tissues. Moreover, some vertebra pixels are missing from foreground. To remove such flaws from
the segmented images, we apply different morphological operations [11] as a postprocessing step to
obtain the final segmentation.

3. Experimental Results

We evaluate our proposed model on CT datasets provided for CSI spine and vertebra segmentation
at the 2nd MICCAI workshop and corresponding ground truth obtained from trauma center during the
daily medical examination. The CT scan comprises all thoracic (T1–T12) and lumbar (L1–L5) vertebrae
with 1 mm of slice thickness, and the data resolution ranges from 0.31 mm to 0.45 mm for in-plane
resolution. These datasets are obtained from the patient’s age group between 16 to 35 years old [45].
The proposed work is implemented in MATLAB 2017a as backend and trained on Dell desktop with a
3.6GHz Intel(R) i7 CPU, 32GB RAM, and Windows 7 ultimate operating system.

The training process evolves for binary segmentation of vertebra where all the vertebrae have
the same labels, and the model distinguishes between vertebra and background in which features are
learned in an unsupervised manner called pretraining. The activation conditional probability over
hidden and visible units is given by the logistic function and is used as an activation function for the
sigmoid function. Each RBM is trained by contrastive divergence (CD) algorithm [31]. The input image
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patch of visible layer x constructs RBM1 with the first hidden layer h1, and h1 is treated as a visible
layer for constituting RBM2 with the second hidden layer h2. In our training procedure, we use two
RBMs to train our model. The parameters of RBM1 (W, b, c) are obtained using CD algorithm. By fixing
this layer parameter and training RBM2 from CD algorithm, the DBN global parameters are obtained
as shown in Figure 6. A sparse penalty factor [31], which conducts the RBM sparsity by creating a
connection of weight and hidden unit bias, is proposed on the basis of cross entropy. Cross entropy is
used to distinguish between vertebra and nonvertebra using two small probability distributions to
prevent the phenomenon of vertebra homogeneity during training. The 1024 raw dimension features
are given as input to the network. The dataset is split into training 70% (training80%–validation20%)
and testing 30%; seven CT images are used for training (training–validation) and three for testing.
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The training data samples comprise the matrix with 538,624 × 1024 dimensions and validation
samples having a matrix with 179,200 × 1024 dimensions. Five-hundred-and-thirty-eight-thousand-
six-hundred-and-twenty-four samples were randomly chosen for training, and 179,200 samples were
randomly chosen for validation. To achieve efficient training, the mini batch size was set to 128.
The training samples were divided into 4028 mini batches, and validation samples were divided into
1400 mini batches. The architecture of PaDBN was selected as 1024-100-100-2, where the number of
input nodes is 1024. The number of epochs in unsupervised pretraining is 50 to fully train every RBM
of PaDBN. The 3000 epochs are used in fine-tuning. The model is trained to minimize the mean square
error (MSE) between the predicted map and the ground truth. The output layer is used as a sigmoid
layer to show the probability map of vertebra or nonvertebra objects. Our trained model can assess the
labels of the arbitrarily sized image. Given a test image, we extract the overlapping patches of size 32
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× 32 and feed them to the trained model to generate prediction probability maps. For the overlapped
image patch, the final probability maps will be the average probability map of overlapping patches
that can be used to realize vertebra segmentation. Thus, the generalization and stability of the trained
model can be guaranteed.

Parameter Settings

The parameters for the model are listed as the overlapped patch size 32 × 32 pixel. The PaDBN
model has two hidden layers. The numbers of nodes in each layer are 100 and 100, respectively. Two
nodes in the output layer enable the model to select the two most relevant features to represent each
patch. Thus, the deep learning features have two dimensions. To select a deep network structure,
we used a random search [53] to select the structure for best performance. First, we tried to identify the
range of the hyperparameters and after that, we selected the values randomly. Then, we trained our
model with these selected values and we repeated this procedure until getting the best performance.
The L2 regularization was set to 0.00001. The learning rate for pretraining was 0.05 and that for
fine-tuning was 0.008. The momentum for pretraining was 0.5 and that for fine-tuning was 0.9. Same
mini batch size 128 is used to achieve efficiency during pretraining and fine-tuning. We used 50 and
3000 epochs in pretraining and fine-tuning, respectively. The parameter combination scheme that
achieves the top performance of our proposed method is shown in Table 1.

Table 1. Parameters combination scheme.

Pretraining Fine-Tuning

Hidden Layers 2 Scaling learning rate 1
No. of neurons in each layer 100-100 No. of epochs 3000

No. of epochs 50 Learning rate 0.008
Learning rate 0.05 Momentum 0.9
Momentum 0.5 Mini batch size 128

Mini batch size 128 weightPenaltyL2 0.00001

The learning curve of the PaDBN model is shown in Figure 6. A normalized training MSE of 0.026
and a normalized validation MSE of 0.032 were obtained after training. The learning curve shows high
divergence before 500 epochs and becomes stable after 1700 epochs in the left side of Figure 6 (top left),
but the (top right) graph shows the overfitting problem because the validation curve considerably
deviates from the training curve after 500 epochs. The correct training curve, as shown in the (top left)
graph, is obtained using the heuristic approach. Figure 6 (bottom) shows the poor training MSE graph
with high learning rate (bottom left) and low learning rate (bottom right). Thus, weight initialization
is important in deep learning. Figure 7 illustrates a typical feature representation of first and second
hidden layers learned by two-RBM layer PaDBN model. Each square shows the weight between one
hidden node and the pixel of the original image at the same position. The gray pixel indicates zero in
the weight matrix, and white pixels denote positive values. The left side of Figure 7 shows the 100
node RBM1, amplified images show its weight visualization, and the right side of Figure 7 shows the
weight visualization of 100 node RBM2.

The segmentation results are shown in Figures 8–10 on different test axial images.
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The performance of vertebra segmentation is evaluated by specificity, sensitivity, precision, overall
accuracy, F1 score, Matthews correlation coefficient (MCC) [54], DICE similarity index (DSI) [55],
and Jaccard similarity index (JSI) [56] for quantitative assessment. We drew the confusion matrix to
perform classic evaluation using four variables: true positive, which refers to the patches segmented
correctly as vertebrae in the ground truth; false positive, which refers to the patches that are not
classified as vertebrae but classified as vertebrae by method; true negative, which refers to the patches
that are correctly classified as background; and false negative, which refers to the incorrectly classified
patches as background. The proposed method achieves excellent results in classical measurements
with an accuracy of 93.3%, a sensitivity of 91.1%, and a specificity of 93.4%. These results also confirm
the improvement in the MCC results and indicate that our segmentation results show very satisfactory
agreement with the ground truth (Table 2).

Table 2. Performance evaluation metrics by the confusion matrix.

Specificity
(%)

Sensitivity
(%)

Precision
(%)

Overall
Accuracy (%)

F1 Score
(%)

Matthews Correlation
Coefficient (MCC) (%)

CT image 1 85.6 96.8 86.1 91.1 91.1 82.8
CT image 2 93.6 97.5 93.0 95.4 95.2 91.0
CT image 3 90.0 96.6 90.2 93.2 93.3 86.7

Overall 89.7 96.9 89.7 93.2 93.2 86.8

DSI measures the spatial overlapping between two binary images, and its value ranges from zero
(nonoverlap) and one (perfect overlapped). The DSI is calculated for the individual vertebra and then
averaged for overall vertebrae. Each vertebra in the segmentation reference is compared with the labels
with which it has the largest overlapped. All automatic detected vertebrae, including the misclassified
ones, are considered for this evaluation. Our proposed method improves the segmentation results of
DSI with 86.1% similarity to the ground truth and JSI of 84.9% score (Table 3).

Table 3. Segmentation results.

DICE Similarity Index (DSI) Jaccard Similarity Index (JSI)

CT image 1 84.1 83.7
CT image 2 85.6 84.2
CT image 3 88.7 87.0

Overall 86.1 84.9

This research demonstrates that our proposed method can learn the complex segmentation task
of vertebrae. Classification and segmentation errors are most often found in the first and last vertebrae,
in which the model has less context availability. These vertebrae are often invisible, thereby making
their segmentation difficult. DICE score is lower for the starting thoracic vertebrae because of ribs
and intervertebral influence that are connected to the vertebrae. Some vertebrae that are not shown in
the label annotations are still segmented by our method, thereby causing misclassification and low
DICE score. These factors mislead segmentation. To show the generalization of our proposed method,
we utilize the CSI 2014 dataset on the vertebra segmentation (Table 4).

Table 4. Our method compared with state-of-the-art methods on vertebrae segmentation.

Methods DSI (%)

Y. Li et al. [15] 81.0
S. F. Qadri et al. [44] 85.0
A. Seitel et al. [57] 83.0

A. Sekuboyina et al. [58] 87.0
S. M. M. R. Al Arif et al. [41] 84.0

Our method 86.1
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Compared with the findings of other related methods, our obtained results are satisfactory.
For example, a mean DICE score of 85% is obtained in our preliminary work [44] for thoracic and
lumbar vertebrae segmentation from CT images by using deep belief networks modeling but that
has complex deep network architecture. DICE coefficient of 83% is reported in [57] by evaluation on
thoracic and lumbar vertebrae, and the method utilizes the statistical multiobject shape and pose for
vertebra segmentation. However, this model lacks automatic initialization and possible segmentation
overlap at the boundaries for the closely spaced thoracic vertebra. Meanwhile, an average DICE score
of 81% is obtained for lumbar vertebrae CT image segmentation using level set formulation in the
presence of different levels of salt and pepper noises [15]. A mean DICE coefficient of 87% is achieved
by deep learning method for spine segmentation, and the method is evaluated on thoracic and lumbar
CT vertebrae images [58]. However, this model fails in the structural consistency of the vertebrae parts
segmentation or sometimes entire vertebra from starting and ending slices. Another deep learning
method [41] is proposed for cervical vertebrae segmentation from X-ray images and achieved DICE
similarity coefficient of 84%; however, the patch-based center localization method has the limitation
of not knowing which center belongs to which vertebra. Our method is implemented in MATLAB
and thus consumes time to segment the vertebrae. A possible solution to improve the efficiency of
our method is to implement it in Keras with TensorFlow backend in Python or in Caffe. In this way,
the computational time will be reduced.

4. Conclusions

In this paper, we propose a PaDBN learning model for vertebra segmentation in CT images
on publicly available CSI 2014 dataset. The proposed model achieves promising results and is
therefore applicable to the clinical setting. To address the challenges in ensuring robustness of feature
representation and the large variations in the vertebrae, we propose to extract deep learning features
by the PaDBN method. Then, the learned features are utilized under the patch matching model to
estimate the vertebra likelihood map of the target image. Our proposed model based on deep learning
shows superior performance and is more precise, robust, and generalized than traditional models that
are dependent on predefined shapes and edges for fine-tuning. We believe that its performance can
be further improved with a larger and more representative dataset than the current tested dataset.
Compared with state-of-the-art methods, our framework demonstrates an excellent performance
in vertebra segmentation. Our future research will extend the proposed method to different image
modalities and spinal structures and will validate the method on large image databases with various
spinal pathologies.
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