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Abstract: The organic Rankine cycle (ORC) has been demonstrated to be an effective method for
converting low-grade heat energy into electricity. This paper proposes an improved analysis method
for the ORC system. A coupling model of the ORC system with a radial-inflow turbine efficiency
prediction model is presented. Multi-objective optimization was conducted for a constant turbine
efficiency ORC system (ORCCTE) and a predicted turbine efficiency ORC system (ORCDTE), and the
optimization results were compared. Additionally, a sensitivity analysis was conducted with respect
to the heat source temperature and the ambient temperature. It can be found that the predicted
turbine efficiency decreases with the increasing evaporation temperature, and increases with the
increasing condensation temperature. The turbine efficiency is not constant and it varies with
operating conditions. The distribution of the Pareto frontier for ORCCTE system and ORCCTE system
is different. Compared with the ORCCTE system, the ORCDTE system has a lower optimal evaporation
temperature, but a higher optimal condensation temperature. The deviation between the predicted
turbine efficiency and the constant turbine efficiency increases with the increasing heat source
temperature but decreases with the increasing ambient temperature. Thus, the difference in the
theoretical analysis results between ORCCTE system and ORCDTE system increases with the increasing
heat source temperature but decreases with the increasing ambient temperature.

Keywords: organic Rankine cycle; predicted turbine efficiency; turbine efficiency prediction model;
multi-objective optimization; sensitivity analysis

1. Introduction

Currently, energy shortage and environmental pollution are becoming increasingly prominent.
There is a large amount of low-grade heat energy, which accounts for more than 50% of the total
energy produced worldwide [1–4]. Considerable studies have been conducted regarding the recovery
of low-grade heat energy. Organic Rankine Cycle (ORC) has exhibited high potential in terms of the
utilization of low-grade heat energy conversion to electricity [5,6].

In the past few years, many studies have been conducted in the ORC research fields, mainly
focusing on working fluid selection, system design optimization, and expander technologies [7–9].
Uusitalo et al. [10] investigated the impacts of working fluid type and critical properties on ORC system
design and concluded that fluorocarbons and low critical temperature hydrocarbons are more suitable
for low-temperature ORC applications, while siloxanes and high critical temperature hydrocarbons are
more suitable for high–temperature ORC applications. Özahi et al. [11] conducted a thermodynamic and
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thermoeconomic study of an ORC system. Multi-objective optimization of the cycle was carried out with
four working fluids, and they found that toluene is the best working fluid, producing 9.76% additional
power for the solid waste power plant. Yang et al. [12] established a multi-objective optimization
model of an ORC system for maximizing net power output and minimizing total investment cost, and
the model was solved using a genetic algorithm with six working fluids. R245fa, whose optimized
evaporation pressure is in the range of 1.1 Mpa–2.1 Mpa and optimized condensation temperature
almost keeps a constant value of 298.15 K, is considered as the optimal working fluid. Yi et al. [13]
proposed a thermo-economic-environmental optimization model integrating environmental impact
and thermo-economic performance. A case study with R134a as the working fluid was conducted,
and the results showed that a trade-off between the environmental objective and the thermo-economic
objective can be achieved via multi-objective optimization. Behzadi et al. [14] conducted energy, exergy,
and exergoeconomic analyses of an ORC unit that was coupled with a waste-to-heat plant, and found
that R123 achieved the best performance for the integrated system. Gimelli et al. [15] established a
multi-objective optimization model of an ORC system with electric efficiency and the overall area of the
heat exchangers as objective functions; in the Pareto optimal front, electric efficiency is in the range of
14.1–18.9% and the overall area of the heat exchangers rangers from 446 m2 to 1079 m2.

Radial-inflow turbine is one of the key components of the ORC system, and its efficiency affects
the system performance directly [16–18]. In most of the ORC theoretical analysis studies, radial-inflow
turbine efficiency is assumed to be a constant value for different working fluids and operating
conditions, which may lead to errors in theoretical results including working fluid selection and
system parameter optimization. Rahbar et al. [19] proposed an optimized method for the ORC system
based on the radial-inflow turbine, and constant expander efficiency was replaced with predicted
expander efficiency. They found that there is a considerable difference in turbine efficiency for different
operating conditions. Bahadormanesh et al. [20] combined the ORC thermodynamic model with
a radial-inflow turbine design procedure. The firefly algorithm was used to optimize the thermal
efficiency and the size parameter. Dong et al. [21] proposed an optimized coupling model of an ORC
system with a radial-inflow turbine and investigated the impact of heat source outlet temperature on
turbine efficiency and system performance.

There are very limited investigations that focus on the influence of turbine efficiency selection
on the thermodynamic and economic performance of the ORC system simultaneously. Therefore,
a radial-inflow turbine efficiency prediction model, which was coupled with an ORC thermodynamic
model, was presented. In this study, benzene was selected as the working fluid, and multi-objective
optimization algorithm was used to investigate the influence of turbine efficiency selection on the
thermodynamic and economic performance of the ORC system. The ORCCTE system and ORCDTE

system are compared in terms of the optimization results. In addition, a sensitivity analysis was
conducted considering the fact that the heat source temperature and the ambient temperature are
variable in practical application.

2. Materials and Methods

In this section, the thermodynamic and economic model of the ORC system are established,
and the radial-inflow turbine efficiency prediction model is also presented. Then the objective functions
and decision variables are selected to develop a multi-objective optimization model for the ORC system.

2.1. Thermodynamic Model

To compare the performance of ORCCTE system and ORCDTE system conveniently, a basic ORC
system is studied in this paper. Figure 1 shows the diagram of a basic ORC system, which consists
of four main components: Evaporator, turbine, condenser, and pump. The corresponding
temperature-entropy (T-s) diagram of the basic ORC system, which is usually used to illustrate
the thermal process, is shown in Figure 2.

The thermal process of the basic ORC system (Figure 2) is described as follows.



Appl. Sci. 2019, 9, 49 3 of 17

Process 5–0: The heat transferred from the waste flue gas to the organic working fluid in the
evaporator is expressed by:

Qeva = mf(h0 − h5). (1)

Process 0–2: The power generation of the turbine is given by:

Wtur = m f (h0 − h2s)ηtur = mf(h0 − h2). (2)

Process 2–4: The heat rejected by the working fluid in the condenser can be calculated by:

Qcon = mf(h2 − h4). (3)

Process 4–5: The power consumption of the pump is given by:

Wpump = mf(h5s − h4)/ηpump = mf(h5 − h4). (4)

The net power output produced by the ORC system is defined by:

Wnet = Wtur −Wpump. (5)

The thermal efficiency of the ORC system is determined by:

ηthe = Wnet/Qeva. (6)
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2.2. Economic Model

The total capital cost of the ORC system is mainly determined from the cost of the four components
(evaporator, turbine, condenser, and pump). The bare module equipment cost (US dollars in the year
1996) of each component can be calculated by:

CBM = CbFbm = Cb(B1 + B2FmFp). (7)

lgCb = K1 + K2lgZ + K3(lgZ)2. (8)

lgFp = C1 + C2lgP + C3(lgP)2. (9)

where Cb is the basic cost of each equipment. Z is the related parameters of each ORC component; for
evaporator and condenser, it refers to heat transfer area; for the pump, it means the power consumption;
for the turbine, it refers the power generation. Fbm, B1, B2, K1, K2, K3, C1, C2, C3 are the constants
for different ORC components [22]. Fm and Fp represent the material factors and pressure factor for
different components.

The total capital cost of the ORC system is the sum of the cost of each component, which can be
expressed as:

C1996 = CBM,eva + CBM,con + CBM,pump + CBM,tur. (10)

Considering the value of money at different periods, the total capital cost of the ORC system is
adjusted by using a chemical engineering plant cost index (CEPCI):

C2014 = C1996 × CEPCI2014/CEPCI1996. (11)

where CEPCI1996 and CEPCI2014 are the chemical engineering plant cost index in 1996 and
2014 respectively.

The specific invest cost (SIC) is the system total cost of per unit net power output:

SIC =
C2014

Wnet
. (12)

2.3. Radial-Inflow Turbine Efficiency Prediction Model

Basically, for the ORC system within the power range of 50–5000 kW, an axial turbine and a
radial-inflow turbine are proposed as two options [23]. The radial-inflow turbine presents an excellent
aerodynamic performance, as it can deal with large enthalpy drops with relatively low peripheral
speeds, has higher single-stage expansion ratio, and good off-design performance [19–21]. In this
paper, the heat source inlet temperature is at a relatively high level (523.15 K), the radial-inflow
turbine was selected as the expander to deal with the high expansion ratio. A radial-inflow turbine
efficiency prediction model is employed to calculate a more accurate turbine efficiency. Figure 3
shows the working fluid flow process in the radial-inflow turbine. State 0 represents the initial state
of the working fluid at the radial-inflow turbine inlet (nozzle inlet), state 1 represents the state of the
working fluid at the nozzle outlet or the rotor inlet, and state 2 represents the state at the rotor outlet.
In the nozzle, the organic vapor from the evaporator expands and accelerates (from state 0 to state 1),
with enthalpy dropping. Subsequently, the working fluid continues to expand and the kinetic energy
and dropping enthalpy are converted into the mechanical energy of the rotor (form state 1 to state 2).
Figure 4 shows the velocity triangle of the radial-inflow turbine, which is used to express the velocity
distribution at the rotor inlet and outlet.
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The peripheral efficiency of the radial-inflow turbine can be expressed as [23]:

ηu = 2u1[ϕ cos α1
√

1−Ω−D2
2u1 + D2ψ cos β2

√
Ω + ϕ2(1−Ω) + D2

2u2
1 − 2u1 ϕ cos α1

√
1−Ω]. (13)

According to reference [24], the velocity ratio u1 and the degree of reaction Ω have a greater impact
on the peripheral efficiency, and the Lagrange multiplier method is used to optimize both parameters:

u1,opt =
ψ√

µ2( cos2 β2
m2 − ψ2) + (1−m2ψ4)φ2 cos2 α1

m2ψ2(1−φ2)

. (14)

Ωopt = 1− [
(1−mψ2)φ cos α1u1

mψ2(1− φ2)
]
2

. (15)

where m is an intermediate variable and can be expressed as:

m =
1

ψ2 [1±

√
µ2(1− φ2)(1− cos2 β2ψ2)

cos2 α1φ2 + µ2(1− φ2)
]. (16)

The efficiency of the radial-inflow turbine is defined as the ratio of the actual enthalpy drop ∆h to
the isentropic enthalpy drop ∆hs [24]:

ηtur =
∆h
∆hs

=
h0 − h2

h0 − h2s′
. (17)

Five kinds of turbine loss are considered in the radial-inflow turbine efficiency prediction model,
including nozzle passage loss, rotor passage loss, leaving velocity loss, friction loss, and leakage loss.
The estimation of these losses is listed as follows:
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Nozzle passage loss coefficient:

ξn = (1− φ2)(1−Ω). (18)

Rotor passage loss coefficient:

ξr =
w2

2
2∆hs

(
1

ψ2 − 1). (19)

Leaving velocity loss coefficient:

ξe =
c2

2
2∆hs

. (20)

Friction loss coefficient:

ξf = f ·
D2

1
ν1
· ( u1

100
)

3
· 1

1.36
· 1

mf · ∆hs
. (21)

Leakage loss coefficient:

ξl = 0.47
δ

l2
(1 +

D2

l2
)

δ

l2
= 0.01− 0.20. (22)

Thus, radial-inflow turbine efficiency can be expressed as:

ηtur = 1− ξn − ξr − ξe − ξf − ξl. (23)

The turbine efficiency prediction model is validated by comparison of the calculated value of
turbine efficiency with the experimental data in Reference [25], as shown in Figure 5. It can be
found that the calculated value of turbine efficiency is in good agreement with the experimental data
in Reference.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 17 

2
n (1 )(1 )ξ φ= − − Ω . (18)

Rotor passage loss coefficient: 

2
2

r 2
s

1( 1)
2
w
h

ξ
ψ

= −
Δ

. (19)

Leaving velocity loss coefficient: 

2
2

e
s2

c
h

ξ =
Δ

. (20)

Friction loss coefficient: 

2
31 1

f
1 f s

1 1( )
100 1.36

D uf
m h

ξ
ν

= ⋅ ⋅ ⋅ ⋅
⋅Δ

. (21)

Leakage loss coefficient: 

2
l

2 2 2

0.47 (1 )    0.01 - 0.20Dξ = + =δ δ
l l l

. (22)

Thus, radial-inflow turbine efficiency can be expressed as: 

tur n r e f l1η ξ ξ ξ ξ ξ= − − − − − . (23)

The turbine efficiency prediction model is validated by comparison of the calculated value of 
turbine efficiency with the experimental data in Reference [25], as shown in Figure 5. It can be 
found that the calculated value of turbine efficiency is in good agreement with the experimental 
data in Reference.  

0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82
0.82

0.83

0.84

0.85

0.86

0.87

0.88
 Experimental data (Reference [25])

Tu
rb

in
e 

ef
fic

ie
nc

y

Velocity ratio

 Calcualted  turbine efficiency

 
Figure 5. Validation of the turbine efficiency prediction model. 

2.4. Multi-Objective Optimization Model 

In this paper, multi-objective grey wolf optimizer (MOGWO) algorithm is employed for 
optimizing the ORC system. Some standard unconstrained, constrained, and engineering design 
problems have been used to validate MOGWO [26]. The results are compared with other 
multi-objective algorithms including Multi-objective Particle Swarm Optimization (MOPSO), 
Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D), non-dominated 
sorting genetic algorithm II (NSGA-II), and Strength Pareto Evolutionary Algorithm 2 (SPEA2) to 
evaluate the efficiency and effectiveness of MOGWO [26–30]. The comparison results show that the 
MOGWO can provide very competitive optimization results. And in terms of convergence, spread 
and coverage MOGWO presents excellent performance. MOGWO is developed on the basis of grey 
wolf optimizer (GWO). Two components including an archive which is used to store the 

Figure 5. Validation of the turbine efficiency prediction model.

2.4. Multi-Objective Optimization Model

In this paper, multi-objective grey wolf optimizer (MOGWO) algorithm is employed for
optimizing the ORC system. Some standard unconstrained, constrained, and engineering
design problems have been used to validate MOGWO [26]. The results are compared with
other multi-objective algorithms including Multi-objective Particle Swarm Optimization (MOPSO),
Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D), non-dominated sorting
genetic algorithm II (NSGA-II), and Strength Pareto Evolutionary Algorithm 2 (SPEA2) to evaluate the
efficiency and effectiveness of MOGWO [26–30]. The comparison results show that the MOGWO can
provide very competitive optimization results. And in terms of convergence, spread and coverage
MOGWO presents excellent performance. MOGWO is developed on the basis of grey wolf optimizer
(GWO). Two components including an archive which is used to store the non-dominated Pareto
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optimization solutions and a leader selection mechanism that is used to select α, β, and δ wolves
from the archive are integrated with GWO to perform multi-objective optimization, which is called
MOGWO. The grey wolf optimizer (GWO) is inspired by the grey wolves, including their social
leadership and hunting mechanism. The flowchart of MOGWO is shown in Figure 6. First, initialize
the grey wolves population including the number and position of the grey wolves, maximum iteration
and the archive size. Calculate the fitness of each grey wolf according to their position, sort the
non-dominated solutions and initialize the Prato archive through saving the non-dominated solutions
to it. Select the fittest, second and third fittest solutions (the wolves that gain the best, second and
third best positions) as α, β, and δ wolves by leader selection mechanism. Update the positions of the
current wolves according to the positions of α, β, and δ wolves and the distance between the current
wolves and α, β, and δ wolves to generate new wolves (solutions). Calculate the fitness of the updated
grey wolves and find new non-dominated solutions. Save new non-dominated solutions in the Prato
archive and remove the dominated solutions simultaneously. If the Prato archive is full, remove
some of the archive members based on crowding distance to meet the archive size. Then conduct
non-dominated sorting for the Prato archive members and update the leaders (α, β, and δ wolves). If
the termination condition (maximum iteration number) is satisfied, report the optimal Pareto solutions
and the MOGWO ends.
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To compare the ORCCTE system and ORCDTE system, the thermal efficiency and specific
investment cost are selected as the thermodynamic and economic objectives respectively.
Two parameters including evaporation temperature and condensation temperature are selected
as independent variables for optimization of the ORC system. The mathematical model of the
multi-objective optimization for the ORC system can be described as follows:
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{
max(ηthe) = f1(T0, T4)

min(SIC) = f2(T0, T4)
. (24)

The logical bounds of the decision variables can be described as follows:

T0 < Tg1

T0 < Tcritical
∆Tp,eva > 5
∆Tp,con > 5

303.15 < T4 < 323.15

. (25)

3. Results and Discussion

In this paper, a small ORC system is developed (150 kW is considered the reference size).
The low-grade flue gas is selected as the heat source, and the heat source inlet temperature and outlet
temperature are 523.15 K and 363.15 K, respectively. The ambient temperature and ambient pressures
are 293.15 K and 1.01 MPa, respectively. The cooling water at the ambient temperature is taken as a heat
sink, thus the inlet temperature of cooling water is assumed to be 293.15 K. The objective of this paper
is to compare the difference between the ORCCTE system and the ORCDTE system. Therefore, only one
working fluid (benzene) is selected in this paper. Benzene is a dry working fluid that is suitable for
medium-high temperature heat source. Its critical temperature and critical pressures are 562.05 K
and 4.894 Mpa, respectively. The constant turbine efficiency employed in this paper is assumed to be
0.7 [31], and the pump isentropic efficiency is assumed to be 0.7.

3.1. Comparison of the ORCCTE System and ORCDTE System

The radial-inflow turbine efficiency is obtained based on the prediction model in Section 2.3.
Figure 7 shows the variation of the turbine efficiency with evaporation and condensation temperature.
It is evident that turbine efficiency decreases with the increasing evaporation temperature, and increases
with the increasing condensation temperature. It can be concluded that turbine efficiency increases
with the decreasing pressure ratio. The maximum turbine efficiency is 0.746, and the minimum is
0.543, the relative difference reaches 27.21%. The maximum difference between the constant turbine
efficiency and the predicted turbine efficiency reaches 0.157, and the relative error is 22.43%. From the
above data, it can be found that turbine efficiency is not constant, and will vary with operating
parameters. Therefore, it is necessary to couple the ORC system with the radial-inflow turbine
efficiency prediction model.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 17 
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Multi-objective optimization is conducted for the ORCCTE system and the ORCDTE system with
respect to thermodynamic and economic performance. The multi-objective optimization Pareto frontier
of both ORC systems is shown in Figure 8. It is apparent that there is a significant difference in the
distribution of the Pareto frontier between the ORCCTE system and the ORCDTE system. Compared
with the ORCCTE system, the thermal efficiency of the ORCDTE system lies at a lower level, and the
specific investment cost of the ORCDTE system is distributed over a wider range. Figure 8 also shows
the turbine efficiency value corresponding to the Pareto frontier of the ORCDTE. The turbine efficiency
value is less than the constant turbine efficiency (0.7), and the lower turbine efficiency value leads
to lower net power output. Thus, the thermal efficiency of the ORCDTE system is less than that of
the ORCCTE system, and the specific investment cost of the ORCDTE system is higher than that of
the ORCCTE system. It can also be found that the deviation of the distribution of the Pareto frontier
between the ORCCTE system and the ORCDTE system increases with the decreasing turbine efficiency.
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It should be noted that each point on the Pareto frontier is a potential solution for the
multi-objective optimization. There is not an optimal point to maximize the thermal efficiency
and minimize the specific investment cost simultaneously. Therefore, it is necessary to conduct
a decision-making process based on engineering experience. The aid of ideal point method is used
to conduct the process of decision-making in this paper [32]. Taking the Pareto frontier of ORCCTE

system as an example, the decision-making process using the aid of ideal point method is presented
in Figure 8. The ideal point has the highest thermal efficiency and the lowest specific investment
cost simultaneously but this point does not actually exist. The point on the Pareto frontier that
has the shortest distance from the ideal point is selected as the final optimal solution. The final
optimal solutions for the ORCCTE system and the ORCDTE system are listed in Table 1. Compared
with the ORCCTE system, the ORCDTE system has a lower optimal evaporation temperature but a
higher evaporation temperature. Due to the low turbine efficiency, the ORCDTE system has lower
thermal efficiency and a higher specific investment cost. Therefore, the assumption of constant turbine
efficiency in the ORC system would lead to errors in the determination of the optimal operating
evaporation temperature and condensation temperature. Therefore, adopting predicted turbine
efficiency in the ORC system optimization is necessary, and can enhance the reliability and accuracy of
the analysis results.

Table 1. Final optimal solution for the ORC system with different types of turbine efficiency.

Parameters Constant Turbine Efficiency Predicted Turbine Efficiency

Evaporation temperature/K 411.33 406.06
Condensation temperature/K 306.04 307.62

Thermal efficiency 0.150 0.139
Specific investment cost/$·kW−1 4415.14 4426.27
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Figures 9 and 10 present the distribution of the optimal evaporation temperature and condensation
temperature for the ORCCTE system and the ORCDTE system. As mentioned, the ORCCTE system
has lower thermal efficiency and a higher specific investment cost than ORCDTE system, as shown
in Figures 9 and 10. The optimal evaporation temperature for the ORCDTE system is distributed
over a wider range than the ORCCTE system, as shown in Figure 9. For ORCDTE system the optimal
evaporation temperature is distributed in the range of 393–412 K; while for ORCCTE system the
optimal evaporation temperature is distributed in the range of 397–412 K. As shown in Figure 10,
the condensation temperature for the ORCDTE system is distributed in a slightly wider range than the
ORCCTE system. For ORCCTE system, most of the condensation temperature is distributed in the range
of 303.15–307.5 K; while for ORCDTE system, the condensation temperature is distributed in the range
of 303.15–308.5 K. It can be found that the impact of turbine efficiency selection on the evaporation
temperature is greater than that on the condensation temperature.
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3.2. Sensitivity Analysis and Comparison of the ORCCTE System and the ORCDTE System

The heat source temperature and ambient temperature are not constant in practical engineering
application. Therefore, in this section, sensitivity analysis with regard to heat source temperature and
the ambient temperature is conducted for both ORC systems. Multi-objective optimization is carried
out at each operating condition, and the final optimal solution at each operating condition is selected
using the aid of ideal point method.

Figure 11 shows the variation of the optimal evaporation temperature with the increasing heat
source temperature. With the increasing heat source temperature, the optimal evaporation temperature
increases. Additionally, the optimal evaporation temperature for ORCCTE system increases faster.
The optimal evaporation temperature for the ORCCTE system is higher than that for the ORCDTE system,
and the difference between the two ORC systems becomes larger with the increasing evaporation
temperature, the maximum difference is 10.44 K. Figure 12 shows the variation of the optimal
condensation temperature with the increasing heat source temperature. With the increasing heat source
temperature, the optimal condensation temperature increases slightly. The optimal condensation
temperature for the ORCDTE system is higher than that for the ORCCTE system. It also can be found
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that the optimal condensation temperature for the ORCCTE system varies in the range of 305.5–306.5 K,
while for ORCDTE system, the optimal condensation temperature varies in the range of 306.5–308.5 K,
which is slightly wider. Compared with the optimal condensation temperature, it can be found that
the variation range of the optimal evaporation temperature is much wider, which indicates that the
influence of heat source temperature on optimal evaporation temperature is greater than that on
optimal condensation temperature.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 17 
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Figure 11. Optimal evaporation temperature at different heat source temperature.

Figure 13 shows the variation of turbine efficiency with the increasing heat source temperature.
Turbine efficiency decreases with the increasing heat source temperature. The reason is that with
the increasing heat source temperature, the optimal evaporation temperature increases faster than
the optimal condensation temperature, which leads to the increases in pressure ratio. Thus, turbine
efficiency decreases. The variation of the net power output at different heat source temperature is
presented in Figure 14. For both ORCCTE system and ORCDTE system, the net power output increases
with the increasing heat source temperature. However, the increasing rate of the net power output
of ORCCTE system is higher than that of ORCDTE system. The reason is that for ORCDTE system,
decreasing turbine efficiency decreases the increasing rate of net power output. Additionally, the net
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power output of ORCCTE system is always higher than that of ORCDTE system, and the difference of
net power output between the two ORC system becomes larger the increasing heat source temperature,
the maximum relative deviation is 11.54%.
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Figure 14. Net power output at different heat source temperature.

Figures 15 and 16 show the optimal evaporation temperature and the optimal condensation
temperature at different ambient temperatures, respectively.

Figure 15 shows the variation of the optimal evaporation temperature with the increasing
ambient temperature. The optimal evaporation temperature for the ORCDTE system increases with the
increasing ambient temperature, while the optimal evaporation temperature for the ORCCTE system
stays at approximately 411 K, which indicates that the ambient temperature has almost no effect
on the optimal evaporation temperature for ORCCTE system. Additionally, the optimal evaporation
temperature for ORCCTE system is higher than that for ORCDTE system, and the difference decreases
gradually with the increasing ambient temperature. Figure 16 shows the variation of the optimal
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condensation temperature with the increasing ambient temperature. The optimal condensation
temperature linearly increases with the increment of ambient temperature. In addition, the optimal
condensation temperature for the ORCDTE system is always higher than that for the ORCCTE system,
and the difference value stays at approximately 2 K. From Figures 15 and 16, it can also be found that
the influence of ambient temperature on the optimal condensation temperature is greater than that on
the optimal evaporation temperature.
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Figure 15. Optimal evaporation temperature at different ambient temperature.
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Figure 15. Optimal evaporation temperature at different ambient temperature. 
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Figure 16. Optimal condensation temperature at different ambient temperature.

Figure 17 shows the variation of turbine efficiency with the increasing ambient temperature. With
the increasing ambient temperature, turbine efficiency almost increases monotonically. From Figures 15
and 16, it can be found that the increasing rate of optimal condensation temperature is greater than
that of optimal condensation temperature. Thus the pressure ratio decreases and the turbine efficiency
increases accordingly. Figure 18 shows the net power output at different ambient temperatures. The net
power output of both ORC systems decreases with the increment of ambient temperature. Moreover,
the decreasing rate of the net power output for ORCCTE is higher than that of the ORCDTE system.
The net power output of the ORCDTE system only decreased by 2.68 kW over the investigated ambient
temperature. The reason is that the amount of the decrement of net power output reduces due to the
increasing turbine efficiency. It can also be found that the net power output of the ORCCTE is higher
than that of the ORCDTE system, and the difference shrinks with the increasing ambient temperature.

In conclusion, with the increasing heat source temperature, the deviation between the predicted
turbine efficiency and the constant turbine efficiency increases. Thus, the error in the theoretical
analysis results (including optimal operating parameter determination and performance indicator
calculation) caused by assuming the constant turbine efficiency, becomes larger. However, with the
increasing ambient temperature, the deviation between the predicted turbine efficiency and the
constant turbine efficiency gradually decreases. As a result, the error in the theoretical analysis results
caused by assuming the constant turbine efficiency decreases.
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4. Conclusions

In this paper, an improved analysis method for the ORC system is proposed. To study the influence
of turbine efficiency selection on the ORC system, a radial-inflow turbine efficiency prediction model is
coupled with the ORC system. Multi-objective optimization was conducted for the ORCCTE system and
the ORCDTE system, and the optimization results were compared. In addition, a sensitivity analysis
was conducted with respect to heat source temperature and ambient temperature. The following
conclusions can be obtained:

(1) Turbine efficiency is not constant, it decreases with the increasing evaporation temperature,
and increases with the increasing condensation temperature. For radial-inflow turbine with
organic working fluid benzene, the largest difference between the predicted turbine efficiency
and the constant turbine efficiency is 0.157 for the given operating conditions.

(2) The distribution of the Pareto frontier for the ORCCTE system and the ORCDTE system are different.
Compared with the ORCCTE system, the ORCDTE system has a lower optimal evaporation
temperature but a slightly higher optimal condensation temperature.

(3) As the heat source temperature increases, the deviation between the predicted turbine efficiency
and constant turbine efficiency increases, and the error in the theoretical analysis results caused by
assuming a constant turbine efficiency in ORC system increases. Meanwhile, with the increasing
ambient temperature, the deviation between the predicted turbine efficiency and the constant
turbine efficiency decreases, and the error in the theoretical analysis results caused by assuming a
constant turbine efficiency decrease.
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Nomenclature

c absolute velocity, m s−1

C capital cost, $
D diameter, m
D2 ratio of wheel diameter
f coefficient for friction loss
h specific enthalpy, kJ kg−1

l blade height, m
m mass flow rate, kg s−1

P pressure, MPa
Q heat transfer rate, kW
T Temperature, K
U peripheral velocity, m s−1

v specific volume, m3 kg−1

w relative velocity, m s−1

W power, kW

Greek Letters

η efficiency
u1 velocity ratio
ξ loss coefficient
ϕ stator blade velocity coefficient
ψ rotor blade velocity coefficient
α absolute flow angle
β relative flow angle
Ω degree of reaction
∆h entropy drop, kJ kg−1

∆Tp pinch point temperature difference, K
δ tip clearance, m

Subscripts

0, 1, 2, 2s, 4, 5s, 5 state points
BM bare module
con condenser
critical critical
eva evaporator
f working fluid
g1 flue gas inlet
max maximum
min minimum
net net
opt optimal
pump pump
s isentropic
tur turbine
the thermal
u peripheral
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