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Abstract: Security of embedded systems is the need of the hour. A mathematically secure algorithm
runs on a cryptographic chip on these systems, but secret private data can be at risk due to
side-channel leakage information. This research focuses on retrieving secret-key information,
by performing machine-learning-based analysis on leaked power-consumption signals, from Field
Programmable Gate Array (FPGA) implementation of the elliptic-curve algorithm captured from
a Kintex-7 FPGA chip while the elliptic-curve cryptography (ECC) algorithm is running on it.
This paper formalizes the methodology for preparing an input dataset for further analysis using
machine-learning-based techniques to classify the secret-key bits. Research results reveal how
pre-processing filters improve the classification accuracy in certain cases, and show how various signal
properties can provide accurate secret classification with a smaller feature dataset. The results further
show the parameter tuning and the amount of time required for building the machine-learning models.

Keywords: side-channel analysis; power-analysis attack; embedded system security; machine-learning
classification

1. Introduction

Security is the core requirement in embedded systems nowadays and is ensured by using
secure cryptographic algorithms on the embedded chips inside these systems. When designing
and standardizing cryptographic algorithms, it is ensured that no mathematical relationship can
be found between the key, the plain-text, and the ciphertext. However, side-channel attacks are
still a threat to the embedded system. In side-channel attacks, physical leakages of the system are
exploited to recover the private secret key. Side-channel attacks were introduced by Paul Kocher
in the 90s [1,2], which was followed by the discovery of more side-channel attacks on hardware
implementation of popular algorithms like AES, DES, RSA and ECC [3–6]. All these algorithms are
proven to be prone to various kinds of side-channel attacks including power-analysis attack (PA),
electromagnetic-analysis attack (EMA), timing attacks (TA). In 2003, Standaert et al. presented a
practical PA attack on a Field Programmable Gate Array (FPGA) implementation of AES (symmetric
algorithm) [7], and during the same year Siddika et al. presented a power-analysis attack on an
FPGA (Virtex 800) implementation of an elliptic-curve cryptosystem [8]. Mulder et al. have presented
techniques of key recovery by capturing, processing, and analyzing EM radiations using statistical
models [9]. Based on similar techniques, the authors in [10] performed side-channel analysis for
retrieving secret information. To perform the side-channel-based key-recovery analysis, various
statistical and mathematical methods are used [11–16]. However, noise in leaked signals is one of the
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main hurdles to the success of side-channel attacks, which leads to the need for huge data sets for
accurate key recovery. To cater to this issue, researchers have proposed to use statistical tools like
principal-component analysis (PCA). PCA is used as the pre-processing step to eliminate the noise
from side-channel leaked data, hence enhancing the success of differential power analysis (DPA) [17].
PCA can also act as a distinguisher [18].

Recently, researchers have performed machine-learning and neural-network-based analysis to
improve side-channel attack efficiency, using various classifiers, to recover the key from the DES,
AES and RSA hardware implementations [19–23]. Some of the major challenges of machine learning
are over-fitting and the curse of dimensionality, in which a model trains itself to the specific data so
well that it fails to predict accurately with new unseen data. To solve this problem, various feature
extraction and selection techniques are used [24,25]. Some of them have been tested for AES data
classification as well [26]. There is a very limited literature on machine-learning-based side-channel
analysis of elliptic-curve cryptosystems, which is the standard for public-key cryptosystems and is
ideally used for resource-constrained environments like IoT-based systems. The focus of this research is
to analyze the resistance of the elliptic-curve cryptosystem algorithm, double-and-add-always (which
is designed to be resistant against DPA), against a machine-learning-based power analysis attack.
To check the immunity of an elliptic-curve cryptosystem against this attack; a hardware system was
set up which is capable of capturing the power being consumed by the FPGA Kintex-7 chip while
the elliptic-curve cryptography (ECC) algorithm is running on it (as ECC power-signal data does not
exist for a Kintex-7) and then analyzing it against various machine-learning-based algorithms with a
specifically designed feature dataset. We have chosen an FPGA for analysis because of its popularity
for rapid prototyping. Our contributions in detail are listed below.

Our Contributions. Our contributions are threefold. Firstly, analysis of captured power signals
is carried out using three machine-learning and neural-network-based classification techniques
to classify and recover the secret-key bits of the ECC algorithm. The complete methodology is
formulated for formation of the input datasets for further machine-learning analysis. In the existing
literature, machine-learning-based side-channel attacks are launched on the raw samples, but no clear
information is provided about the attack methodology and input feature datasets. Moreover, the ECC
double-and-add-always (public-key) algorithm is selected for attack, as not much analysis is done on
key recovery in the public-key domain.

Secondly, we propose to use signal properties as features for efficient analysis instead of using
raw samples. This ensures the elimination of redundant data during processing, hence increasing
the computational power and reducing the time to train and to test the network. The same proposed
hypothesis has been tested for the AES (symmetric cryptography) algorithm in our previous work [26].
Based on the findings of our previous work for the symmetric key algorithm, we have tested the
public-key algorithm for five particular signal properties only. Please note that this study is conducted
for the ECC (public-key cryptography) algorithm.

Thirdly, our contribution is the application of filters to datasets, before processing them using the
classification process. We have used Principal Components and Chi-square filters for pre-processing.
The purpose of applying filters is to avoid the problem of wrong classification and to check if the
accuracy can be improved by selecting/extracting important features. Again, we have selected one
feature-selection and one feature-extraction algorithm, based on our previous findings from the
research related to the symmetric algorithm AES. This double layer of pre-processing is applied just to
verify if this can improve the accuracy further.

The rest of the paper is organized as follows. Section 2 describes related work, the ECC
algorithm under test and the classification algorithms used for this analysis, Section 3 describes the
implementation design of ECC (algorithm under analysis), Section 4 explains our attack methodology
for key recovery using machine-learning-based classification techniques and describes the feature
formation procedure, Section 5 outlines the hardware and software experimental setup, Section 6 gives
an analysis of the results while Section 7 concludes the paper.
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2. Background and Related Terminologies

2.1. Power-Analysis Attacks

The PA is a strong passive attack, meaning that the attacker does not need to manipulate
the device in any way to extract the secret key. In fact, whenever a command is executed by the
device, the consumed power is measured by putting a resistor between Vss or Vdd and the true Vdd,
for processors implemented in CMOS technology. The voltage drop by the current through the resistor
is recorded. The voltage measurements are then analyzed using statistical methods to recover the
secret key. The details of CMOS leakage can be found in [27].

PAs can be categorized into simple (SPA) and DPA. The feasibility of a simple PA depends upon
the assumption that each instruction will have a unique power trace, which is normally caused by
key-dependent branching. For scenarios where traces are not related to the key and instructions but
are related to the data key, such attacks are categorized as differential power-analysis attacks. In DPA,
the results of hypothetical models are compared with the actual experimental results.

2.2. Classification Algorithms

For the analysis in this paper, four main classification algorithms are used—three machine-learning
and one simple neural-network-based algorithm. These algorithms have been tested for similar
nonlinear data, having independent features, for other symmetric and asymmetric algorithms.

2.2.1. Random Forest (RF)

RF belongs to the class of supervised machine-learning algorithm which is based on decision
trees [28]. The outcome of each tree contributes towards the prediction which makes is more reliable
and accurate. RF helps in overcoming the problem of over-fitting by using feature-bagging technique.
It produces better results even without hyper-parameter tuning which we will verify for our leaked
data as well.

2.2.2. Support Vector Machine (SVM)

The support vector machine is another supervised-learning algorithm, which maps and
represents data points in n-dimensional spaces to create a clear hyper-plane to separate classes.
High-dimensionality can be an issue with SVM which can be handled using feature-extraction methods
like PCA.

2.2.3. Naive Bayes (NB)

NB is also a supervised-learning algorithm. It is based on Bayes theorem, in which a probability
model is created for the possible outcomes. It is useful for large datasets and is based on the assumption
that predictors are independent, i.e., the features present in a sample are completely uncorrelated with
each other, which is true for our key classification problem feature set as well.

2.2.4. Multilayer Perceptron (MLP)

A multilayer Perceptron is a type of feed-forward neural network, which uses backpropagation
for training. This supervised-learning algorithm is used for solving complex problems stochastically.
It is a fully connected network with layers having specific weights ’w’ and neurons having a linear
activation function which maps the weighted inputs to outputs. These weight values are adjusted
based on the output error as compared to the expected value and is achieved through backpropagation.

2.3. Validation

It is important to validate the model against the existence of bias, after training with a
machine-learning classification algorithm. For our analysis, the k-fold cross-validation mechanism is
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applied for validation. In the k-fold cross-validation, a hold-out method is used in which the model is
trained k times, using k-1 subsets of the training data, and an error is estimated for the testing portion
(which is one subset of the data) to analyze the performance of the model. The process is repeated k
times to get better validation accuracy.

2.4. Feature/Attribute Selection and Extraction

In a feature-selection procedure, several features/attributes are selected, from the existing feature
dataset, which are then used in classification-model construction. However, in feature-extraction
methods, a new feature/attribute dataset is formed based on the existing features. Both techniques
help in reducing the features which helps in better classification. We have selected one feature-selection
(Chi-Square) and one feature-extraction (PCA) method for our analysis. As mentioned before, PCA has
proven to be the best choice for pre-processing if a support vector machine (SVM) algorithm is used
before classification. One of the purposes of this research is to analyze the effect of this best-performing
feature-extraction technique on our reduced proposed feature data set (which is formed based on signal
properties). Chi-square is randomly selected from the list of feature-extraction techniques. The reason
for this selection is that our previous machine-learning-based power analysis on AES data, showed
that all feature-selection give almost similar results [26,29]. We just picked one feature selection as the
scope of analysis is wider than just analyzing the feature pre-processing.

3. Design and Implementation of Elliptic-Curve Cryptosystem F256 on FPGA

This section explains FPGA design of the elliptic-curve double-and-add-always algorithm (1)
used for this analysis. The understanding of the implementation of the algorithm is important for
re-launching the attacks for achieving the same results.

3.1. Power Analysis and ECC

ECC, introduced by Koblitz and Millers in the early 80s, is a preferred powerful public-key
cryptosystem, especially for resource-constrained environments like smart cards, mobile phones,
IoT-based devices, and RFIDs. In ECC, point multiplication is the resource-expensive operation in
which a point on an elliptic-curve is added to itself successively. Let ’P’ be the point and ’k’ be the
number of times ’P’ is required to be added, then output ’Q’ will be ’k’ times point ’P’ multiplication
and is given by (1). Elliptic-curve point multiplication is also referred to as Elliptic-curve scalar
multiplication (ECSM). Security of an elliptic-curve cryptosystem is based on the elliptic-curve
discrete-logarithm problem, which relies on the fact that for an elliptic curve E and given points
P(x,y,z) and Q(x,y,z), it is hard to find the integer k such that Q = kxP.

Q = kxP (1)

To compute ECSM, double-and-add is the simplest straightforward algorithm, in which operations
are performed depending upon the ’k’ key bits. If the key bit is ’0’ then only the point-double operation
is performed. However, point-double and point-addition both are performed if the key bit is ’1’.
The simple double-and-add algorithm is susceptible to a simple power-analysis (SPA) attack; simply
by analyzing the power consumption of the chip, scalar key ’k’ can be resolved, by merely looking
at the oscilloscope, without using any advanced processing. Countermeasures are proposed in the
literature to help safeguard against SPA attacks. The simplest of all is to add an extra operation so
that the double-and-add operations are performed always irrespective of the scalar k bit as can be
seen from Algorithm 1. Double-and-add-always seems to be resistant against PA but is not secure
against the safe-error attack, where an attacker introduces an error and examines if the output will
show an error or not. Depending upon the output, the scalar key bit k is determined. However,
double-and-add-always still seems to be feasible due to the low cost. Further details of the algorithm
can be found in [30].
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Algorithm 1 double-and-add-always

1: Input: P, k[n]
2:
3: Output: Q = kP
4:
5: R0 = P, R1 = 0
6:
7: for i = 1 to n− 2 do
8:
9: R0 = 2R0

10:
11: R1 = R0 + P
12:
13: if ki = 1 then
14:
15: R0 = R1
16:
17: end if
18:
19: end for
20:
21: return Q = R0
22:

3.2. Nist Standard for 256-Bit Koblitz Curve

The NIST curve (SECP256K1), used in this analysis, over prime fields Fp, is defined as
E: y2 = x3 + ax + b mod p, where a = 0 and b = 7 and p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 [31].
The two main field operations in the double-and-add-always algorithm, point doubling and point
addition in Jacobian coordinates over curve E, used for this study, are described in [32]. Jacobian
coordinates are preferred over affine coordinates because inversions can be avoided while performing
the addition or doubling operation, which is not the case in the affine coordinate system.

3.3. Point Doubling in Jacobian Coordinates

This section gives the formulas used for implementing point doubling.
Suppose: P(X1, Y1, Z1) and

α = 3X2
1 + αZ4

1 , β = 4X1Y2
1 , (2)

Point Q on curve E is defined as: Q(X2, Y2, Z2) = 2.P(X1, Y1, Z1)

X2 = α2 − 2β, (3)

Y2 = α(β− X2)− 8Y4
1 , (4)

Z2 = 2Y1Z1, (5)

3.4. Point Addition in Jacobian Coordinates

This section gives the formulas used for implementing point addition. Suppose: P1(X1, Y1, Z1)

and P2(X2, Y2, Z2) are two points on curve (E) and

γ = Y1Z3
2 , λ = X1Z2

2 , µ = Y2Z3
1 −Y1Z3

2 , ξ = X2Z2
1 − X1Z2

2 , (6)

The new point P3 on Curve (E) such that: P3(X3, Y3, Z3) = P1(X1, Y1, Z1) + P2(X2, Y2, Z2) is:

X3 = µ2 − ξ3 − 2λξ2 (7)

Y3 = µ(λξ2 − X3)− γξ3, (8)

Z3 = Z1Z2ξ, (9)

All calculations are to be done in finite field Fp, meaning that mod p reduction is applied to
Formulas (2)–(9).
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A modular reduction unit is designed based on an interleaved modular multiplier architecture
similar to the one proposed in [33,34]. Based on the implementation results in [33,34], an interleaved
modular multiplier has more efficient area and timing characteristics. For fast and area-efficient
implementation of such a multiplier, we use just one CSA adder and a look-up table. The structure of
our design is depicted in Figure 1.

CONTROLLER

C-2*(C mod 2N) S-2*(S mod 2N)

CSA

(Y+2*3*2N ) mod M

2*3*2N mod M

(Y+2*2*2N ) mod M

2*2*2N mod M

(Y+2*2N ) mod M

2*2N mod M

Y mod M

0

Register C Register S
Register X

C div 2N + S div 2N

Xi

SC

SC

Figure 1. Interleaved Modular Multiplier (top) and ECC core Diagram (bottom).

The look-up table code is given by;

LUT(0) = 0;
LUT(1) = Y;

LUT(2) = 2 ∗ 2n mod M;
LUT(3) = (2 ∗ 2n + Y) mod M;

LUT(4) = 4 ∗ 2n mod M;
LUT(5) = (Y + 4 ∗ 2n) mod M;

LUT(6) = 6 ∗ 2n mod M;
LUT(7) = (Y + 7 ∗ 2n) mod M;

and
(S,C) = CSA(A,B,C) is

Si = Ai
⊕

Bi
⊕

Ci,
Ci+1 = (Ai.Bi)V(Ai.Ci)V(Bi.Ci), C0 = 0

The modular multipliers use one clock cycle to register inputs, 256 (n) clock cycles in the loop,
one clock cycle to calculate the CSA addition and one clock to register output, so the calculation is
done in just 259 n + 3 clock cycles.
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3.5. ECC Core Design

The ECC core design gets a point on the ECC curve in Jacobian coordinates P(X,Y,Z) and calculates
point Q = kxP within the same coordinate system. Figure 1 illustrates the ECC core design.

3.6. Elliptic-Curve Point Doubling—ECPD

Point doubling uses three modular multiplier units to calculate (2)–(5) in parallel. Ten modular
multiplications are done in five stages that reduce the point-doubling calculation time to 5(n + 3) + 4
clock cycles.

For curve SECP256K1, as a = 0, the logic can be reduced. Using just one modular reduction
unit, ECPD can be performed at 7 logic levels or 7(n + 3) + 2 clock cycles by the optimized-area ECPD.
Figure 2 shows the data-flow diagram of the ECPD doubling with and without optimized area.

Figure 2. Data Flows (Left to Right) 1. Point-doubling ECPD for SEC2P256K1 curve, 2. Optimized area
for point doubling, 3. Point Addition.

3.7. Elliptic-Curve Point Addition

Point addition uses three modular multiplier units to calculate point Q + P on the elliptic curve in
parallel. Sixteen modular multiplications are done in seven stages as shown in Figure 2, so the latency
of point addition will reduce to 7(n + 3) + 5 clock cycles.

3.8. Scalar Factor (Private Key) k

The scalar factor ’k’ is stored in internal RAM and can be changed via software command.
To implement a point multiplication, the double-and-add-always algorithm is used as given in
Algorithm 1. A point doubling is done followed by a point addition at every stage i, but the result
of the point addition is used only when the ith bit of the scalar k is ’1’. Otherwise, the result of point
addition will not be used.

In this method, N times PD and PA are required (here N = 256). This algorithm uses the same
hardware resources for the zero and one bits of the key k, so the power consumption during calculations is
homogeneous. The resources consumed by the design of the interleaved multiplier are given in Table 1.
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Table 1. Implementation results on Xilinx FPGA XC7k160tfbg676-1.

Resource Utilization

CORE AREA (LUT) 26,570
ECPA (LUT) 14,382
ECPD (LUT) 11,760

CLK frequency 100.00 MHz
DYNAMIC POWER 0.20 W

TOTAL POWER 0.313 W

4. Attack Methodology

The purpose of this research is to capture and analyze the power-consumed signals of the FPGA
(Kintex-7) while the ECC double-and-add-always algorithm is encrypting data with a secret key.
The idea is to attack one bit at a time. For our analysis, we will attack the least-significant three bits
of the nibble i.e., bit 2, bit 3 and bit 4. The bit at location one does not need to be attacked as it does
not contribute to the encryption. To achieve this purpose, a random 31-bytes (which are the most
significant 248 bits) fixed key is selected and the value of the last byte is changed in ascending order,
from 21 till 24 − 1. For further simplification, in this paper we have attacked bit locations 2, 3 and 4
only, and bit locations 5 to 8 are set to “0000“. From now on, ’key’ refers to the last nibble of the key as
shown in Figure 3.

For the analysis, machine-learning classification will be used. For classification using machine
learning, the data samples should consist of the properly labeled features. We propose to use a different
set of features as opposed to the raw samples’ amplitude, which leads to a division of our attack into
two main steps:

• Step 1—Training dataset preparation
• Step 2—Classification using machine learning

Figure 3. Key Bits Under Target.

4.1. Step 1—Training Dataset Preparation

Let N be the number of randomly selected ECC points, in the Jacobian coordinate system, from the
elliptic curve E, and M represent the set of ECC points, then each ECC point in M, over curve E, can be
represented as follows:

M = {(Xi, Yi, Zi) where i = 1, 2, ...N} (10)

Let K be the least-significant four bits of the 256-bit key. Out of the 4 LSBs, the three bits at
locations 2nd, 3rd and 4th, are the target of this analysis. The first bit is not considered, as the
double-and-add-always algorithm’s implementation starts encryption using a second bit of the key.
For each bit location, raw traces of length LenTrace are collected and then processed to form samples.
SBitLoc = N ∗ Spt samples are collected for N ECC points from the set M, where Spt represents
the number of samples for each ECC point from the pool of N ECC points. As the number of
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possible combinations for the last nibble is 24 and there is no point in attacking the first bit, so in total
SN = SBitLoc ∗ (2n − 2) samples are collected. For creating a training dataset for machine-learning
classification, data samples need to be labeled. After data sample collection, labeling is an important
task. To ease the process of attacking and labeling, we have divided the attack into three levels
according to the bit location under attack and have categorized the samples into two groups. Each is
further explained below.

4.1.1. Group Labeling

All data samples are divided into two groups ’GB0’ and ’GB1’. GB0 means that the sample
represents a bit ’0’ and GB1 means that the sample represents a bit ’1’. Each attack level will have
different samples marked as GB0 or GB1 according to the bit location.

4.1.2. Attack Levels

Attack levels are designed based on the bit locations under attack, called ’LB{b}’. LB stands for
the ’Location bit’ and ’b’ represents the actual location of the bit. Based on this information, three bit
levels are defined as follows.

• LB2—At this attack level, LSB ’2’ is targeted and each sample for the key having ’0’ at the second
location is marked as ’GB0’ and all samples for the key byte having ’1’ at the second location are
marked as ’GB1’.

• LB3—At this attack level, LSB ’3’ is targeted and each sample for the key having ’0’ at the third
location is marked as ’GB0’ and all samples for the key byte having ’1’ at the third location are
marked as ’GB1’.

• LB4—At this attack level, LSB ’4’ is targeted and each sample for the key having ’0’ at the fourth
location is marked as ’GB0’ and all samples for the key byte having ’1’ at the fourth location are
marked as ’GB1’.

The attack levels along with the labeling of the samples are shown in Figure 4.

0   0   1   0 
0   0   1   1

0   1   0   0
0   1   0   1

0   1   1   0
0   1   1   1

1   0   0   0
1   0   0   1

1   0   1   0
1   0   1   1

1   1   0   0
1   1   0   1

1   1   1   0
1   1   1   1

0   0   1   0 
0   0   1   1

0   1   0   0
0   1   0   1

0   1   1   0
0   1   1   1

1   0   0   0
1   0   0   1

1   0   1   0
1   0   1   1

1   1   0   0
1   1   0   1

1   1   1   0
1   1   1   1

0   0   1   0 
0   0   1   1

0   1   0   0
0   1   0   1

0   1   1   0
0   1   1   1

1   0   0   0
1   0   0   1

1   0   1   0
1   0   1   1

1   1   0   0
1   1   0   1

1   1   1   0
1   1   1   1

GB0

GB1

LB2 LB3 LB4

Figure 4. Sample Labeling.
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4.1.3. Features Dataset Formation

As all the raw samples have been labeled, the next step is to calculate the features. For our
analysis, we have used time-domain and frequency-domain signal properties as features. The reason
for selecting these particular signal properties is based on our previous analysis on AES leaked
data. We selected and analyzed more than six signal properties and concluded that a combination
of time-domain and frequency-domain signal properties leads to better classification [26,29].
An explanation of each signal property (used in this work) is given below:

• Mean of Absolute Value (MAV)—Mean of the signal is calculated.
• Kurtosis (Kur)—For Kurtosis, Frequency-distribution curve peak’s sharpness is noted.
• Median PSD (FMD)—For Median PST, median is calculated in frequency domain.
• Frequency Ratio (FR)—For Frequency ratio, frequency ratio of the frequencies is recorded.
• Median Amplitude Spectrum (MFMD)—For MFMD, the median amplitude spectrum of signals

is calculated.

For all the captured SN samples, the above-mentioned features are calculated, returning one
sample value for each instead of LenTrace, hence reducing the data sample size, which is the advantage
of using the above-proposed features.

The overall training dataset preparation process is shown in Figure 5.

Figure 5. Dataset Preparation.

4.2. Step 2—Classification Using Machine Learning

Traditionally, statistical methods are used to perform the analysis but for this research
machine-learning and neural-network-based classifiers are applied on the feature datasets, formed in
Section 4.1. The classification algorithms selected for analysis are Support Vector Machines (SVM),
Naive Bayes (NB), Random Forest (RF) and Multilayer Perceptron (MLP). An explanation of each is
given in Section 2.2. According to author’s knowledge, there is very little work done in the field of
machine-learning-based power analysis on elliptic curves which includes analysis of ECC leaked data
(from a FPGA) using PCA-SVM. Hence, in our analysis, the comparison is provided with respect to
the machine-learning-based analysis only.

There are two parts of the analysis as given below.

4.2.1. Analysis without Pre-Processing

In the first phase of analysis, classification is performed on the feature datasets without any
pre-processing. This analysis will help in identifying the impact of using signal properties as features.

4.2.2. Analysis with Pre-Processing

In the second phase of analysis, the feature dataset is first processed through a feature selection
and extraction mechanism before training the model and is then subjected to the classification.
The feature selection and extraction techniques used for pre-processing are PCA and Chi-Square
(Chi-Sq). Details are given in Section 2.4. The signals’ noise makes the side-channel attacks harder to
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launch. The evaluators/selectors are used to filter out the features to overcome the problem of noisy
signals, hence reducing the training time and computational complexity. Another benefit of using
these extractors/selectors is to reduce the possibility of a wrong classification. For testing the trained
model, another feature dataset is formed based on the same methodology. This is done to gain more
confidence in the results, as it ensures that the model has never seen the test data before. The process
of classification on the training feature dataset is shown in Figure 6. Moreover, the effect of changing
of various variables/parameters was observed. The time required to build the model has also been
recorded.

Figure 6. Classification process without pre-processing (left) and with pre-processing (right).

5. Experimental Setup

This section explains the hardware and software setup for testing the methodology explained in
the above sections.

5.1. Step 1—Data Capture

To conduct our experiments, we must capture the leakage traces, as a power signals database
for ECC does not exist. For the hardware setup, we captured the power signals for ECC FPGA
(Kintex-7) implementation, operating at 24 MHz. For this research, specialized side-channel analysis
board, named as SAKURA-X, is used [35]. On SAKURA-X, for calculating the power being consumed,
a resistor is connected in series and a voltage is measured across that. The user does not need to tweak
the board, as the connector is available to get the power signal directly. Traces are captured using
a Tektronix oscilloscope having a 5 GS/sec sampling frequency and a 1 GHz bandwidth. We have
acquired N = 100 traces for randomly selected ECC points from set M, and for each point Spt = 10 traces
were captured. Thus, in total SN = 14,000 traces are collected where each trace has 10 k sampling points.

For the software side of the data-collection process, we have developed bespoke codes using C#
and the MATLAB library to form an automated standalone application which requires little or no
intervention from the user. The hardware setup and the application GUI is shown in Figure 7. A few
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modules of the C# application provided by SAKURA are used to achieve the purpose [35]. The new
bespoke C# application consists of three main units: control unit, data unit, and configuration unit as
shown in Figure 8, and an explanation of each is given below.

• Configuration Unit—The configuration unit uses MATLAB library support for C# and configures
the oscilloscope through the C# application. This eliminates setting up the oscilloscope on every
start up; the application automatically restores it to the settings required for the data capturing.
The configuration unit communicates with the oscilloscope only.

• Control Unit—The control unit has the role of sending the ECC points to the FPGA after taking
them from the data unit. When the FPGA receives an ECC point, it starts the process of encryption
and sends a trigger signal to the oscilloscope. As soon as the trigger signal is received at the
oscilloscope, it will start collecting the leaked information from the FPGA and will transmit it to
the control unit. The control unit then stores the information by communicating with the data
unit. The control unit communicates with both the oscilloscope and the FPGA.

• Data Unit—The data unit handles the data. It is responsible for storing and retrieving the data in
files. The data unit communicates with the control unit only.

C# Application- An
 interface between PC 

and Oscilloscope

MATLAB -To 
Connect with 
Oscilloscope

Sakura- X with 
Kintex-7

Figure 7. GUI for raw Sample Collection Application and hardware setup for power analysis
data capture.

Figure 8. Software Setup Design.

5.2. Step 2—Feature Datasets Formation

After collection of the raw traces, samples are labeled according to the description given in
Section 4.1.1, using a bespoke java snippet. After labeling, features (properties) are calculated using
bespoke MATLAB code, and act as features for further classification.
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5.3. Step 3—Analysis

Classification models are then trained, using the proposed feature datasets. Feature datasets
are trained and tested with and without applying the pre-processing filters. For training and testing,
tools like weka and organe3 are used [36]. Parameters settings for each classification algorithm are
discussed in the results.

6. Results and Discussion

Results and discussion are divided into four sections. In each section, results are discussed with
reference to classification algorithms.

6.1. Analysis Phase 1—Accuracy without Pre-Processing

In the first part of phase-1 analysis, the classification accuracy is calculated on the raw-signal
feature data set. It is observed that RF gives an accuracy of 79% for LB4. For NB, SVM and MLP,
the accuracy is even lower i.e., 52%, 55% and 71%. For LB2 and LB3, the accuracy is less than LB4,
as shown in Table 2. These results clearly show that the data cannot be correctly classified due to the
large number of features in the dataset.

Table 2. Accuracy for Raw sample analysis.

Algorithm LB4 LB3 LB2

RF 79.2% 56.9% 58.0%
SVM 55.4% 49.3% 45.7%
MLP 71.9% 58.7% 55.6%
NB 52.5%s 57.0% 55.7%

In the second part of phase-1 analysis, the classification accuracy is calculated on the proposed
processed feature datasets without any pre-processing (i.e., feature selector/extractor) for all three
levels of attack (LB2-LB4), as given in Figure 9. Models are trained and tested using the four classifiers
SVM, RF, NB, and MLP. It can be seen that, without the pre-processing step, SVM does not perform
well for any level of bit classification. However, for the fourth-bit classification, RF gives an accuracy
of approximately 90% while NB and MLP give an accuracy of 85% and 88%, respectively. RF and NB
perform well for the datasets in which the features are completely independent of each other. These
results prove that the features in the signals feature datasets (for fourth-bit location) are independent
of each other.

For bit 2 and bit 3 classification, the maximum accuracy achieved is 71–73% with RF. Both SVM
and MLP perform poorly in these cases. The reason for MLP’s low performance could be the feature
dataset size. For neural-network algorithms, the training data should be huge, roughly a hundred
times more than the number of features in each trace/row. It is worth exploring if MLP or any other
neural network can behave better if the number of samples is increased for better training. This analysis
is out of the scope of this paper and is a future prospect of this particular research.
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Figure 9. Classification Accuracy without any pre-processing.

6.2. Analysis Phase 2—Accuracy with Pre-Processing

In the second phase of the analysis, the classification accuracy is calculated on the feature datasets
after pre-processing them using the feature selectors/extractors. The results of ’LB2’, ’LB3’ and ’LB4’
are given in Figure 10. The results show that if PCA is applied then, for SVM, the accuracy improves
for all three cases. This happens because the obtained traces are noisy, having redundant information.
PCA extracts the important features/components so when SVM is applied on the reduced feature set
then the accuracy is improved. The maximum accuracy attained is 87% for ’LB4’. However, Chi-square
did not show any improvement in any of the LBs. It is worth noting that the accuracy of RF got worst
after pre-processing with PCA, because RF works on the assumption that there is no dependence
between features. PCA reduces the number of features and at the same time removes the col-linear
features from the feature dataset. For MLP, accuracy increases after applying filters in case of LB4 but
strange behavior is observed in case of LB3 and LB2, which requires further analysis.

The authors in [37] have obtained 96% accuracy after applying SVM on 4-bit implementation
of ECC leaked data. Our results of classification algorithms are obtained after applying SVM on
256-bit key (out of which first 31 bytes of the key are fixed random numbers). Our results show that,
with PCA-SVM, accuracy of around 86% can be achieved to recover the least-significant nibble from a
256-bit key.
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Figure 10. Classification Accuracy with pre-processing—LB2, LB3 and LB4.

6.3. Analysis Phase 3—Time to Build Models

It has been seen that the time taken to build the model with raw signals varies from 90–150 s for
classifiers. However, the time taken to build the model on the proposed processed feature dataset is
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less. The reason is obviously that, with raw signals, the number of features per trace is 10 k times more
than for the proposed processed feature datasets. In particular it was observed that the time taken to
build the model for the MLP, with proposed processed feature dataset, is more than the time taken
by SVM, RF and NB. After applying PCA, the time taken to build the model is reduced in all cases
(LB2–LB4) for all algorithms, as can be seen from Figure 11. The reason for the decrease in the time
required to build the model is that the number of features is reduced after applying filters.

Figure 11. Timing Results for model building for LB2, LB3 and LB4.

6.4. Hyper-Parameter Tuning

Based on the analysis so far, the best-performing combination of filters and classifier is selected,
and different parameters are tuned for LB4. The parameters used for analysis, using four classification
algorithms, are discussed below.

The parameters tuned for RF are the number of trees and the number of features per tree.
Experimental results show that with 90 trees within the forest, the highest accuracy of approximately
89.4%, is achieved. The accuracy decreases if the number of trees is increased or decreased beyond
90. Therefore, 90 trees are selected for further analysis, and number of features per tree are changed,
when it is observed that maximum accuracy is obtained when the number of features per tree is 30,
as shown in Figure 12.

In NB, two important parameters are kernel estimator and supervised discretization. It was
observed that turning on kernel estimator gives an accuracy of 86.77%. However, accuracy is increased
if supervised discretization mode is turned on.

For SVM, gamma is changed to see the effect on accuracy. As SVM uses nonlinear kernel functions,
so a lower gamma value means low bias and high variance. It is seen that with higher values of gamma,
the accuracy decreases as can be seen from Figure 13.

For any neural network, the two most important parameters to analyze are the change of learning
rate and the batch size. For this analysis, the number of neurons is fixed, and one hidden layer is used.
Learning rate is the rate of training with which the model is trained, and the batch size is the number
of samples that are given to the model for one training period. It was observed that the batch size
does not have any effect on the accuracy. However, the model is trained best with learning rate of 0.01,
as can be seen from Figure 13.
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Figure 12. Parameter Tuning for RF.

Figure 13. Parameter Tuning for SVM and MLP.

7. Conclusions

After analyzing the results on the power-consumed signals obtained from the Kintex-7, we can
conclude that signal properties of the captured leaked power signals can be used as features, as they
give an accuracy of approx. 90% with RF. This means that we can recover the secret key from the leaked
signals with approx. 90% accuracy. For classification algorithms like RF, NB, and MLP, pre-processing
did not show any improvement at all, because these classifiers already perform well for noisy data
having redundant information. However, for SVM, using PCA as a pre-processing step improved the
accuracy to 86%, as PCA extracted the important relevant features. SVM still shows less accuracy than
the others. Moreover, the time taken for building the model has been analyzed and it is observed that
the time for training the model is more for raw signals and for the neural-network-based MLP model.
The parameters for all four classification algorithms have been tuned and the best recommendations
are put forward in the paper.

8. Future Work

Future work will be based on the findings of this research. We aim to recover the middle and
initial most significant bits of the key. As RF performs the best, the first preference for all future analysis
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would be RF. As the data samples would be different for the key bits according to their locations,
which might introduce non-linearity in the system, thus increasing the possibility of improved attack
accuracy using neural networks. We would like to analyze the data using deep-learning algorithms like
Convolutional Neural Networks and Long-Short-Term-Memory networks, to explore these avenues.
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The following abbreviations are used in this manuscript:

ML Machine Learning
SCA Side-Channel Analysis
PCA Principal-Component Analysis
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RF Random Forest
NB Naive Bayes
MLP Multilayer Perceptron
SVM Support Vector Machines
AES Advanced Encryption Standard
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