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Abstract: This study demonstrates a rapid non-contact ultrasonic inspection technique by
visualization of Lamb wave propagation for detecting impact damage in carbon fiber reinforced
polymer (CFRP) laminates. We have developed an optimized laser ultrasonic imaging system,
which consists of a rapid pulsed laser scanning unit for ultrasonic generation and a laser Doppler
vibrometer (LDV) unit for ultrasonic reception. CFRP laminates were subjected to low-velocity
impact to introduce barely visible impact damage. In order to improve the signal-to-noise ratio of the
detected ultrasonic signal, retroreflective tape and a signal averaging process were used. We thus
successfully visualized the propagation of the pulsed Lamb A0 mode in the CFRP laminates without
contact. Interactions between the Lamb waves and impact damage were clearly observed and the
damage was easily detected through the change in wave propagation. Furthermore, we demonstrated
that the damage could be rapidly detected without signal averaging. This method has significant
advantages in detecting damage compared to the conventional method using a contact resonant
ultrasonic transducer due to the absence of the ringing phenomenon when using the LDV.

Keywords: non-destructive inspection; laser ultrasonic imaging; Lamb wave; delamination;
composite laminate

1. Introduction

Carbon fiber reinforced polymer (CFRP) laminates are increasingly being applied to structural
components in aircrafts and automobiles to improve fuel efficiencies, due to its lightweight, superior
strength and stiffness. Composite structures in these safety-critical applications must be inspected to
ensure safety and reliability and to prevent catastrophic failure. Among the various types of damage,
internal damage from low-velocity impact is the most common type found in composite structures.
This damage is easily induced from things as simple as tools being dropped during maintenance.
Damage presents in the form of matrix cracks, delamination, and fiber breakage. Moreover, this damage
is barely visible to the naked eye on the structure’s surface, which is explained by the term, “barely
visible impact damage (BVID)”. Delamination in particular, must be detected during inspection
processes, as it causes a significant loss of compressive strength. Current inspection practices employ
non-destructive testing (NDT) techniques such as X-ray or ultrasonic C-scan to identify delamination.
However, these techniques are very time-consuming and expensive for inspecting large structures.
Therefore, a new, non-contact NDT technique to detect damage quickly, reliably, and automatically
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is required by industry. Should any damage be found, the conventional method can be applied to
evaluate the damage in detail.

Ultrasonic waves propagate as Lamb waves in thin plate-like structures such as aircraft skins
and automobiles bodies. They have significant potential for large-area, non-destructive inspection
because they have a long propagation distance and allow the whole volume of the material between
the transmitting and receiving transducers to be inspected. Therefore, Lamb wave inspection has
been extensively applied for the detection of delamination in CFRP laminates in the literatures [1–8].
Recently, phased array ultrasonic techniques have also been developed for large-area inspection [9,10].
However, interpretation of the detected Lamb waves is challenging due to their dispersive nature,
as well as the presence of multiple modes and scattered waves from the edge of the components.

On the other hand, by visualizing the ultrasonic waves propagating in an actual structure,
the appearance of the additional scattered waves can be used to directly observe damage—without
having to interpret the complicated measured waveforms. Ultrasonic wave propagation visualization
is thus very effective for reliable damage inspection. We have previously developed a technique for
the visualization of ultrasonic wave propagation in general solid media [11], which uses a pulsed laser
that scans an object for ultrasonic wave generation and a fixed contact receiver to provide a movie
(or series of snapshots) of the propagating waves. Although this is not a “fully” non-contact technique,
it operates excellently, enables quick inspection of objects of arbitrary shapes. We have applied it to the
non-destructive inspection of various structural components and demonstrated its usefulness [12–14].

In recent times, the development of ultrasonic wavefield imaging techniques for detecting
delamination in composite laminates has attracted notable attention. Measurement systems utilizing a
combination of fixed and/or scanning sources and receivers have been proposed to obtain the Lamb wave
propagation images [15–22]. However, limited research has been undertaken on complete non-contact
ultrasonic wavefield imaging techniques. Park et al. [20] adopted a Nd: YAG pulse laser for ultrasonic
wave generation and a laser Doppler vibrometer (LDV) for reception to obtain the wavefield of the Lamb
wave in composite structures, and detected delamination and disbonding. However, further studies are
still needed to improve, especially in relation to inspection time, inspection area and image quality.

In this study, we demonstrate a rapid non-contact ultrasonic inspection technique by visualization
of Lamb wave propagation for detecting BVID in CFRP laminates. This optimized laser ultrasonic
wavefield imaging system utilizes rapid pulsed laser scanning and LDV units to clearly visualize damage
in impacted CFRP laminates. Measurement techniques are developed to improve the signal-to-noise
ratio of the detected ultrasonic signals. Furthermore, we compare the proposed method to a conventional
contact piezoelectric transducer method. Through this study, we demonstrate the efficiency and feasibility
of the proposed technique for the non-contact inspection of composite structures.

2. Experimental Procedure

2.1. Specimens

The materials used were CFRP (TR380-G250SM, Mitsubishi Chemical, Tokyo, Japan) cross-ply
and quasi-isotropic laminates with stacking sequences of [0/90]2S and [0/45/90/−45]S. The specimens
had dimensions of 160 × 160 × 1 mm and were subjected to low-velocity impact with an energy of 6 J
using a vertical drop-weight impact system (CREAST 9310, Instron, Norwood, MA, USA) to induce
the BVID. A hemispherical impactor with a diameter of 20 mm was used. The impacted specimens
were inspected using a water-immersion ultrasonic C-scan system (TT-UTCS01, Tsukuba Technology,
Tsukuba, Japan). Square regions of 40 × 40 mm, which included the impacted positions, were scanned
with an interval of 0.3 mm using a focused ultrasonic transducer with a resonant frequency of 10 MHz,
diameter of 5 mm, and focal distance of 25 mm. Figure 1 shows the C-scan images for both specimens.
Internal impact damages consisting of delamination of multiple interlayers were clearly detected,
with dimensions of about 14 mm in the major axis and 9 mm in the minor axis. These BVIDs are the
inspection targets of this study.
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ultrasonic wave propagation. This system consists of a rapid pulsed laser scanning unit for ultrasonic 
generation and a LDV unit for ultrasonic reception. Pulsed thermoelastic ultrasonic waves are 
generated by illuminating the specimen surface with a Q-switched Nd: YAG laser (Wedge-HB-1064-
DB, Bright Solutions, Pavia, Italy) with a wavelength of 1064 nm, pulse width of 1.5 ns, maximum 
pulse energy of 2 mJ, and maximum repetition frequency of 2 kHz. The diameter of the laser beam is 
reduced by using a varifocal lens (APL-1050, Holochip, Hawthorne, CA, USA). The laser beam is 
scanned on the specimen surface using a computer-controlled galvanometer mirror (VM500+, 
Novanta, Bedford, MA, USA). A green laser beam with a wavelength of 532 nm is also illuminated 
for convenience, since the pulsed laser beam is invisible. The LDV system is used to receive the 
ultrasonic wave signals. It consists of a modular vibrometer (OFV-5000, Polytec, Waldbronn, 
Germany) and a sensor head (OFV-505-KA, Polytec, Waldbronn, Germany). A He-Ne continuous 
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Figure 1. C-scan images depicting impact-induced delamination for carbon fiber reinforced polymer
(CFRP) laminates subjected to impact loading with an energy of 6 J. (a) [0/90]2S, (b) [0/45/90/−45]S.

2.2. Non-Contact Laser Imaging System for Ultrasonic Wave Propagation

Figure 2 displays a photograph of the non-contact laser imaging system for visualizing ultrasonic
wave propagation. This system consists of a rapid pulsed laser scanning unit for ultrasonic generation
and a LDV unit for ultrasonic reception. Pulsed thermoelastic ultrasonic waves are generated by
illuminating the specimen surface with a Q-switched Nd: YAG laser (Wedge-HB-1064-DB, Bright
Solutions, Pavia, Italy) with a wavelength of 1064 nm, pulse width of 1.5 ns, maximum pulse energy of
2 mJ, and maximum repetition frequency of 2 kHz. The diameter of the laser beam is reduced by using a
varifocal lens (APL-1050, Holochip, Hawthorne, CA, USA). The laser beam is scanned on the specimen
surface using a computer-controlled galvanometer mirror (VM500+, Novanta, Bedford, MA, USA).
A green laser beam with a wavelength of 532 nm is also illuminated for convenience, since the pulsed
laser beam is invisible. The LDV system is used to receive the ultrasonic wave signals. It consists of a
modular vibrometer (OFV-5000, Polytec, Waldbronn, Germany) and a sensor head (OFV-505-KA, Polytec,
Waldbronn, Germany). A He-Ne continuous wave (CW) laser with a wavelength of 633 nm and energy
of 2 mW is illuminated at a fixed position on the specimen surface, and the out-of-plane displacement at
that position is measured based on the Doppler effect. The received signals are bandpass-filtered from
50 to 400 kHz using a variable-frequency filter (3628 Dual Channel Programmable Filter, NF, Yokohama,
Japan) and stored in the computer through a high-speed digitizer (NI PCI-5124, National Instruments,
Austin, TX, USA). A snapshot of the propagating waves at any given time is obtained by plotting the
amplitude of each waveform at that time on a contour map. The snapshots can be continuously displayed
in a time series to form a video of the waves propagating beneath the CW laser.
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Figure 2. Photograph of the non-contact laser imaging system for visualizing ultrasonic wave propagation.



Appl. Sci. 2019, 9, 46 4 of 9

2.3. Non-Contact Ultrasonic Inspection

The specimens were vertically fixed at a position about 400 mm from the galvanometer mirror
and LDV sensor head. As illustrated in Figure 3, laser scanning with an interval of 0.5 mm was
performed in square regions of 80 × 80 mm. To improve the signal-to-noise ratio, each position
was illuminated 30 times during the scanning and the 30 received signals were averaged. The pulse
energy and scanning speed were set to about 0.6 mJ and 300 points/s, respectively, so that the laser
illumination did not cause surface ablation. Due to the poor reflectivity of the CW laser, and the fact
that the diameter of the laser beam at the specimen surface was about 50 µm, a 3 × 3 mm square of
retroreflective tape (A-RET-T010, Polytec, Waldbronn, Germany) was attached to the specimen surface
at the CW-laser illuminated position (40 mm from the impacted position) to improve the reflectivity.
It should be noted that the scanning speed used in this study is estimated to be about 25 times faster
than that in the previously reported technique [20,21].
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Figure 3. Schematic of the pulsed laser scanning area and the retroreflective tape position on the
impacted specimen.

3. Results

3.1. Non-Contact Ultrasonic Damage Inspection

Figure 4 depicts the visual results of the ultrasonic wave propagation for both specimens.
The ellipses shown in the top figures demonstrate the approximate location and shape of the damage
in each specimen. The ultrasonic waves propagate as Lamb waves in these thin CFRP laminates, and it
was confirmed that only the first symmetric (S0) and first anti-symmetric (A0) modes exist in the low
frequency range between 50 and 400 kHz by using the dispersion curve analysis program Disperse [23].
The faster S0 mode is almost invisible in the figure since the amplitude detected by the LDV was
very low. On the other hand, the detected amplitude of the slower A0 mode was high enough for its
propagation behavior with a pulsed shape to be clearly visualized. In both specimens, when the A0

mode reaches the damage, a phase delay is observed. Furthermore, following the phase delay, reflected
waves from the damage are distinctly observed; the shape of the reflected wave strongly depends
on that of the damage shown in Figure 1. It is very important that the detailed interactions between
the Lamb wave and the impact-induced damage were clearly visualized, and that the damage was
easily detected using the proposed non-contact laser imaging method for ultrasonic-wave propagation.
These results demonstrate the drastic improvement in inspection time without losing the quality in the
ultrasonic images [20,21].
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Figure 4. Lamb wave propagation in the impacted carbon fiber reinforced polymer (CFRP) laminates
using the non-contact laser imaging system. Interactions between Lamb waves and impact-induced
damages are clearly visible. (a) [0/90]2S, (b) [0/45/90/−45]S.

3.2. Rapid Ultrasonic Damage Detection

In order to achieve non-contact inspection by visualization of ultrasonic wave propagation, it is
necessary to use the LDV to receive the low-energy ultrasonic waves induced by the pulsed laser.
However, the LDV sensitivity is much lower than that of conventional contact transducers. We therefore
used a time-consuming signal averaging process to improve the signal-to-noise ratio. Consequently,
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clear images of the pulsed A0 mode propagation waves were obtained as shown in Figure 4. On the
other hand, there is a high demand for rapid non-destructive inspection techniques that can quickly
indicate whether or not damage is present. Figure 5 depicts the visual results of ultrasonic wave
propagation for the CFRP quasi-isotropic specimen without signal averaging. The obtained images
are noisier than those in Figure 4b; however, the presence of the damage can still easily be identified
through the reflected waves. Furthermore, we confirmed that non-contact and quick inspection is
compatible with the impacted specimen used in this study.
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Figure 5. Lamb wave propagation in the impacted carbon fiber reinforced polymer (CFRP)
quasi-isotropic laminate without signal averaging. (a) 30 µs; (b) 40 µs; (c) 50 µs; (d) 60 µs.

Figure 6 compares ultrasonic images at 55 µs for the CFRP quasi-isotropic specimen for various
averaging times. As a result, the images become clearer with increasing averaging time (i.e., increasing
scanning time). The averaging time should be selected according to the damage (type, size), objective
materials, inspection time, inspection resolution, and so on. Moreover, the signal-to-noise ratio
could be drastically improved and inspected quickly using the mid-infrared laser developed by
Hatano et al. [24], as it can generate significantly larger ultrasonic amplitude in CFRP laminates than
the conventional Nd: YAG laser [25].
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4. Discussion

To identify how the proposed non-contact method compares to the conventional methods [11–14],
we analyzed the same specimen using a contact ultrasonic transducer instead of the LDV. Figure 7
depicts the visual results of the ultrasonic-wave propagation for the CFRP quasi-isotropic specimen
using the conventional method. The contact ultrasonic receiver had a resonant frequency of 200 kHz
(M204A, Fuji Ceramics, Fujinomiya, Japan) and was glued to the specimen surface at the position of the
CW laser illumination. The received signals were amplified by a preamplifier (A1201, Fuji Ceramics,
Fujinomiya, Japan) and bandpass-filtered from 50 to 400 kHz before being stored on the computer.

The sensitivity of the transducer is high enough for the S0 mode to be observed. Similarly to the
result shown in Figure 4, a phase delay is observed when the A0 mode reaches the damage. However,
the visualized incident wave of the A0 mode is displayed as a continuous wave rather than a pulsed
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wave, causing the wave reflected from the damage to interact with the incident wave, obstructing its
clear identification. Figure 8 compares the waveforms received by both methods when the pulsed
laser illuminates the position shown by the black dot in Figure 7a. As expected, using the LDV unit,
the incident wave of the A0 mode has a pulsed shape; therefore, the wave reflected from the damage
can be identified. In contrast, when using the contact transducer, the S0 mode is observed and followed
by a ringing phenomenon in the A0 mode due to the resonance of the piezoelectric transducer. Due to
the ringing, the reflected wave cannot be identified. This ringing often causes difficulty in detecting
reflected waves from small defects or damage, and additional filtering becomes necessary for detailed
analysis of the damage. In contrast, the LDV purely measures the out-of-plane displacement of the
pulsed ultrasonic wave and thus does not cause such ringing. It should be noted that this is another
significant advantage of the proposed non-contact method for easy inspection.
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contact transducer when pulsed laser illuminated at the black dot in Figure 7a.

5. Conclusions

This study demonstrated a rapid non-contact ultrasonic inspection technique by visualization
of Lamb wave propagation for detecting barely visible impact damage in CFRP laminates. Our laser
ultrasonic imaging system consists of a rapid pulsed laser scanning unit for ultrasonic generation and a
LDV unit for ultrasonic reception. The signal-to-noise ratio of the ultrasonic signal was improved using
retroreflective tape and a signal averaging process, and we successfully visualized the propagation
of the pulsed Lamb A0 mode in CFRP laminates. The interactions between the Lamb waves and
the impact damage were clearly observed and the damages were easily detected through changes in
wave propagation. Furthermore, we demonstrated that damage could be rapidly detected without
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applying signal averaging. The proposed method using the LDV has significant advantages in
detecting damage compare to the conventional resonant ultrasonic transducer method. However,
further improvement of the signal-to-noise ratio is necessary to inspect large areas and to detect smaller
defects. In addition, we plan in the near future to establish an ultrasonic wavefield image dataset and
to develop an automated image analysis system for damage detection in composite structures using
machine learning.
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