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Abstract: Previous studies on prostate cancer modeling under hormonal therapy successfully fit
clinical serum androgen data, under the assumption that the levels of intracellular and serum
androgen are similar. However, such an assumption may not hold throughout the course of treatment.
In this paper, we propose a model that directly accounts for serum androgen and its interaction with
intracellular androgen. We establish biological links between the model and clinical data, and discuss
in detail parameter ranges and the initialization of model variables. We further investigate parameter
sensitivity over time, which gauges the maximum effect of varying each parameter and allows us to
fix some parameters, to increase the robustness of the parameter fitting process. By relying on the
characteristics of intermittent androgen suppression therapy (IAS), we employ a two-part weighted
error function for fitting. We also carry out mathematical analyses to study the dynamic aspects of
the system with different androgen thresholds. We find that the proposed model shows superior
forecasting ability, compared to its predecessor. Furthermore, we demonstrate the impact of androgen
on the dynamics of the androgen-dependent and -independent cancer cells, which suggests the
discrete description of androgen dependency may not give a realistic characterization of the cancer
population. We show that IAS has certain characteristics that need to be considered for parameter
estimation. Our results demonstrate that the model and the fitting scheme are viable for similar
applications of prostate cancer modeling under hormonal therapy.

Keywords: prostate cancer modeling; intermittent androgen suppression therapy; data fitting;
cell quota models

1. Introduction

Prostate cancer (PCa) is the second most common cancer found in American men. The estimated
lifetime chance of being diagnosed with prostate cancer is 1 in 7. While prostate cancer is commonly
found in men over 50 years old, it can start to develop in men in their twenties and takes decades to
progress. Survival rates for localized prostate cancer have been improved significantly, due to advances
in treatment; however, once cancer metastasizes beyond the prostate, the survival rate drops to about
28% [1,2]. It has been noted that the growth of prostate cancer is highly dependent on androgen,
a male characteristic hormone like testosterone. Thus, for metastasized cancer, the standard hormonal
treatment is androgen deprivation therapy (ADT), which dates back to Huggins’ Nobel Prize-winning
discovery that castration causes rapid regression of PCa. While the treatment is successful in making
the tumor regress initially, the cancer cells eventually mutate and adapt to be able to grow in an
environment with low-androgen level, leading to the ineffectiveness of hormonal therapy or hormonal
resistance [3]. Additionally, ADT comes with many side effects, for instance, impotence, depression,
bone demineralization, and an increased risk of dementia. Thus, intermittent androgen suppression
therapy (IAS) was introduced. During IAS, the patients are put on treatment until their prostate-specific
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antigen (PSA—a prostate cancer biomarker) level reaches a desired low threshold, then they are taken
off the treatment until the PSA level rises above a predetermined threshold. The process is then
repeated until the patients reach hormonal resistance [1].

Various mathematical models have been developed, in the past two decades, to study many
aspects of prostate cancer, especially under androgen suppression therapy. The first experimentally-
driven model of PCa under continuous androgen suppression therapy (CAS) is credited to Jackson
in 2004 [4]. This inspired a series of works that study PCa under IAS and compare the effect of CAS
versus IAS [5–8]. Furthermore, theoretical perspectives on population dynamics and spatial structure
have also been explored in subsequent works [9–11]. In addition, a biologically detailed model with
a complex biochemical network has also been developed and verified with experimental data [12].
On a more applicable note, optimal scheduling, complex algorithms to predict hormonal resistance,
and stochastic models have been used to provide insights into clinical aspects of prostate cancer
treatment [13–16]. For a detailed review of recent work, the authors refer to [17].

In this paper, we focus on a previous approach by Baez and Kuang, which was the first successful
attempt at using both PSA and androgen data for fitting and forecasting [8]. A recent work by
Phan et al. [18] shows that, with the available types of data (e.g., PSA and androgen data), the model
in Baez and Kuang (BK model) has the optimal population structure to describe and to forecast the
dynamics of prostate cancer under IAS. On the other hand, the model fails to completely capture the
growth phase of the PSA level when the patient is taken off treatment. Additionally, fitting of the
androgen data is done by assuming similar levels of body androgen and intracellular androgen, which
may not hold throughout the course of treatment. Thus, we extend the BK model to directly take into
account serum androgen separately from intracellular androgen. We carry out numerical comparisons
between the two models, in terms of fitting and forecasting. Finally, we study the mathematical
properties of the new model, to show the effect that androgen has on the survival of cancer cells.

The data is taken from a clinical study from the Vancouver Prostate Center [19]. Similar to [18],
we select 26 patients with sufficient data for fitting and forecasting comparisons, over 2.5 cycles
of treatment.

2. Model and Method

2.1. The BK Model

Baez and Kuang [8] introduced a two-subpopulation model for prostate cancer undergoing
androgen suppression therapy. This model is a simplification from the model in Portz et al. [7].
The model takes the form:

dx1

dt
= µm

(
1− q1

Q

)
x1︸ ︷︷ ︸

growth

− (D1(Q) + δ1x1) x1︸ ︷︷ ︸
death

− λ(Q)x1︸ ︷︷ ︸
cell transformation

(1)

dx2

dt
= µm

(
1− q2

Q

)
x2︸ ︷︷ ︸

growth

− (D2(Q) + δ2x2) x2︸ ︷︷ ︸
death

+ λ(Q)x1︸ ︷︷ ︸
cell transformation

(2)

dQ
dt

= γ(Qm −Q)︸ ︷︷ ︸
diffusion: serum→intracellular androgen

− µ(Q− q1)x1 + µ(Q− q2)x2

x1 + x2︸ ︷︷ ︸
cell uptake of androgen

(3)

dP
dt

= bQ︸︷︷︸
baseline PSA production

+ σ(Qx1 + Qx2)︸ ︷︷ ︸
tumor’s PSA production

− εP︸︷︷︸
degradation

(4)

Di(Q) = di
Ri

Q + Ri
, λ(Q) = c

K
Q + K

(5)
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γ = γ1u(t) + γ2, u(t) =

{
0, on treatment

1, off treatment
. (6)

In this model, x1 and x2 represent the androgen-dependent (AD) and androgen-independent (AI)
cells, respectively. P is the PSA level, and Q is the intracellular androgen level. In [8], the authors
assumed that the level of intracellular androgen is the same as that of the serum androgen. Since only
serum androgen data is available (and not intracellular androgen data), this assumption allows data
fitting using clinical androgen data with the variable Q, along with the data fitting of tumor biomarker
PSA. The model assumes q1 > q2, which biologically means that the AI cell subpopulation can grow in
an environment with lower androgen levels than AD cells can. A more thorough derivation of this
model can be found in [8,18]. As pointed out in [18], the mutation from AD to AI cells is sufficient to
describe the transformation between these two cells, due to the lack of clinical data types.

As mentioned in [18], the equation governing the dynamics of Q has a significant biological flaw.
Since the diffusion is scaled with the difference between Qm and the current value of Q, it means
that immediately after the patient is taken off treatment, the serum androgen level reaches its max
(e.g., Qm). Scaling the growth of intracellular androgen in this way is perhaps one of the causes for the
sudden jump in PSA level between the on- and off-treatment intervals.

2.2. The New Model

In the BK model, the assumption of similarity in the levels of serum androgen and intracellular
androgen may not hold consistently throughout the treatment. This motivates the following model,
which directly takes into account body androgen production and its diffusion to intracellular androgen.
Additionally, previous work by Portz et al. [7] extrapolated serum androgen data with an exponential
growth/decay function. The serum androgen values are then fed into a five-compartmental model,
known as the PKN model. Extending upon this idea, we explicitly include a compartment that governs
the dynamics of serum androgen. The following model is presented as an extension of the BK model:

dx1

dt
= µ1

(
1− q1

Q

)
x1︸ ︷︷ ︸

growth

− (D1(Q) + δ1x1) x1︸ ︷︷ ︸
death

− λ(Q)x1︸ ︷︷ ︸
cell transformation

(7)

dx2

dt
= µ2

(
1− q2

Q

)
x2︸ ︷︷ ︸

growth

− (D2(Q) + δ2x2) x2︸ ︷︷ ︸
death

+ λ(Q)x1︸ ︷︷ ︸
cell transformation

(8)

dQ
dt

= m(A−Q)︸ ︷︷ ︸
androgen diffusion: A→ Q

− µ1(Q− q1)x1 + µ2(Q− q2)x2

x1 + x2︸ ︷︷ ︸
cells uptake of androgen

(9)

dA
dt

= γ2 + γ1(A0 − A)︸ ︷︷ ︸
androgen production

−A0γ1(1− u)︸ ︷︷ ︸
suppression of production

(10)

dP
dt

= bQ︸︷︷︸
baseline PSA production

+σ(Qx1 + Qx2)︸ ︷︷ ︸
tumor’s PSA production

−εP︸︷︷︸
degradation

(11)

Di(Q) = di
Ri

Q + Ri
, λ(Q) = c

K
Q + K

(12)

In contrast to the BK model, the variable A in this model represents serum androgen. While the
treatment is on, the rate of change of A is strongly influenced by a negative exponential term, indicating
the effect of the total androgen blockage drug. While the treatment is off, the production of A takes
the form of a logistic-type growth, where A0 is the maximum serum androgen, which is akin to the
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carrying capacity in the logistic equation. The uptake rate of intracellular androgen, Q, depends on
the current level of serum androgen. This is a biological improvement over the BK model as, after
the patient is taken off treatment, it takes time for the serum androgen to recover to its maximum.
As a consequence, the intracellular androgen level will take more time to recover its normal level.

2.3. Sensitivity Analysis for the New Model

Sensitivity analysis of the parameters plays an important part in evaluating and improving the
robustness of a model. Previous studies focus on the local sensitivity at a fixed time point [8,18].
While this can provide valuable information, the dynamics of IAS therapy are broken down into on-
and off-treatment intervals, with distinct characteristics in both parts. Additionally, understanding the
effect each parameter has on the dynamics of the model can lead to the fixing of certain parameters,
during the parameter estimation process. If some of the less sensitive parameters can be fixed, then we
essentially reduce the uncertainty in the remaining parameters, which increases their identifiability.
Here, we employ the normalized sensitivity equation from section 5.5 in [20], to carry out the sensitivity
analysis of the new model:

Sp =
∂x
∂p

p
x

,

where p is the parameter, and x is the variable of interest; for example, µ and PSA level, respectively.
Note that, since we will be varying each parameter by 1% with respect to their value, we can use the
following approximation of the sensitivity equation:

Sp =
∂x
∂p

p
x
≈ xvaried − x

0.01p
p
x
=

xvaried − x
0.01x

, (13)

where xvaried is the value of x after increasing a parameter by 1%. The result of the sensitivity analysis
is summarized in Table 1.

While the sensitivity process is perhaps more relevant when carried out on patient data, there is
a large variation in the data between patients, and so finding a consensus among all patients can be
difficult. Instead, we: (1) Synthesize a set of parameters within the range in Table 2, and a treatment
schedule that produces the expected dynamics observed in clinical data. (2) Using these parameters,
we carry out the sensitivity process by increasing one parameter at a time by 1% of its value. (3) We
approximate Sp at each time point for 1 treatment cycle using Equation (13). The process is repeated
for all parameters. Finally, we record the maximum order of sensitivity in Table 1.

Table 1 shows the maximum effect that changing a parameter by 1% has on the variables.
For instance, by looking at the intersection between c and A, we see that changing c by 1% can
cause A to change by a maximum order of −8. To compare the sensitivity of these parameters, we add
up their sensitivity coefficients. Doing so, we find that the parameters with combined order less than
−10 (least sensitive) are c, K, δ1, δ2, and d2. Since d1 and d2 serve similar purposes and d1 is a sensitive
parameter, we choose to not to fix d2. In summary, for the fitting process of the new model, we fix c,
K, δ1, δ2, and γ2. Note that we do not carry out the sensitivity analysis for γ2, due to its small value;
in fact, we fix γ2 to 0 for the new model (although a small value would suffice). The values that we fix
for c, K, δ1, and δ2 are 0.00015, 1, 5, and 5, respectively.
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Table 1. Order of sensitivity. The number represents the maximum order of sensitivity of a variable
with respect to a parameter. For instance, at the intersection of µ1 and x1, 0 means changing µ1 by 1%
will affect at most a change of order 0 in x1. In this table, 0 corresponds to most sensitive and −8 means
least sensitive. The most insensitive parameters with combined order less than −10 are c, K, δ1, and δ2.
Thus, we fix them in the new model. Note that d2 also has a combined order of sensitivity less than
−10; however, since d1 is sensitive, we do not fix d2. Also, we do not carry out the sensitivity for γ2,
since we fix it as 0 for the new model, due to its small range.

Param µ1 µ2 q1 q2 b σ ε d1 d2 δ1 δ2 R1 R2 c K γ1 m A0

x1 0 0 0 −1 0 −1 −1 0 −2 −1 −2 0 −3 −5 −6 0 −1 0
x2 0 0 −2 0 −3 −3 −2 −2 −1 −3 −1 −2 −1 −5 −5 0 −2 −1
A −3 −3 −3 −4 −4 −3 −3 −3 −4 −4 −4 −4 −4 −8 −8 0 −3 0
Q −1 −1 −2 −1 −3 −3 −2 −2 −3 −3 −3 −2 0 −7 −7 0 −1 −1
P 0 0 −1 −1 0 −1 0 0 −1 −1 −1 0 −2 −6 −6 0 −1 0

2.4. Parameter Range

Previous work employed various parameter ranges without a detailed discussion of how the
parameter range is obtained. This caused an unnecessary inconsistency across the literature. Here, we
present our method of approximation of the parameter range used for fitting in Table 2. This is possible,
partially because our model has clear biological links to clinical data and previous work. In doing so,
we hope to build upon this, in future work, for coherency across models. First, we note that the units
of xi, Q, A, and P are respectively L, nmol/L, nmol/L, and µg/L. From this, the following ranges and
unit of parameters are established:

• µ1 is the maximum proliferation rate for the AD cancer subpopulation. Its unit is [day]−1.
Berges et al. [21] studied the proliferation and death rates of prostate cancer cells. We interpret
their result for metastatic prostate cancer cells from hormonally untreated patients to be suitable
for AD cells because, before hormonal treatment, most cancer cells should be androgen-dependent.
This gives us a range of (0.004–0.081) for µ1. Similarly, for µ2 (the maximum proliferation rates
for AI cancer subpopulation), its range (0.001–0.046) is derived from the result for hormonally
failing patients. This is because we expect AI cells to take over, once the patients become hormonal
refractory. Taking into account experimental and survey errors (especially in this case, where
the cancer population size is small), we use (0.001–0.09) as the range for both µ1 and µ2 in the
parameter fitting process.

• d1 is the maximum death rate for AD cells. Its unit is [day]−1. Its range is also derived from
Berges et al. [21], under similar assumptions in the case of the proliferation rates. The ranges for
d1 and d2 are (0.001, 0.0525) and (0.015, 0.0775), respectively. For parameter fitting, we use the
ranges (0.001, 0.09) and (0.01, 0.09) for d1 and d2, respectively.

• q1 is the minimum androgen cell quota for AD cells. It has the same unit as Q, [nmol/L]. Tsutomu
Nishiyama [22] showed in his review paper that hormonal suppression therapy aims to reduce
serum androgen to below 0.69 nmol/L, which is considered the castration level (this threshold
varies in practice, but no more than 1.73 nmol/L). The lowest threshold recorded in Nishiyama [22]
is 0.41 nmol/L. This gives us an approximate bound for q1, (0.41–1.73) because, once serum
androgen drops below this range, the growth of AD cells is repressed. q2, the minimum androgen
cell quota for AI cells, should be smaller than 0.41 nmol/L, to allow AI cells some growth during
castration. Since no information is available on the lower bound of q2, we approximate the range
to be (0.01–0.41). Since the value of qi is patient-specific, a fixed range will not suffice for every
patient. Thus, we find the minimum serum androgen (minA) in the first 1.5 cycles (from the data)
and use the ranges (minA + 0.2, minA + 0.5) and (0.01, minA + 0.2), respectively, for q1 and q2 to
reflect the condition q1 > q2 and to represent the effect of cell quota on growth.

• The δi’s are the density death rates. Their unit is [L]−1[day]−1. No experimental information
is available for the density death rate of cancer cells. Additionally, our sensitivity results in
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Table 1 indicate that their importance is negligible, thus we fix them at 10−5 [mm3]−1[day] −1,
or 10 [L]−1[day]−1 using the value taken from Baez and Kuang [8]. We keep δi in our model to
avoid unrealistic overgrowth of the cancer cell population.

• K is the half-saturation level of the androgen-dependent mutation rate from AD cells to AI cells.
Its unit is [nmol][L]−1. Baez and Kuang used the range (0–1), while Portz et al. [7] used (0.08–1.7).
Since no experimental validation is available, and as K is one of the least sensitive parameters, we
fix K to be 1 [nmol][L]−1.

• Ri are the half-saturation level of androgen-dependent death rates for AD and AI cells. Its unit is
nmol/L. While no experimental information is available, computation results in [8,23] show that
(0–3) and (1–6) are reasonable ranges for R1 and R2, respectively. Thus, we employ these ranges.

• c is the maximum mutation rate from AD cells to AI cells. Its unit is [day]−1. While there is no
experimental ranges for c, numerical experimentation using a mathematical prostate model from
Ideta et al. [5] established a reasonable range for c to be (10−5–10−4). This is often fixed at about
0.00015 in the literature [7,23]. Since c is one of the most insensitive parameters, we choose to fix it
at 0.00015 [day]−1.

• b is the baseline PSA production rate. Its unit is [µg][nmol]−1[day]−1. Baez and Portz [7,8] used
two different ranges for b. Taking the lower and upper limits of both, we will use (0.0001–0.1) as
the range for b. We note that, intuitively, the baseline production of PSA is produced by normal
prostate cells; however, to simplify the model, we assume that this production is proportional to
the intracellular androgen level, because the lack or abundance of androgen directly affects the
product from prostate cells.

• σ is the androgen-dependent PSA production rate of the cancer cells. Its unit is
[µg][nmol]−1[L]−1[day]−1. Everett et al. [23] used several ranges within (0.001–1), so we employ
(0.001–1) as the range for σ.

• ε is the PSA clearance rate. Its unit is [day]−1. While no clinical experiment supports a range for ε,
Portz et al. [7] used 0.08, and Baez and Kuang [8] extended this to (0.001–0.01). We further extend
the range to (0.0001–0.1) for our parameter estimation.

• γ1 is the androgen production rate associated with the testes, the primary source of androgen
production. Its unit is [day]−1. Previously, the value used in Baez et al. [8] seemed large, which
resulted in an instantaneous increase in androgen level after the on-treatment interval stopped [18].
On the contrary, Ideta et al. [5] set γ1 to be 0.08. Thus, for our purpose, we use (0.008–0.8) as
a possible range for γ1.

• γ2 is the secondary androgen production rate, produced from sources other than the testes,
such as the adrenal gland. The range established from [8] is (0.001–0.1) for γ2, where their γ1 = 20.
However, the value of γ2 should only be a small fraction of γ1. Thus, in our case, the value of γ2

is negligible. Hence, we fix it at 0 for the fitting process.
• m is the diffusion rate that links serum androgen level with intracellular androgen level. It is

unitless. This rate is taken at 1 implicitly in [7,8]. Here, We allow m to vary from 0.01 to 0.9,
to incorporate the level of synergy between A and Q.

• A0 is the maximum serum androgen level. Clinical data shows that typical serum androgen
range is below 27 [nmol][L]−1 [19]. Furthermore, computational work often assumed
A0 < 35 [nmol][L]−1 [5,8]. Since this range is patient-specific, for parameter fitting

we find the maximum serum androgen (maxA) in the first 1.5 cycles (from data) and use the range
(maxA − 5, maxA + 5) for A0.

Aside from the ranges for parameters, we also discuss the initial conditions for the model. A(0)
and P(0) are taken as the first recorded serum androgen and PSA level (pre-treatment), respectively,
from patient data. We assume Q(0) to be 90% of A(0). This assumption means, prior to treatment,
the level of serum androgen and intracellular androgen are approximately the same. For x1(0) and
x2(0), we use experimental data on the effect of androgen suppression therapy on prostate volume (not
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tumor) from Bruchovsky et al. [19]. To derive this value, we compare the prostate volume pre-treatment
(mean 24.7 cm3) and after the first treatment (mean 14.7 cm3). We assume that the AD cells are mostly
responsible for this initial reduction, or an approximate initial size (for metastasized tumor) of 10 cm3,
or 0.01 L. This indicates a biologically reasonable range for the initial volume of x1. Since other factors
can affect this value, we use a range of (0.009–0.02) as our possible range for x1(0). Additionally,
if we assume that the initial subpopulation of x2(0) is about 1% of x1(0), then we obtain the range
(0.00001–0.001) for x2(0). The parameter ranges and initialization are summarized in Table 2.

Table 2. Parameter definition and range, established via clinical data and previous computational
work. Note that the parameters with an asterisk next to their fitting range are fixed in the new model,
e.g., c, K, δ1, δ2, and γ2 are fixed at 0.00015, 1, 5, 5, and 0, respectively. The ranges of parameters with
a double asterisk are dependent on the data from the first 1.5 cycles for each patient.

Param Description Range Unit

µ max proliferation rate 0.001–0.09 [day]−1

µ1 max proliferation rate (AD cells) 0.001–0.09 [day]−1

µ2 max proliferation rate (AI cells) 0.001–0.09 [day]−1

q1 min AD cell quota 0.41–1.73 ** [nmol][day]−1

q2 min AI cell quota 0.01–0.41 ** [nmol][day]−1

b baseline PSA production rate 0.0001–0.1 [µg][nmol]−1[day]−1

σ tumor PSA production rate 0.001–1 [µg][nmol]−1[L]−1[day]−1

ε PSA clearance rate 0.0001–0.1 [day]−1

d1 max AD cell death rate 0.001–0.09 [day]−1

d2 max AI cell death rate 0.01–0.001 [day]−1

δ1 density death rate 1–90 * [L]−1[day]−1

δ2 density death rate 1–90 * [L]−1[day]−1

R1 AD death rate half-saturation 0–3 [nmol][L]−1

R2 AI death rate half-saturation 1–6 [nmol][L]−1

c maximum mutation rate 0.00001–0.0001 * [day]−1

K mutation rate half-saturation level 0.8–1.7 * [nmol][day]−1

γ1 primary androgen production rate 0.008–0.8 [day]−1

γ2 secondary androgen production rate 0.001–0.1 * [day]−1

m diffusion rate from A to Q 0.01–0.9 [day]−1

A0 maximum serum androgen level 27–35 ** [nmol][day]−1

x1(0) Initial subpopulation of AD cells 0.009–0.02 [L]
x2(0) Initial subpopulation of AI cells 0.0001–0.001 [L]

2.5. Parameter Estimations

For parameter fitting , we use function fmincon from MATLAB (version 2018b), which utilizes
an interior point algorithm to minimize an objective error function within the range provided in
Table 2. Previously, the objective error function was calculated as the sum of the mean squared
error (MSE) fitting error for PSA and androgen, because MSE punishes particularly large errors
(which is undesirable in clinical applications). This emphasis on good fit can be problematic for
forecasting, as the peak PSA level (during the off-treatment interval) is much larger than the PSA
level during the on-treatment interval. Specifically, MSE will prioritize large errors, thus fmincon will
estimate parameter values to achieve high PSA level to match the data at peak level, which leads to
overestimated forecasts. This problem is escalated, as the time for on- and off-treatment intervals are
taken from data. Furthermore, the problem is not resolved using other error measures. For instance,
using the relative error metric causes the fitting to skew toward smaller data points due to their
number, and so forecasting is often significantly underestimated [18]. Instead, taking into account the
characteristic of the treatment schedule and its effect on PSA level, we employ a weighted least square
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error that will allow emphasis on the recent data, and a controlled weight on the error contribution
from the peak level. First, we introduce the weighted error function:

ErrorMSE =
1
N

N

∑
i=1

(yi − ŷi)
2e−α(t f−ti),

where N is the total number of data points, y is either the PSA or androgen data generated from the
model, and ŷ is the respective observed data. t f is the final time of the second treatment period, and ti
is the time of data point ŷi. Here α is the exponential weight, which is usually taken to be between
0 and 1. The larger α is, the more memory-less the process becomes, e.g., earlier data points become
weightless. Since we want to control the error contribution from before and after the peak PSA level,
and as the data are collected somewhat irregularly, we employ the following scheme to give sufficient
weights to the data before and after the peak:

ErrorMSE = W1
1

N1

peak

∑
i=1

(yi − ŷi)
2e−α1(t f−ti) + W2

1
N2

end

∑
i=peak+1

(yi − ŷi)
2e−α2(t f−ti)

Here, W1 and W2 are the desired contributions of error from prior and after the peak PSA level,
respectively. Similarly, N1 and N2 are the total number of data points, for the respective part. We find
that setting α1 = 0.01 = α2 and W1 = W2 = 0.5, meaning equal contribution of error from both parts,
provides consistent results. Note that, in practice, the values of αi and Wi should be specialized to each
patient. Here, we only wish to show their effectiveness in fitting and forecasting. The objective error
function that is minimized by fmincon is the sum of PSA and androgen residuals, which takes the form:

ObjectiveMSE = ErrorMSE,PSA + ErrorMSE,androgen.

3. Numerical Results

For comparison purposes, we calculate the errors from the fitting and forecasting of BK and the
new model. Table 3 shows a comparable good fit in the first one and a half cycles, for both models.
On the other hand, Table 4 shows that, while both models produce good forecasting, the new model
outperforms the BK model in term of forecasting. Note that, for the BK model, we fit 17 parameters
and 2 initial conditions, while the new model fitting accounts for 14 parameters and 2 initial conditions.
Thus, information criteria (like the AIC) can be used to further the comparison between the two models,
as done in [24]. However, such comparison does not evaluate the biological mechanism of the model,
thus we omit it here. We select representatives of fitting and forecasting results, and present it in
Figures 1 and 2.

Table 3. Fitting mean squared error (MSE) comparison (median, 1st quartile, 3rd quartile). Two models
are compared, using 26 patient’s data. Both models show comparable good fitting results. Note that
the fitting ability of model 2 has been shown to be superior, among existing work [8,18]. Additionally,
the incorporation of serum androgen in the new model does not significantly improve the fitting
of androgen.

Model
PSA Androgen

Median Q1 Q3 Median Q1 Q3

BK model 1.43 0.85 3.72 4.15 2.42 7.65
New model 2.03 0.88 4.52 3.68 2.12 12.69
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Table 4. Forecasting mean squared error (MSE) comparison (median, 1st quartile, 3rd quartile).
Two models are compared, using 26 patient’s data. The new model demonstrates a slightly better
forecasting ability, compared to the BK model. Furthermore, the forecasting ability of model 2 has been
shown to be superior, among existing work under different metrics [8,18]. Additionally, the forecasting
of androgen is comparable between the two models.

Model
PSA Androgen

Median Q1 Q3 Median Q1 Q3

BK model 9.02 4.34 17.32 11.99 4.70 27.81
New model 6.78 4.20 14.60 12.56 5.22 28.32
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Figure 1. Fitting and forecasting comparison of the BK model (magenta) and the new model (green).
The blue line divides the fitting and forecasting period. Both models are fitted using data from the first
1.5 cycles of treatment (left side of blue line). Then, we forecast out one additional cycle. The data are
represented by the black circles. Note that, while we do not experience the sudden jump in PSA level
mentioned in [18], the forecast still fails to capture a delay in PSA relapse immediately after entering
the off-treatment interval, which occurs in some patients; for example, patient 77.

3.1. Fitting and Forecasting of Androgen and Cancer Cell Dynamics

We provide an example of fitting and forecasting comparisons for androgen on the left figure
in Figure 2. Note that while both models fit and forecast the dynamics of androgen comparatively
well, the new model exhibits a higher flexibility, in contrast to the square-like shape of androgen in
the BK model. dWe also provide an example of cancer cell dynamics, in the right figure in Figure 2.
The result from cancer dynamics suggests that the onset of hormonal resistance can develop early
into the treatment. Additionally, since cancer subpopulations can go into near extinction (during the
on-treatment interval) before bouncing back, this suggests that the mechanism used to incorporate
androgen into growth and death rates needs improvement, or perhaps the problem asks for an
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optimization of parameter values using analytical means. Finally, since the cancer population can stay
under control after AI cells overtake AD cells in number, it suggests against the intuitive definition
that hormonal resistance occurs when AI cells overtake AD cells.
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Figure 2. (1) The left figure shows the fitting and forecasting of serum androgen for the BK model
(magenta) and the new model (green). The blue line divides the fitting the forecasting periods.
(2) The right figure shows the cancer cell dynamics, over the course of 2.5 cycles. The solid green
curve represents the AD cell subpopulation, while the dashed green curve represents the AI cell
subpopulation.

3.2. Note on Numerical Fitting Using Two-Part Weighted Error

Different patients react differently to the treatment, especially during the first cycle of
treatment—the time for PSA to fully relapse varies between patients. Figure 3 shows an example where
PSA level takes over two years to reach the upper PSA threshold. Recall that our fitting scheme utilizes
a fixed exponential weight that works well for most patients, but fails in this case due to the abnormally
long time it takes PSA to relapse (left figure). This indicates that our choices of αi = 0.01 and Wi = 0.5
are not suitable for this particular case. As a counter-example, by reducing the exponential weight and
readjusting the contribution of errors from each section of data (e.g., adjusting α1 to 0.001, W1 = 0.7,
and W2 = 0.3), the fitting and forecasting results significantly improve (right figure).
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Figure 3. The figures show a case for a patient-specific fitting scheme. The figures represent the fitting
and forecasting of the BK model (magenta) and the new model (green). This particular case sees
PSA taking an abnormally long time to reach the upper PSA threshold for treatment. (1) Left figure:
The weight used across all patients do not work in this case. (2) Right figure: Using a more appropriate
weight produces significant improvement.
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4. Dynamics of the New Model

In this section, we carry out mathematical analyses for the newly proposed model, which help
to justify its coherence with biological expectations. Previous studies [8,18] have already examined
some standard properties of the BK model and its variations, so we only focus on the new model here.
We remark that, while PSA serves as an important indicator of how good the model is against clinical
data, the dynamics of the system are independent of the dynamics of PSA. In addition, if the dynamics
of xi, Q, and A are known, one can immediately infer the dynamics of P. Thus we will only carry out
our analysis with xi, Q, and A. The first proposition establishes a positively invariant region, which is
also bounded. This supports the biological validity of the model since we expect xi, Q, and A to stay
non-negative and never become infinite.

Proposition 1. Let A = γ2+γ1 A0
γ1

and assume q2 ≤ q1 < A and γ2 > γ1q2. Furthermore, we assume that
when androgen is abundant, the growth rate is larger than the death rate, meaning µi(1− qi/A) > Di(A) for
i = 1, 2. Then, the solutions that start in the region {(x1, x2, Q, A) : 0 < x1 ≤ Mx, 0 < x2 ≤ My, Q, A ∈
[q2, A]}, stay in that region. Here, Mx = 1

δ1

(
µ1(1− q1/A)− D1(A)

)
and

My =
1

2δ2

((
µ2(1− q2/A)− D2(A)

)
+

√
4λ(q2)Mxδ2 +

(
µ2(1− q2/A)− D2(A)

)2
)

.

Proof. Since A′(t) = γ2 + γ1 A0(1 − A
A0
) − γ1 A0(1 − u), we see that A′(q2) ≥ 0 and A′(A) ≤ 0.

It follows that q2 ≤ A(t) ≤ A for all t > 0 with initial condition in the same region. Similarly,
since Q′(t) = m(A − Q) − µ1(Q−q1)x1+µ2(Q−q2)x2

x1+x2
, we find that Q′(q2) ≥ 0 and Q′(A) ≤ 0.

Thus, a similar conclusion follows. Consider the rate of change of x1,

x′1 = µ1

(
1− q1

Q

)
x1 − (D1(Q) + δ1x1)x1 − λ(Q)x1

≤
(

µ1

(
1− q1

A

)
− D1(A)

)
x1 − δ1x2

1.

This implies that the limit supremum of x1(t) is bounded by 1
δ1

(
µ1(1− q1/A)− D1(A)

)
=: Mx.

Now consider the rate of change of x2,

x′2 = µ2

(
1− q2

Q

)
x2 − (D2(Q) + δ2x2)x2 + λ(Q)x1.

In the limit t→ ∞, x′2 is bounded above by

x′2 ≤ µ2

(
1− q2

A

)
x2 − (D2(A) + δ2x2)x2 + λ(q2)Mx

= λ(q2)Mx +

(
µ2

(
1− q2

A

)
− D2(A)

)
x2 − δ2x2 =: h(x2).

The function h(x2) is a concave-down parabola. Thus lim supt→∞ x2(t) is bounded above by the
larger solution of h(x2) = 0. Solving for h(x) = 0, we obtain the upper bound of the limit supremum
of x2,

My =
1

2δ2

((
µ2(1− q2/A)− D2(A)

)
+

√
4λ(q2)Mxδ2 +

(
µ2(1− q2/A)− D2(A)

)2
)

.

Since x1(0) < Mx and x2(0) < My, x1 and x2 are bounded above by Mx and My, respectively.
Additionally, if xi(0) > 0, then the positivity of xi(t) follows immediately.
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The second proposition shows that the system has a boundary equilibrium where AD cells
become extinct, during the off-treatment interval. Additionally, it establishes sufficient conditions for
the existence of a unique positive steady-state.

Proposition 2. In the case of u = 1, assume q1 > q2, then E1 = (0, µ2(1−q2/Q∗)−D2(Q∗)
δ22

, Q∗, A∗),

where Q∗ =
mA∗+µ1q1

m+µ1
and A∗ = (γ2 + γ1 A0)/γ1, is the only equilibrium state where the AD subpopulation

becomes extinct. Furthermore, suppose conditions (1) and (2) hold:

1. mA0
m+max{µ1,µ2}

> q1

2. mA0+min{µ1q1,µ2q2}
m+max{µ1,µ2}

> 1
2

(
∆ +

√
(∆)2 − 4 max{R1, K}

)
> 0,

where ∆ = q1 +
(

1 + d1c
µ1

)
max{R1, K}. Then the system has a unique positive steady-state (x∗1 , x∗2 , Q∗, A∗).

Proof. For u = 1 (off-treatment interval), we first consider the boundary equilibria of the system.
Since (x1, x2) = (0, 0) is undefined for the system and x2∗ = 0 implies x1∗ = 0, the only equilibrium
involving an extinction of a cancer subpopulation takes place when x1∗ = 0. In this case, solving x′2 = 0

yields x2∗ =
µ2(1−q2/Q∗)−D2(Q∗)

δ22
. Additionally, solving Q′ = 0 and A′ = 0 yields Q∗ =

mA∗+µ1q1
m+µ1

and
A∗ = (γ2 + γ1 A0)\γ1.

For the positive steady state, suppose that x∗1 , x∗2 , Q∗, A∗ > 0. Then solving for x′1 = 0 and
x′2 = 0 gives: {

0 = A1x∗1 − δ11(x∗1)
2

0 = A2x∗2 − δ22(x∗2)
2 + λ(Q∗)x∗1

⇒
{

δ11(x∗1)
2 = A1x∗1

δ22(x∗2)
2 = A2x∗2 + λ(Q∗)x∗1

(14)

where Ai are the coefficients of x∗i , e.g., A1 = µ1(1− q1
Q∗ )− D1(Q∗)− λ(Q∗). Dividing the previous

two equations to obtain

δ11

δ22

(
x∗1
x∗2

)2
=

A1

(
x∗1
x∗2

)
A2 + λ(Q∗)

(
x∗1
x∗2

) (15)

Set y =
(

x∗1
x∗2

)
, then

f (y) =
(

λ(Q∗)
δ11

δ22

)
y2 +

(
A2(Q∗)

δ11

δ22

)
y− A1(Q∗) = 0. (16)

Note that λ(Q∗) = c K
Q∗+K > 0, so if A1 > 0, then by Descartes’s rule of sign, the system has

a unique solution y, regardless of the sign for A2. The uniqueness of y implies that the ratio x∗1
x∗2

is
constant. We proceed to establish the positivity of A1. Explicitly, A1 takes the form

A1(Q∗) = µ1

(
1− q1

Q∗

)
− D1(Q∗)− λ(Q∗)

= µ1

(
1− q1

Q∗

)
− d1

R1

Q∗ + R1
− c

K
Q∗ + K

Note that, since the treatment is off, biologically Q(t) >> q1, which allows strong growth of the
AD cell subpopulation. We will establish later that there is indeed a lower bound of Q(t) satisfying
lim inf Q(t) > q1, under reasonable biological constraints. For the moment, we assume such lower
bound exists. Then
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lim inf A1 ≥ µ1

(
1− q1

Qm

)
− d1

R1

Qm + R1
− c

K
Qm + K

≥ µ1

(
1− q1

Qm

)
− (d1 + c)

max{R1, K}
Qm + max{R1, K}

where Qm >> q1 is a lower bound of Q(t) for the off-treatment interval. We would like for A1 > 0,
thus rearranging terms give the condition:

Q2
m −

(
q1 +

(
1 +

d1c
µ1

max{R1, K}
))

Qm −max{R1, K} > 0. (17)

Next we examine the expression for Q′(t) to find an appropriate lower bound. Note that, since as
t→ ∞, A(t)→ γ2

γ1
+ A0 =: A∗, we have the following:

lim
t→∞

Q′(t) = m(A∗ −Q)− µ1(Q− q1)x1 + µ2(Q− q2)x2

x1 + x2

=

(
mA∗ +

µ1q1 + x1 + µ2q2x2

x1 + x2

)
−
(

m +
µ1x1 + µ2x2

x1 + x2

)
Q

≥
(

mA0 +
µ1q1 + x1 + µ2q2x2

x1 + x2

)
−
(

m +
µ1x1 + µ2x2

x1 + x2

)
Q.

This implies

lim inf
t→∞

Q(t) ≥ lim
t→∞

mA0 +
µ1q1x1+µ2q2x2

x1+x2

m + µ1x1+µ2x2
x1+x2

+

(
Q(0)−

mA0 +
µ1q1x1+µ2q2x2

x1+x2

m + µ1x1+µ2x2
x1+x2

)
e−
(

m+
µ1x1+µ2x2

x1+x2

)
t.

Then as t→ ∞, the exponential term approaches 0, so

lim inf
t→∞

Q(t) ≥ mA0(x1 + x2) + µ1q1x1 + µ2q2x2

m(x1 + x2) + (µ1x1 + µ2x2)

≥ mA0(x1 + x2) + min{µ1q1, µ2q2}(x1 + x2)

m(x1 + x2) + max{µ1, µ2}(x1 + x2)

=
mA0 + min{µ1q1, µ2q2}

m + max{µ1, µ2}
.

This means that, eventually, Q(t) will be bounded below by mA0+min{µ1q1,µ2q2}
m+max{µ1,µ2}

> q1, which is

true because of our biologically reasonable condition mA0
m+max{µ1,µ2}

> q1 (e.g., A0 >> q1). Thus, we
establish that indeed there is a lower bound of Q(t) that satisfies lim inf Q(t) > q1. Now, the condition
in Equation (17) is satisfied in the limit of t→ ∞, if mA0+min{µ1q1,µ2q2}

m+max{µ1,µ2}
is greater than the larger solution

for Qm (or smaller than the smaller solution) in Equation 17. Therefore, A1 > 0 requires either

mA0 + min{µ1q1, µ2q2}
m + max{µ1, µ2}

>
1
2

(
∆ +

√
(∆)2 − 4 max{R1, K}

)
, (18)

or,
mA0 + min{µ1q1, µ2q2}

m + max{µ1, µ2}
<

1
2

(
∆−

√
(∆)2 − 4 max{R1, K}

)
(19)

where ∆ = q1 +
(

1 + d1c
µ1

)
max{R1, K}. Since the condition in Equation (19) is not possible (e.g.,

the right hand side is negative, but the left hand side is positive), the only possible condition is
Equation (18), which is the condition in the proposition. This establishes the existence of positive x∗1
and x∗2 , which have a fixed ratio y∗. Solving Q′ = 0 for Q∗ gives the positive steady state
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Q∗ =
mA∗ + µ1q1x∗1+µ2q2x∗2

x∗1+x∗2

m +
µ1x∗1+µ2x∗2

x∗1+x∗2

=
mA∗(x∗1 + x∗2) + µ1q1x∗1 + µ2q2x∗2

m(x∗1 + x∗2) + µ1x∗1 + µ2x∗2
> 0. (20)

Finally, to show uniqueness, recall that the ratio of x∗1 and x∗2 is a fixed constant, y∗. Thus,
substitute x∗2 = x∗1/y∗ in Equation (20) to obtain

Q∗ =
mA∗x∗1(1 +

1
y∗ ) + (µ1q1 + µ2q2

1
y∗ )x∗1

mx∗1(1 +
1
y∗ ) + (µ1 + µ2

1
y∗ )x∗1

=
mA∗(1 + 1

y∗ ) + (µ1q1 + µ2q2
1
y∗ )

m(1 + 1
y∗ ) + (µ1 + µ2

1
y∗ )

.

This shows that Q∗ is unique. Finally, from Equation (14), x∗1 = A1(Q∗)
δ11

. It follows that x∗1
and x∗2 are also unique. Since limt→∞ A(t) = γ2

γ1
+ A0 =: A∗, the existence of a unique positive

equilibrium follows.

The third proposition shows that when the patient is on treatment, under biologically reasonable
conditions, the boundary equilibrium with the extinction of AD cells is the only equilibrium of the
system. In this case, it establishes a sufficient and necessary condition for the boundary equilibrium to
be globally stable. Additionally, it provides sufficient conditions for both cancer subpopulations to
eventually become extinct.

Proposition 3. In the case of u = 0, if

m γ1
γ2

+ max{µ1q1, µ2q2}
m + min{µ1, µ2}

< q1,

then the system does not have a positive steady-state and x1 becomes extinct as t → ∞. Furthermore, Q(t)
approaches Q∗ =

mA∗+µ1q1
m+µ1

, where A∗ =
γ2
γ1

.
In addition, if

µ2

(
1− q2

Q∗

)
− d2

R2

Q∗ + R2
> 0,

then x2 approaches
µ2

(
1− q2

Q∗

)
−d2

R2
Q∗+R2

δ2
and E1 = (0, µ2(1−q2/Q∗)−D2(Q∗)

δ22
, Q∗, A∗) is globally stable. On the

other hand, if either

µ2

(
1− q2

Q∗

)
− d2

R2

Q∗ + R2
> 0,

or,
m γ1

γ2
+ max{µ1q1, µ2q2}

m + min{µ1, µ2}
≤ q2,

then both x1 and x2 become extinct in the limit of t→ ∞.

Proof. Similar to the previous proof, we establish that in the limit of t→ ∞, A→ γ2
γ1

and

Q :=
m γ1

γ2
+ max{µ1q1, µ2q2}

m + min{µ1, µ2}
≤ Q(t) ≤

m γ1
γ2

+ min{µ1q1, µ2q2}
m + max{µ1, µ2}

=: Q (21)

Suppose Q < q1. This implies that limt→∞ x′1(t) < −(D1(Q) + δ1x1 + λ(Q))x1 < 0. Thus there is
no positive steady-state for x1(t) and limt→∞ x1(t) = 0. Then in the limit of x1 → 0 and A→ γ2

γ1
,

Q′(t) = m
(

γ2

γ1
−Q

)
− µ2(Q− q2) =

(
m

γ2

γ1
+ µ2q2

)
− (m + µ2)Q.



Appl. Sci. 2019, 9, 36 15 of 18

This implies that limt→∞ Q(t) =
m γ2

γ1
+µ2q2

m+µ2
= Q∗. Furthermore, in the limit of t→ ∞,

x′2 = µ2

(
1− q2

Q∗

)
x2 − (D2(Q∗) + δ2x2)x2 =

(
µ2

(
1− q2

Q∗

)
− d2

R2

Q∗ + R2

)
x2 − δ2x2

2.

If µ2

(
1− q2

Q∗

)
− d2

R2
Q∗+R2

> 0, then x2 approaches
µ2

(
1− q2

Q∗

)
−d2

R2
Q∗+R2

δ2
and E1 is globally stable.

On the other hand, if µ2

(
1− q2

Q∗

)
− d2

R2
Q∗+R2

< 0, then x2 becomes extinct. Alternatively, if Q < q2,

then limt→∞ x′2(t) < −(D2(Q) + δ1x2)x2 < 0. This implies limt→∞ x2(t) = 0.

5. Discussion

Mathematical models for prostate cancer have made significant progress since the work of
Jackson [25]. Consequently, recent approaches have been focused on the application aspects in clinical
settings. However, there are still obvious questions without an easy answer; for example, how
one would define hormonal resistance in a rigorous mathematical sense and yet still meaningful
in applications, or the identifiability of the model parameters. These difficult questions, that link
theoretical work and application, ask for mechanistic models that can test theories against data. To this
end, we aim to build upon a series of previous works to create a model with direct links to clinical data.
We study the model and explore various aspects relating to using it. In this section, we summarize our
findings and point out the limitations of our work.

(A1) From Table 3, both the BK model and the new model achieved similar accuracy for fitting.
Since we used a two-part fitting scheme with exponential weight, the fitting was good when PSA
quickly relapsed after the patient was put off treatment; see patients 39, 77, and 79 in Figure 1. On the
other hand, when PSA took a longer time to reach the peak, the accuracy of fitting was not as good
as in the previous cases; for instance, in patient 28 in Figure 1. In other words, because we chose
to use a fixed exponential weight for fitting, the earlier the data points, the less weight that those
data points contributed in the parameter estimation process. Thus, for patients with an abnormally
long first cycle, most of the earlier data were essentially not accounted for during fitting; see patient
66 in Figure 3. To resolve this problem, a possible scheme is to use a linear weight. Specifically,
we would first normalize the weight contribution from the peak PSA level to be 1. Then, the weight
contribution of the points before the peak is the relative height with respect to the peak. This would
ensure that earlier points have a more significant contribution to the fitting. While it is well-suggested
that individual patients should have their unique parameter set, we further suggest that the process
of studying the patient data should be unique, in order to capture the patient’s characteristics; for
example, a patient-specific weight for fitting in this case.

(A2) From Table 4, the new model slightly outperformed the BK model, in terms of prediction,
which is noteworthy as the new model used fewer parameters for fitting. An interesting observation is
that the new model did not overshoot forecasting, perhaps due to the parameter ranges established in
Table 2. This can become a problem, if there is a stable equilibrium below the upper threshold PSA
level required for putting the patient on treatment. In such a case, the model would be unrealistic for
the parameter values which influence the equilibrium. While this problem can be mediated by forcing
hormonal resistance within five years, as done in [6], it is perhaps better done by optimization
of parameter ranges via mathematical analysis. We further note that when the data had good
regularity, in terms of the similarity in the shape of data for different cycles (see patients 28, 77,
and 79), the forecasting was quite accurate. However, when unforeseen changes occur in the data
(patient 39), the model may fail to capture this change. Hence, the use of a stochastic model or
uncertainty quantification is necessary for such applications.

(A3) Phan et al. [18] noted the problem of the sudden jump in PSA between the transition of the
on- and off-treatment intervals in the fitting and forecasting of the BK model. Our result suggests
that the main cause was the abnormally large value of the rate of primary androgen production (γ1).
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By adjusting this value in accordance to [6], we resolved this problem, as seen for patients 28, 39, 77,
and 79 in Figure 1. Phan et al. [18] also mentioned a delay that sometimes occurs during the relapsing
period of PSA; for example, in patient 77. While this can potentially be a problem with the parameter,
it is more likely caused by the drug residue or the mechanism of how the patient’s body reacts to the
drug. Thus, we suggest future attempts take the drug dynamics into account.

(A4) We carried out a mathematical analysis of the model, to validate its biological properties and
to show that it is possible to drive the cancer cells to extinction, as seen in the limit of time approaches
infinity (in an environment of sufficiently low androgen level).

The right figure in Figure 2 shows that the cancer cell subpopulations can indeed reach
near-extinction, prior to the on-treatment phase. We note that, while the cause of this is likely due
to setting the secondary production term to 0 (e.g., γ2 = 0) in our numerical study of the new model,
it suggests that if the androgen level drops below the cell quota of AI cell, the AI subpopulation can
become near-extinction for the duration of on-treatment. However, this is only possible in a theoretical
sense. In practice, it is difficult to find clinical studies that support this theoretical result. This is
because the androgen level required for the extinction of cancer cells may be much lower than the limit
of hormonal therapy. Furthermore, the result will not hold if there is a variation of the cancer cells
that gives some cells near-complete independence from androgen, which would make the condition in
proposition 3 impossible to achieve. To resolve this in a theoretical sense, we could replace the two cell
subpopulations with N subpopulations. Taking the limit as N → ∞ represents the continuous variation
in cancer cells. However, such complexity resulting from adding N compartments of cancer cells is
unlikely to be either insightful or practical. Instead, we suggest future work to incorporate a mechanism
that takes into account the degree of androgen dependency of the tumor in a continuous spectrum,
without adding unnecessary compartments. This may allow for a more useful characterization of the
condition for cancer extinction under hormonal treatment.

In addition, we also studied the sensitivity of the parameters over time. While this method was
one at a time, this helped to gauge the maximum effect that changing a parameter by a small percentage
could have on the dynamics of the system. By doing so, we highlighted the most insensitive parameters
and fixed them, which improved the robustness of the fitting and forecast. Since the model contains
many parameters, the question of identifiability is of significance, especially in the context of precision
medicine. An example of analysis involving parameter identifiability for cancer modeling can be found
in [26]. Furthermore, the uncertainty in the data and model means that uncertainty quantification is
a necessary component in clinical setting [27]. Finally, the parameter range, provided with the method
used to obtain them, is not meant to be extensive or absolute; however, it serves as a unified framework
for future improvement. In conclusion, future work should consider the identifiability and improve
the accuracy of the model, in terms of both computational robustness and biological relevance. In the
future, we will carry out comparisons of this new model across several different models by other
researchers, to further advance the field. Additionally, mathematical analyses will be significant to help
rigorously define concepts and propose hypotheses that can be tested to improve our understanding
of prostate cancer and its treatment. If a model is identifiable (or if we know the relationship between
the parameters), then we can use the fitted parameters and mathematical analysis to classify cancer
types. Finally, uncertainty quantification for the prediction of the model is necessary to quantify how
likely an additional cycle of treatment will be useful or not.
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