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Abstract: In this paper, a new prediction model is proposed that fully considers the various
parameters influencing the moment redistribution in statically indeterminate reinforced concrete
(RC) structures by using the artificial neural network (ANN) and support vector regression (SVR).
Twenty-four continuous RC beams and 12 continuous RC frames with various design parameters
were tested to investigate the process of moment redistribution. Based on the experimental results
obtained from this study and the published literature, a reliable database with 111 datasets was
developed for the training and testing of the models. The predicted values of the proposed models,
together with the estimations of the widely used code methods, were compared with the experimental
results in the database. The analysis results showed that both the proposed ANN and SVR models
exhibit high accuracy and reliability for the prediction of the moment redistribution.

Keywords: statically indeterminate RC structure; moment redistribution; artificial neural network;
support vector regression; prediction

1. Introduction

Statically indeterminate reinforced concrete (RC) structures are some of the most common
structural forms in engineering design. Owing to the cracking of the concrete, the strain penetration of
the reinforcement, and the formation and gradual rotation of the plastic hinge regions, the relative
stiffness of each cross section changes constantly during the loading process, which causes a
redistribution of internal forces in the statically indeterminate structure. In structural design,
the moment redistribution is considered since it can help to avoid the reinforcement congestion at
critical sections, thereby improving the convenience of the construction and the concreting conditions.
Moreover, moment redistribution can help fully exploit the reserved capacity of the non-critical sections
and achieve an economic design.

For practical applications, the current design codes allow designers to take advantage of linear
elastic analysis with limit moment redistribution for structural design, in which the moment diagram
derived from the elastic analysis of the structure is modified based on the degree of moment
redistribution. Many definitions for measuring the moment redistribution have been proposed.
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The coefficient of the moment redistribution β, defined by Cohn [1] and adopted in various design
codes, is shown in Equation (1):

β =
Melast −Mred

Melast
(1)

where Melast is the elastic moment calculated by the elastic theory, Mred is the actual moment after
moment redistribution, and β is between 0 and 1.

A reasonable consideration of the degree of the moment redistribution is important for the
analysis and design of structures. Traditionally, moment redistribution is considered to be heavily
dependent on the ductile behavior of the critical section [2]. In most design provisions, moment
redistribution is mainly related to the neutral axis depth factor (the ratio of neutral axis depth to
the section effective depth), since it can well characterize the ductility of a section by combining the
characteristics of the materials and the geometry of the cross section. In fact, evaluation of the moment
redistribution is complex because it depends on the rotation capacity of the plastic hinge as well as
the variation in the stiffness distribution and the bond between the reinforcement and concrete [3].
Numerous studies have focused on the behavior and influencing factors of moment redistribution
in statically indeterminate structures. Nearly all of these studies are based on a basic model of
continuous beams subjected to static loads. By using the concept of ductility demand, the effects of
various parameters, including slenderness, stiffness, ratio of tensile and compressive reinforcement,
concrete strength, and strength of the reinforcement, on the moment redistribution in continuous RC
beams were studied by Scholz [4] and Mostofinejad et al. [5]. Based on the experiments of continuous
RC beams, Bagge et al. [3] concluded that a decrease in the tensile reinforcement and increase in
the compression and transverse reinforcement would be beneficial for the moment redistribution.
However, for high-strength concrete beams, the influence of the transverse reinforcement ratio is not
significant, as observed in the experimental studies conducted by Carmo and Lopes [6]. Their study
also indicated that the relationship between mid-span reinforcement ratio and intermediate-support
reinforcement ratio had a significant effect on moment redistribution. Scott et al. [7] experimentally
studied the whole process of the moment redistribution in continuous RC beams. Their results
show that the moment redistribution evolves through several stages and the parameters, such as
the cross-section size, concrete strength and arrangement of the reinforcement, affect the moment
redistribution in each stage. In addition to the experimental studies, many theoretical methods have
been proposed to investigate the effective behavior of continuous RC members. Oehlers et al. [8]
developed a structural mechanics-based mathematical model for moment redistribution in continuous
members, which was combined with the shear-friction approach [9], partial-interaction theory [10],
and rigid body displacement. Through the application of this model, they concluded that moment
redistribution increased with the decrease in the bond strength and the increase in the diameter of
steel bars and concrete confinement. To study the entire nonlinear behavior of RC continuous beams, a
finite element model based on the moment–curvature relationship and the Timoshenko beam theory
was established by Lou et al. [11]. By using this model, the effect of many factors, such as the concrete
strength, the relationship between the tensile reinforcement ratios at critical negative and positive
moment regions, the relative stiffness, and the concrete confinement on moment redistribution were
studied comprehensively.

As mentioned above, the mechanics of moment redistribution are incredibly complicated. The aim
of this study was to propose a new model for accurate prediction of the moment redistribution that
considers the various influential parameters as comprehensively as possible, while being convenient for
the applications of practical engineering. In recent years, artificial intelligence techniques of artificial
neural networks (ANNs) and support vector machines (SVMs) have exhibited great potential for
solving various problems in civil engineering. Different from most methods used in civil engineering,
ANN and SVM algorithms do not rely on the existing theories about structural mechanism, but employ
high precision fitting to match the results to the real values as closely as possible [12]. These two
models have been successfully applied to several areas in structural engineering, such as structural
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analysis [13–15], prediction of the shear resistance in beams [16–19] and compressive strength of
columns [20–23], displacement determination of RC buildings [24], and estimation of the compressive
strength for various types of concrete [25–29]. More recently, they were used to understand the behavior
of structures under extreme conditions. Based on a back-propagation ANN, Ince [30] developed a
fracture model to predict the fracture parameters of cementitious materials. Compared with the
common non-linear fracture mechanics approaches, the ANN model was more reliable. In a separate
study, Erdem [31] established an ANN model for determining the ultimate moment capacity of RC
slabs in fire. The prediction values were compared with the results provided by the ultimate moment
capacity equation, which showed the ANN model had a high degree of accuracy. To ensure the realistic
fire performance of steel structures, Naser [32] used ANN to derive temperature-dependent thermal
and mechanical material models for structural steel. The applicability of the models was validated
using numerical case studies with a highly nonlinear finite element model. The results indicated that
the proposed ANN models can significantly enhance the current state of structural fire design by
developing a uniform representation of material properties at elevated temperatures.

However, few studies have focused on the prediction of the moment redistribution in the statically
indeterminate RC structures using artificial intelligence techniques. In this paper, an experimental
study on the moment redistribution in 24 continuous RC beams and 12 continuous RC frames with
various design parameters was presented. Furthermore, two models of ANN and SVM were developed
using MATLAB software (MathWorks, Neddick, MA, USA) to predict the coefficient of moment
redistribution in the statically RC indeterminate structures. In total, 111 experimental datasets were
gathered to construct the models and a description of the development procedure is provided here.
The main influential factors, including the neutral axis depth factor (c/d), the ratio of the tensile
reinforcement ratio over the critical negative moment regions to the tensile reinforcement ratio over the
positive moment regions (ρs1/ρs2), the yield strength of the reinforcement (f y), the concrete compressive
strength (f c’), the slenderness ratio (l/h), the effective depth of the section (h0), the stirrup ratio (ωw),
and the loading form, were used as input parameters to the models. Finally, the new proposed models
were verified against the experimental results and compared with the provisions in the design codes
to assess their accuracy and reliability.

2. Experimental Database

As the first step in developing the ANN and SVR models, a comprehensive set of experimental
data on the moment redistribution was required for the training and testing samples. The database
used in this paper was established by collecting the datasets from the experiments conducted in the
current test and the relevant experimental programs in previous studies [3,6,7,33–37].

2.1. Experimental Program

2.1.1. Test Scheme

A total of 24 two-span continuous RC beams and 12 single-layer two-span continuous RC frames
were designed and tested to investigate the moment redistribution at the negative moment regions.
The rectangular cross-section of the continuous beams and frame beams were 180 mm × 250 mm and
180 mm× 300 mm, respectively. The length of each span of the continuous beams and frame beams are
4 m and 3 m, respectively. Owing to the limited number of test specimens, four main variables affecting
the moment redistribution were considered in the design, namely, the neutral axis depth factor (c/d),
the ratio of the tensile reinforcement ratio over the critical negative moment regions to the tensile
reinforcement ratio over the positive moment regions (ρs1/ρs2), the yield strength of the reinforcement
(f y), and the concrete compressive strength (f c’). All beams were designed to have a reserve capacity in
the positive moment regions, which ensure that the internal forces transfer from the negative moment
regions to the positive moment regions. A sufficient magnitude of stirrups was arranged in all beams
to avoid shear failure, and the strong column–weak beam requirement was followed in the design of
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the frames. The mechanical properties of the tensile longitudinal reinforcements in the test specimens
were measured by uniaxial tensile tests of the steel bars. The grades of the steel bars included HRB500
and HRB600 as specified in the Chinese code for design of concrete structures GB 50010-2010 [38].
Table 1 lists some important characteristics of the steel bars with various diameters: yield strength f y,
yield strain εsy, ultimate tensile strength f u, and ultimate strain εsu. It should be noted that, since the
steel bars in the test beams and the test frames were in different batches, there were some slight
differences in the performance of the corresponding steel bars. The concrete compressive strength f c’
was obtained from the compression tests of the concrete cylinders, which were prepared and cured in
the same manner as the test specimens. Tables 2 and 3 list the details of the test specimens. Figure 1
presents the reinforcement arrangement of the specimens.

Table 1. Mechanical properties of steel bars.

Grade Diameter db
In Continuous RC Beams In Continuous RC Frames

f y(MPa) εsy f u(MPa) εsu f y(MPa) εsy f u(MPa) εsu

HRB500

10 680 0.003400 850 0.120 — — — —
12 — — — — 704 0.003520 880 0.122
14 651 0.003255 814 0.112 817 0.004085 1022 0.131
16 638 0.003190 830 0.115 — — — —
18 633 0.003165 823 0.113 631 0.003155 825 0.118
20 633 0.003165 825 0.113 654 0.003270 837 0.114
22 612 0.003060 800 0.108 618 0.003090 801 0.117

HRB600

14 540 0.002700 702 0.110 569 0.002845 710 0.110
16 555 0.002775 723 0.115 555 0.002775 700 0.108
18 533 0.002665 705 0.112 590 0.002950 760 0.116
20 555 0.002775 713 0.114 581 0.002905 732 0.122
22 555 0.002775 716 0.118 543 0.002715 713 0.113
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Figure 1. Reinforcement arrangement of: (a) continuous beams; and (b) continuous frames.

Table 2. Details of 24 continuous beams.

Specimens
No.

f c’ (MPa) Mid-Support Region Mid-Span Region
ρs1/ρs2 l/d

c/d As1 (mm2) f y (MPa) ωsw1 (%) As2 (mm2) f y (MPa)

L-A-1 38.4 0.09 157 680 0.44 402 638 0.39 19.07
L-A-2 38.4 0.20 509 633 0.58 763 632 0.67 19.19
L-A-3 38.4 0.30 763 633 1.09 1008 620 0.76 19.30
L-A-4 38.4 0.39 1008 625 1.09 1074 620 0.94 19.42
L-A-5 46.4 0.10 236 680 0.44 461 638 0.51 19.07
L-A-6 46.4 0.21 628 633 0.87 942 633 0.59 19.19
L-A-7 46.4 0.31 942 633 1.74 1388 622 0.60 19.30
L-A-8 46.4 0.40 1140 612 1.74 1388 612 0.73 19.42
L-A-9 55.2 0.10 308 651 0.44 461 651 0.67 19.07
L-A-10 55.2 0.21 763 633 0.87 1140 612 0.67 19.19
L-A-11 55.2 0.31 1140 612 1.74 1520 612 0.66 19.30
L-A-12 55.2 0.36 1256 633 1.74 1140 633 1.00 19.88
L-B-1 37.6 0.12 308 540 0.44 461 540 0.67 19.07
L-B-2 36.0 0.22 603 555 0.87 942 555 0.64 19.19
L-B-3 38.4 0.33 942 555 1.09 1140 555 0.83 19.30
L-B-4 35.2 0.36 1017 555 0.87 942 555 1.08 19.42
L-B-5 37.6 0.12 308 540 0.44 461 540 0.67 19.07
L-B-6 37.6 0.25 763 533 0.87 1074 555 0.63 19.19
L-B-7 39.2 0.35 1140 555 1.74 1451 555 0.69 19.30
L-B-8 40.8 0.42 1256 555 1.74 1256 555 1.00 21.97
L-B-9 55.2 0.11 402 555 0.44 603 555 0.67 19.07

L-B-10 56.0 0.20 763 533 0.87 1256 555 0.61 19.19
L-B-11 56.0 0.27 1140 555 1.74 1702 555 0.59 19.30
L-B-12 56.8 0.34 1256 555 1.74 1391 555 0.90 21.97

Note. (1) This table should be read in conjunction with Figure 1a. (2) The bottom reinforcement in mid-support
regions and the top reinforcement in mid-span regions were all 2T10 (157 mm2). (3) ωsw1 presents the stirrup ratio
in mid-support region. The steel bars with diameter of 10 mm are used as stirrups.
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Table 3. Details of 12 frame beams.

Specimens
No.

f c’
(MPa)

Mid-Support Region End-Support Region Mid-Span
Region

ρs1/ρs3 ρs2/ρs3 l/d

c/d As1
(mm2)

f y
(MPa)

ωsw1
(%) c/d As2

(mm2)
f y

(MPa)
ωsw2
(%)

As3
(mm2)

f y
(MPa)

KL-A-1 36.8 0.29 823 638 1.57 0.10 226 704 1.26 1140 618 0.72 0.20 11.54
KL-A-2 38.4 0.38 1140 618 2.51 0.17 461 817 1.57 1256 654 0.91 0.34 11.54
KL-A-3 50.4 0.27 1008 654 2.51 0.10 308 817 1.57 1140 618 0.82 0.25 11.54
KL-A-4 52.0 0.36 1256 654 2.51 0.13 461 817 2.51 1520 618 0.83 0.28 11.54
KL-A-5 54.4 0.28 1140 618 2.51 0.09 308 817 2.51 1388 636 0.82 0.20 11.54
KL-A-6 56.0 0.39 1520 618 2.51 0.13 509 631 2.51 1570 654 0.97 0.30 11.54
KL-B-1 35.2 0.32 942 581 1.57 0.10 308 569 1.26 942 581 1.00 0.33 11.54
KL-B-2 40.0 0.41 1256 581 2.51 0.15 509 590 1.57 1388 562 0.84 0.34 11.54
KL-B-3 50.4 0.26 1140 543 2.51 0.10 402 555 1.57 1388 562 0.82 0.29 11.54
KL-B-4 46.4 0.41 1520 543 2.51 0.13 509 590 2.51 1520 543 1.00 0.31 11.54
KL-B-5 47.2 0.38 1388 562 2.51 0.09 308 569 1.57 1388 562 0.92 0.20 11.54
KL-B-6 55.2 0.41 1702 581 2.51 0.14 628 590 2.51 2281 543 0.75 0.25 11.54

Note: (1) This table should be read in conjunction with Figure 1b. (2) The top reinforcement in mid-span regions,
the bottom reinforcement in mid-support regions and end-support regions are all 2T10 (157 mm2). (3) ωsw1 and
ωsw2 presents the stirrup ratio in mid-support and end-support region, respectively. The steel bars with diameter of
12 mm are used as stirrups.

Each span of the test beams was subjected to two-point loads using hydraulic jacks via a loading
distributed beam, as shown in Figures 2 and 3. A force-controlled loading process was applied and the
load increase rate was kept constant. Sensors were placed on each hydraulic jack so that the loads on
each span were controlled to increase symmetrically. For the continuous beams, the reaction forces
were measured with sensors under the three supports. For the frame beams, the inner forces were
obtained by attaching strain gauges to the longitudinal reinforcement at the critical section of the top
of the column. Then, the degree of moment distribution in the test specimens was achieved based on
the above measurements continuously recorded during the loading process.
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during the loading process: crack formation at the negative moment regions (Point A or A’), crack 
formation at the positive moment regions (Point B), the yielding of the reinforcement (Point C or C’) 
and the crushing of the concrete at the negative moment regions (Point D or D’). For the frame beams, 
both the mid-support region and the end-support region were subjected negative moment, for which 
the characteristic states corresponded to Points A, C, and D and Points A’, C’, and D’ in Figure 4, 
respectively. It can be seen that the deflections of the east span beam and west span beam for the one 
specimen were largely symmetrical owing to their equal longitudinal steel ratios and symmetrically 
loading. 

For the continuous beams, the moment redistribution of each beam was calculated based on the 
external loads P and the reaction forces measured by the sensors under the three supports. The 
evolution of the elastic reactions obtained by the elastic theory and the actual reactions obtained from 
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observed that the deviation between the actual reactions and the elastic reactions became increasingly 

Figure 2. Schematics of the test setups: (a) continuous beams; and (b) continuous frames. 1, trestle;
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2.1.2. Test Results

Figure 4 shows the variation in the load with respect to the vertical displacement of some test
continuous beams and frames in the loading process. Several characteristic points were observed
during the loading process: crack formation at the negative moment regions (Point A or A’),
crack formation at the positive moment regions (Point B), the yielding of the reinforcement (Point C or
C’) and the crushing of the concrete at the negative moment regions (Point D or D’). For the frame
beams, both the mid-support region and the end-support region were subjected negative moment,
for which the characteristic states corresponded to Points A, C, and D and Points A’, C’, and D’ in
Figure 4, respectively. It can be seen that the deflections of the east span beam and west span beam
for the one specimen were largely symmetrical owing to their equal longitudinal steel ratios and
symmetrically loading.

For the continuous beams, the moment redistribution of each beam was calculated based on
the external loads P and the reaction forces measured by the sensors under the three supports.
The evolution of the elastic reactions obtained by the elastic theory and the actual reactions obtained
from the test are presented in relation to the external loads P, as shown in Figure 5 for specimen L-A-2.
The characteristic points in the figure correspond to the four states mentioned above. It can be observed
that the deviation between the actual reactions and the elastic reactions became increasingly obvious
as the external load is increased, which indicates an increase in the moment redistribution of the test
beams. Figure 6 shows the relationship between the coefficient of the moment redistribution and the
actual moment at the support over the full load history of specimen L-A-2. For the continuous frame
beams, the mid-support region and the end-support region of the frame beams were all subjected to
the negative moment, from where the internal forces would transmit to the positive moment regions.
Therefore, it can be approximately regarded as two processes of moment redistribution at the same
time for each span of the frame beams and two coefficients of moment redistribution can be achieved.
Similar to the continuous beams, the variation in the moment redistribution at both the mid-support
and end-support for the test specimen KL-B-4 is depicted in Figure 6. The test results confirmed
that the moment redistribution behavior occurs from the concrete crack (Point A or A’) and increases
sharply after the yielding of the reinforcement at the critical section (Point C or C’). According to
Equation (1), the degrees of the moment redistribution in the test specimens are summarized in Table 4.
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Table 4. Moment redistribution for test specimens.

Specimens
No. Melast (KN·m) Mred (KN·m) β (%) Specimens

No. Melast (KN·m) Mred (KN·m) β (%)

L-A-1 51.54 24.06 53.33 KL-A-1(E) 93.90 44.20 52.93
L-A-2 94.16 53.53 43.15 KL-A-1(M) 159.62 117.84 26.17
L-A-3 138.12 90.57 34.42 KL-A-2(E) 142.30 84.92 40.32
L-A-4 145.85 104.57 28.31 KL-A-2(M) 193.09 148.58 23.05
L-A-5 48.20 24.59 48.98 KL-A-3(E) 115.17 57.29 50.26
L-A-6 108.68 66.76 38.57 KL-A-3(M) 206.27 153.62 25.53
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Table 4. Cont.

Specimens
No. Melast (KN·m) Mred (KN·m) β (%) Specimens

No. Melast (KN·m) Mred (KN·m) β (%)

L-A-7 137.24 91.16 33.58 KL-A-4(E) 160.55 84.37 47.45
L-A-8 122.46 87.78 28.32 KL-A-4(M) 206.19 153.10 25.75
L-A-9 60.86 33.13 45.57 KL-A-5(E) 140.14 55.04 60.73

L-A-10 142.12 91.56 35.57 KL-A-5(M) 228.79 159.87 30.13
L-A-11 124.48 89.59 28.03 KL-A-6(E) 126.08 75.45 40.16
L-A-12 115.36 84.75 26.53 KL-A-6(M) 235.89 190.73 19.14
L-B-1 63.94 32.82 48.65 KL-B-1(E) 79.81 40.75 48.94
L-B-2 95.06 52.86 44.39 KL-B-1(M) 147.00 110.20 25.03
L-B-3 116.01 75.85 34.61 KL-B-2(E) 114.62 67.64 40.98
L-B-4 102.36 68.93 32.67 KL-B-2(M) 181.09 139.00 23.24
L-B-5 50.59 27.32 45.99 KL-B-3(E) 115.17 53.57 53.49
L-B-6 107.48 68.15 36.60 KL-B-3(M) 190.43 140.17 26.39
L-B-7 128.80 87.85 31.79 KL-B-4(E) 132.61 72.39 45.41
L-B-8 136.79 95.00 30.55 KL-B-4(M) 206.27 151.13 26.73
L-B-9 78.18 42.40 45.76 KL-B-5(E) 126.53 49.92 60.54
L-B-10 110.15 70.92 35.61 KL-B-5(M) 200.19 146.91 26.61
L-B-11 136.79 96.44 29.50 KL-B-6(E) 137.60 89.67 34.83
L-B-12 124.79 85.26 31.68 KL-B-6(M) 225.61 189.98 15.79

Note: The letters E and M in the “specimens No.”, respectively, indicate the end-support and mid-support of the
frame beams.

2.2. Data Collection

To comprehensively investigate the factors influencing the moment redistribution and make the
proposed models more applicable, 63 test datasets were gathered from the literature [3,6,7,34–38] for
expanding the database, as listed in Table 5. This experimental information included design details,
material properties, and the degree of the moment redistribution determined by the internal force of
the experimental specimens. It should be noted that these datasets were selected randomly and there
was no inclusion of any factitious choice. In total, 111 datasets were obtained to construct the artificial
neural network (ANN) and support vector regression (SVR) models. According to the previous studies
and existing models [1–8], the neutral axis depth factor (c/d), the ratio of the tensile reinforcement ratio
over the critical negative moment regions to the tensile reinforcement ratio over the positive moment
regions (ρs1/ρs2), the yield strength of the reinforcement (f y), the concrete compressive strength (f c’),
the slenderness ratio (l/h), the effective depth of the section (h0), the stirrup ratio (ωw) and the loading
form were selected as the main influential parameters for the moment redistribution. Table 6 presents
the range and distribution of the parameters in the database.

Table 5. Experimental datasets collected from the literature.

Specimens No. h0 f c’ f y c/d ρs1/ρs2 ωw (%) l/h Loading Form β Ref.

1 370 22.56 493 0.14 1.00 0.34 5.40 Single point 0.282 [33]
2 370 20.08 486 0.12 1.00 0.34 5.40 Single point 0.289 [33]
3 370 21.92 495 0.12 1.00 0.34 5.40 Single point 0.304 [33]
4 220 36.40 545 0.11 0.25 0.34 10.42 Single point 0.560 [3]
5 220 36.40 565 0.16 0.36 0.34 10.42 Single point 0.480 [3]
6 220 36.40 560 0.28 0.64 0.34 10.42 Single point 0.210 [3]
7 220 36.40 557 0.43 1.00 0.34 10.42 Single point 0.180 [3]
8 220 36.40 565 0.16 0.36 0.67 10.42 Single point 0.510 [3]
9 220 36.40 560 0.28 0.64 0.67 10.42 Single point 0.250 [3]

10 220 36.40 557 0.43 1.00 0.67 10.42 Single point 0.100 [3]
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Table 5. Cont.

Specimens No. h0 f c’ f y c/d ρs1/ρs2 ωw (%) l/h Loading Form β Ref.

11 220 73.80 536 0.03 0.16 0.34 10.42 Single point 0.570 [3]
12 220 73.80 565 0.08 0.36 0.34 10.42 Single point 0.390 [3]
13 220 73.80 560 0.14 0.64 0.34 10.42 Single point 0.290 [3]
14 200 76.40 569 0.07 0.41 0.84 13.41 Single point 0.388 [6]
15 200 70.90 569 0.15 0.82 0.84 13.41 Single point 0.158 [6]
16 200 69.50 569 0.22 0.81 0.84 13.41 Single point 0.351 [6]
17 200 73.20 569 0.29 0.74 0.84 13.41 Single point 0.105 [6]
18 200 84.00 569 0.33 0.94 0.84 13.41 Single point 0.054 [6]
19 200 132.46 563 0.18 1.00 0.29 11.36 Single point 0.250 [34]
20 200 104.46 565 0.17 0.68 0.29 11.36 Single point 0.318 [34]
21 200 102.31 571 0.13 0.54 0.29 11.36 Single point 0.453 [34]
22 270 28.86 530 0.39 0.62 0.90 13.33 Single point 0.065 [35]
23 270 28.86 530 0.58 0.94 0.90 13.33 Single point 0.060 [35]
24 270 30.78 545 0.23 0.50 0.90 13.33 Single point 0.076 [35]
25 270 30.78 545 0.51 1.00 0.90 13.33 Single point 0.113 [35]
26 270 28.86 545 0.38 0.60 0.90 13.33 Single point 0.065 [35]
27 270 30.78 537 0.30 0.64 0.90 13.33 Single point 0.076 [35]
28 370 21.68 515 0.13 1.00 0.34 6.25 Single point 0.183 [36]
29 370 22.16 567 0.22 1.00 0.51 6.25 Single point 0.150 [36]
30 370 15.44 550 0.37 1.00 0.63 6.25 Single point 0.156 [36]
31 370 22.16 567 0.32 1.00 0.72 6.25 Single point 0.144 [36]
32 370 18.96 543 0.46 1.00 0.84 6.25 Single point 0.110 [36]
33 270 25.40 427 0.11 1.00 0.90 10.00 Single point 0.352 [37]
34 270 25.40 564 0.31 1.00 0.90 10.00 Single point 0.076 [37]
35 270 25.40 339 0.13 1.00 0.90 10.00 Single point 0.413 [37]
36 270 25.40 339 0.13 1.00 0.90 10.00 Single point 0.423 [37]
37 270 25.40 339 0.13 1.00 0.90 10.00 Single point 0.421 [37]
38 270 26.50 339 0.13 1.00 1.10 10.00 Single point 0.401 [37]
39 270 26.50 339 0.13 1.00 1.30 10.00 Single point 0.448 [37]
40 270 34.60 339 0.10 1.00 0.90 10.00 Single point 0.411 [37]
41 270 38.90 339 0.09 1.00 0.90 10.00 Single point 0.444 [37]
42 270 55.60 339 0.06 1.00 0.90 10.00 Single point 0.441 [37]
43 220 41.44 607 0.18 0.64 0.26 11.07 Single point 0.370 [7]
44 220 41.44 449 0.12 0.60 0.26 11.07 Single point 0.320 [7]
45 220 96.32 541 0.07 0.67 0.26 11.07 Single point 0.380 [7]
46 220 96.32 449 0.05 0.60 0.26 11.07 Single point 0.340 [7]
47 120 41.44 541 0.30 0.67 0.19 20.29 Single point 0.230 [7]
48 120 41.44 607 0.32 0.64 0.19 20.29 Single point 0.320 [7]
49 120 41.44 449 0.22 0.60 0.19 20.29 Single point 0.270 [7]
50 120 41.44 449 0.09 0.67 0.19 20.29 Single point 0.380 [7]
51 120 41.44 449 0.09 0.67 0.19 20.29 Single point 0.340 [7]
52 120 41.44 449 0.09 0.70 0.19 20.29 Single point 0.260 [7]
53 120 41.44 539 0.12 0.74 0.19 20.29 Single point 0.220 [7]
54 120 96.32 449 0.04 0.67 0.19 20.29 Single point 0.400 [7]
55 120 41.44 539 0.05 0.75 0.19 20.29 Single point 0.390 [7]
56 120 41.44 497 0.10 0.67 0.19 20.29 Single point 0.250 [7]
57 120 41.44 541 0.11 0.70 0.19 20.29 Single point 0.320 [7]
58 120 41.44 541 0.12 0.74 0.19 20.29 Single point 0.270 [7]
59 220 41.44 541 0.25 1.14 0.26 11.07 Single point 0.130 [7]
60 220 41.44 449 0.20 1.09 0.26 11.07 Single point 0.200 [7]
61 120 41.44 449 0.06 0.41 0.19 20.29 Single point 0.500 [7]
62 120 96.32 449 0.04 0.67 0.19 20.29 Single point 0.450 [7]
63 220 96.32 541 0.07 0.67 0.26 11.07 Single point 0.330 [7]

Table 6. Range of parameters in the database.

Variable h0 f c’ f y c/d ρs1/ρs2 ωw (%) l/h β

Minimum 120 15.44 339 0.03 0.16 0.19 5.40 0.05
Maximum 370 132.46 817 0.58 1.14 2.51 21.97 0.61

Mean 229.95 46.86 552.14 0.22 0.71 0.99 13.91 0.32
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3. Modeling Method

3.1. Artificial Neural Networks

The ANN is an information processing system that simulates the structure and functional features
of the biological nervous system. It consists of a large number of highly interconnected processing
elements (neurons), and their inherent laws can be obtained by the training of the input parameters,
which leads to a strong nonlinear mapping ability [39].

3.1.1. Neural Network Architecture

The multilayer feed-forward back propagation network (MFBPN), first proposed by
Rumerlhar et al. in 1986 [40], is one of the most commonly used ANN methods due to its simple
structure and strong plasticity. The MFBPN is composed of three main parts: an input layer, one or
more hidden layers and an output layer. All neurons in each layer are connected to the neurons in the
next layer by network weights and biases. The values of the neuron received from the lower layer are
multiplied by the specific weights and then summed with the bias. The sum is processed by predefined
activation functions and transferred to the next layer, as follows:

yj = f (netj) = f (
n

∑
i=1

wijxi + bj) (2)

where netj is the weighted sum for the jth neuron, xi is the input values of the ith neuron in the lower
layer, wij is the weight between the ith neuron and the jth neuron, bj is the bias value of the jth neuron
and f is the activation function. In the present work, sigmoid activations were used in each layer.

The MFBPN algorithm consists of two stages: forward propagation and back propagation,
as depicted in Figure 7. It can be seen that, in the forward propagation process, each layer is organized
in the forward direction and the input values are calculated by Equation (2), transferred from the
input layer to the hidden layer and then to the output layer. The predicted values are compared
with the experimental values. If the error does not satisfied the predetermined accuracy, the process
reverses into the back propagation process. In the back propagation process, the error information is
returned from the output layer to the input layer and the connection weights and biases values between
the neurons in each layer are modified. This training process is repeated until the error reaches the
desired requirement. There are many training algorithms for the back propagation network, including
the gradient descent algorithm, Levenberg–Marquardt algorithm, and Bayesian regularization [40].
Among these, the Levenberg–Marquardt algorithm is considered the most efficient in terms of model
prediction efficiency and accuracy [41], which was selected for the back propagation training in
this investigation.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 25 
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Figure 7. Architecture of the multilayer feed-forward back propagation network.
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3.1.2. Construction of Neural Network

In this study, the collected experimental data of the moment redistribution coefficient were
randomly divided into a training set and a testing set. Since the purposes in different experimental
studies are diverse and the test programs are time-consuming and costly, datasets with complete
variable information collected from the published literature are relatively few. To improve the
applicability and generalization of the training model, 85% of the data were selected as training
data, which were used to fit the parameters of the neural network, such as the weights and the bias in
each layer. The remaining 15% of the data were used as testing data, which were independent of the
training process and used to test the accuracy and applicability of the trained model.

The performance of the neural network models can be evaluated by two indexes: mean squared
error (MSE) and coefficient of correlation (R2), as given by Equations (3) and (4):

MSE =
1
n

n

∑
i=1

(ti − ci)
2 (3)

R2 = 1−

n
∑

i=1
(ti − ci)

2

n
∑

i=1
(ti − t)2

(4)

where n is the total number of the data, ci and ti are the predicted value and the target value of the ith
data, and t is the average of the target values. A prediction model is considered to be better fitting
when MSE and R2 are closer to 0 and 1, respectively.

Eight nodes were used in the input layer because there were eight influential parameters for the
moment redistribution studied. Before training the input data, normalizations for the input and target
data should be performed since the sigmoid activation function is sensitive to the variations between 0
and 1. In this way, the stability and convergence rate of the training process can be improved. A linear
relationship was used to scale the data from 0.1 to 0.9, given by Equation (5):

xi,scaled = (0.9− 0.1)× xi − xmin

xmax − xmin
+ 0.1 (5)

where xi,scaled is the normalized value, xi is the value of the variable, and xmin and xmax are the
minimum and maximum values of the variable, respectively.

The function of the hidden layer is to determine the inherent relationship between the input and
output layers based on the training of the data. One hidden layer was used in the present neural
network. The number of the nodes in the hidden layer is of great importance to the design of the
neural network. An excessive number of the nodes results in an extension of the training time and
the over-fitting of the data, which decreases the computational efficiency. However, if the number of
the nodes is not enough, insufficient information leads to a decrease in the computational accuracy.
Currently, there are no general rules to exactly determine the number of nodes. It is often based on
experience, and the optimum result is obtained through trial and error. In this study, the number of
the nodes in the hidden layer was selected from 6 to 15. Figures 8 and 9 show the regression values
and MSE of the neural network with different numbers of nodes. It can be seen that the model is
optimal when 13 nodes were used in the hidden layer. Hence, the final network configuration used in
present study is illustrated in Figure 10 and the values of the parameters for the neural network were
determined as follows:

Number of input layer units = 8
Number of hidden layer units = 13
Number of output layer units = 1
Momentum rate = 0.9
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Learning rate = 0.4
Error after learning = 8 × 10−8

Learning cycle = 20,000

The weight matrix from input layer to hidden layer:

[W] =



−0.9164 1.4807 −0.2350 0.7380 0. 5355 1.7293 0.5331 0.9447
−1.1448 0.1450 0.8474 −1.1383 0.2907 −0.0782 0.9073 −0.1725
−1.1361 0.7619 1.2173 −0.1638 0.7868 −0.4796 0.6270 0.3624
−0.4634 0.9261 0.2160 1.4655 −0.6984 −0.3826 −0.4355 0.7621
1.1211 0.2946 −0.3320 −0.2785 −1.3229 −0.5631 −1.2747 −1.0460
0.0504 −0.2413 −1.4971 0.2827 0.7573 0.4910 1.2722 −0.6579
0.6535 −0.1205 0.9175 −0.3086 0.9226 0.6071 −0.6191 −0.8808
−0.4555 0.7322 0.0410 0.4642 −0.5956 −0.1809 1.0324 0.1272
0.0690 −0.1080 −0.4671 0.1252 0.6155 −1.5093 0.6859 0.9966
1.1041 1.0773 0.2277 −0.3272 −0.5194 −0.8479 0.3947 0.0658
0.0231 1.0058 1.6269 0.7262 0.8975 1.1943 −0.7830 0.9840
1.0543 −0.5834 0.7153 0.9577 0.0572 0.3346 −0.7952 0.4914
1.0419 −0.5879 0.8209 0.1742 −0.4689 −1.3133 −0.4841 1.2483


The bias value for hidden layer:
[b1]T = [1.8206 1.5318 1.4769 0.3322− 0.6058 0.9448− 0.2012 0.0762 0.3039 1.0370 2.5586 1.7822 1.4689]
The weight matrix from hidden layer to output layer:
[W2] = [1.0278 − 0.6339 0.9911 − 0.9114 1.1020 − 0.7080 − 0.6638 0.1710 0.2638 − 0.6078 − 1.2464

− 0.1087 0.6158]
The bias value for output layer: [b2] = [0.6815]Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 25 

 

5 3 7 8 9 10 11 12 13 14 15 13
0.000

0.002

0.004

0.003

0.008

0.010

0.012

M
SE

Number of nodes in hidden layer  
Figure  8. MSE of network with different numbers of notes in the hidden layer. 

3 7 8 9 10 11 12 13 14 150.0
0.1
0.2
0.3
0.4
0.5
0.3
0.7
0.8
0.9
1.0
1.1

Re
gr

es
sio

n 
va

lu
e 

(R
)

Number of nodes in hidden layer

 Training  testing  whole data 

 
Figure  9. R-values of network with different numbers of notes in the hidden layer. 

 
Figure  10. Final network configuration used in present study. 

3.2.  Support  Vector  Machine 

SVM is an intelligent algorithm first proposed by Boser et al. in 1992 for general classification 
problems [42]. It is based on the principle of structural risk minimization (SRM), which aims to 
minimize an upper bound on the expected risk rather than minimizing the error of the training 

h0

f 'c
fy

c1d
ρs1 ρs21

ωw

l1h
loading

form

Input layer Hidden layer
Number of neurons=13

Output layer

Figure 8. MSE of network with different numbers of notes in the hidden layer.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 25 

 

5 3 7 8 9 10 11 12 13 14 15 13
0.000

0.002

0.004

0.003

0.008

0.010

0.012

M
SE

Number of nodes in hidden layer  
Figure  8. MSE of network with different numbers of notes in the hidden layer. 

3 7 8 9 10 11 12 13 14 150.0
0.1
0.2
0.3
0.4
0.5
0.3
0.7
0.8
0.9
1.0
1.1

Re
gr

es
sio

n 
va

lu
e 

(R
)

Number of nodes in hidden layer

 Training  testing  whole data 

 
Figure  9. R-values of network with different numbers of notes in the hidden layer. 

 
Figure  10. Final network configuration used in present study. 

3.2.  Support  Vector  Machine 

SVM is an intelligent algorithm first proposed by Boser et al. in 1992 for general classification 
problems [42]. It is based on the principle of structural risk minimization (SRM), which aims to 
minimize an upper bound on the expected risk rather than minimizing the error of the training 

h0

f 'c
fy

c1d
ρs1 ρs21

ωw

l1h
loading

form

Input layer Hidden layer
Number of neurons=13

Output layer

Figure 9. R-values of network with different numbers of notes in the hidden layer.



Appl. Sci. 2019, 9, 28 14 of 24

Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 25 

 

5 3 7 8 9 10 11 12 13 14 15 13
0.000

0.002

0.004

0.003

0.008

0.010

0.012

M
SE

Number of nodes in hidden layer  
Figure  8. MSE of network with different numbers of notes in the hidden layer. 

3 7 8 9 10 11 12 13 14 150.0
0.1
0.2
0.3
0.4
0.5
0.3
0.7
0.8
0.9
1.0
1.1

Re
gr

es
sio

n 
va

lu
e 

(R
)

Number of nodes in hidden layer

 Training  testing  whole data 

 
Figure  9. R-values of network with different numbers of notes in the hidden layer. 

 
Figure  10. Final network configuration used in present study. 

3.2.  Support  Vector  Machine 

SVM is an intelligent algorithm first proposed by Boser et al. in 1992 for general classification 
problems [42]. It is based on the principle of structural risk minimization (SRM), which aims to 
minimize an upper bound on the expected risk rather than minimizing the error of the training 

h0

f 'c
fy

c1d
ρs1 ρs21

ωw

l1h
loading

form

Input layer Hidden layer
Number of neurons=13

Output layer

Figure 10. Final network configuration used in present study.

3.2. Support Vector Machine

SVM is an intelligent algorithm first proposed by Boser et al. in 1992 for general classification
problems [42]. It is based on the principle of structural risk minimization (SRM), which aims to
minimize an upper bound on the expected risk rather than minimizing the error of the training
samples. This gives SVM better generalization ability even for small sample learning [43]. Moreover,
with the introduction of the ε-insensitive loss function by Vapink [44], SVM has been extended to deal
with regression problems, also known as support vector regression (SVR).

3.2.1. Support Vector Regression

The principle of SVR is briefly introduced here. In SVR, the main goal is to obtain a function
that differs at most ε from the actual targets for all training data, while being as flat as possible [45].
This means that our attention is no longer focused on the errors because small residuals are inevitable,
but we focus on avoiding errors larger than a certain value. Suppose that the training data are given
as {(x1, y1), (x2, y2), . . . , (xn, yn)}, where n is the number of the training datasets, xi is the input vector
and yi is the output target value. Then, a function f (x) corresponding to the lowest expected risk is
constructed, and the ε-insensitive loss function is expressed as:

Lε(y, f (x)) = max{0, |y− f (x)| − ε}, ε > 0 (6)

For the linear regression, function f (x) can be represented by

f (x) = 〈w,x〉+ b (7)

where w ∈ Rn is the weight vector, determining the orientation of a discriminating plane, and b ∈ R is
the scalar threshold, determining the offset of the discriminating plane from the origin [16]. In terms of
the nonlinear regression, the process proceeds with mapping of the data into a high feature dimension
space through a non-linear mapping procedure, and then solving a linear regression in this high feature
dimension space. Then, a nonlinear mapping Φ is introduced and can be expressed as:

f (x) = 〈w,Φ(x)〉+ b (8)
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To ensure the flatness of Equation (8), a smaller value of w is required. In real problems, it is
impossible for all data points to have an error lesser than ε for the one function. For this reason, the slack
variables ξi and ξi

* are introduced. Therefore, the SVR can be formulated as an optimization problem:

Minimize
1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ∗i ) subjected to


yi − 〈w, Φ(xi)〉 − b ≤ ε + ξi
〈w, Φ(xi)〉+ b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(9)

where C is the regularized constant specified by the user. It is defined as the penalty factor to indicate
the trade-off between the flatness of the function and the empirical error.

The optimization problem in Equation (9) can be solved by introducing the Lagrangian
multipliers αi, α∗i , ηi, η∗i and the above optimization problem can be transformed into a dual quadratic
programming problem:

Maximizing− 1
2

n
∑

i=1

n
∑

j=1
(αi − α∗i )(αj − α∗j )K(xi, xj)−ε

n
∑

i=1
(αi + α∗i ) +

n
∑

i=1
yi(αi − α∗i )

Subjected to
n
∑

i=1
(αi − α∗i ) = 0 and αi, α∗i ∈ [0, C]

(10)

where K(xi, xj) = Φ(xi)·Φ(xj) is defined as the kernel function, which is an important analysis
technique in SVR. The values of αi and α∗i can be obtained by solving Equation (10), and the function
f (x) is finally written as:

f (x) =
n

∑
i=1

(αi − α∗i )K(xi, xj) + b (11)

3.2.2. Construction of SVR Model

As discussed above, the SVR model is constructed by optimizing the ε-insensitive loss function,
in which the parameter ε and the regularized constant C are the important optimization factors.
Furthermore, the selection of the kernel function is also closely related to the SVR model performance.
The commonly used kernel functions in the regression include the linear kernel function, polynomial
kernel function, radial basis function (RBF), and sigmoid kernel function. Considering the infinite
dimensional feature space corresponding to the RBF, the following RBF is adopted in this study:

K(xi, xj) = e−
‖xi−xj‖

2

σ2 = e−g‖xi−xj‖2
(12)

where σ indicates the smoothness of the derived function and g = 1/σ2 is the key parameter of the RBF.
To select the optimal values of the parameters ε, C, and g involved in the SVR model, a grid

search algorithm was used in the present study. The basic idea of the grid search algorithm is to
try every possible value of the parameters in a certain space with a specified step distance, and the
parameters that optimize the performance of the SVR model with the best accuracy can be derived
based on the cross-validation [46]. The process of the algorithm is illustrated through a flowchart, as
shown in Figure 11. Similar to the construction of the neural network in Section 3.1.2., the collected
experimental data of the moment redistribution coefficient were divided into two sets (85% for training
and 15% for testing) for SVR. To increase the efficiency of the SVR training, the input and target data
were normalized within the range of 0.1 to 0.9, in accordance with Equation (5), before the training of
the input data. Based on the grid search algorithm and a six-fold cross-validation, the values of the
parameters for the SVR were determined as follows: ε = 0.01, C = 20, and g = 0.03.
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4. Results and Discussion

4.1. Evaluation of Results

The ANN and SVR models developed in the present study were used to predict the coefficient of
moment redistribution for statically indeterminate structures. The predicted values and experimental
results of the two models for the training and testing sets are presented and compared in Figures 12
and 13. It can be seen intuitively that the predicted values for the both models show good agreement
with the experimental values. To further evaluate the performance of the developed models,
four indices of accuracy were calculated for the training and testing sets: mean squared error (MSE),
determination coefficient (R2), mean absolute percentage error (MAPE) and integral absolute error
(IAE). MSE and R2 are computed using Equations (3) and (4), respectively, and MAPE and IAE are
correspondingly expressed as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ti − ci
ti

∣∣∣∣ (13)

IAE =

n
∑

i=1

[
(ci − ti)

2
]1/2

n
∑

i=1
ti

× 100% (14)
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Figure  12. Comparison of predicted values with ANN model with experimental results: (a) training 
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Figure  13. Comparison of predicted values with SVR model with experimental results: (a) training 
sets; and (b) testing sets. 
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All performance indices for the proposed ANN and SVR models are listed in Table 7,
which indicates that both models have high-precision prediction ability for the coefficient of moment
redistribution. Moreover, the SVR model showed slightly better results than the ANN model.

Table 7. Performance indices of ANN and SVR models.

Performance
Indices

ANN SVR

Training Testing Training Testing

MSE 0.0009 0.0009 0.0001 0.0008
MAPE 0.0989 0.0850 0.0079 0.0526

R2 0.9521 0.9431 0.9950 0.9485
IAE 0.0694 0.0813 0.0080 0.0538

4.2. Comparison with the Different Provisions in Design Code

In most design codes, the permissible moment redistribution β can be calculated using the neutral
axis depth factor c/d as a main parameter, as shown in Figure 14. It can be seen that the provisions
for moment redistribution in various design codes are quite different, such as the upper bound of
β, the limited range of c/d, and the divergence between the predictions. In addition, the amount of
moment redistribution is not only related to c/d but also to the variation in the stiffness distribution
and the bond between the reinforcement and concrete. However, the latter factors are usually not
considered in design codes. The detailed provisions in the design codes are illustrated below.
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In CSA A23.3-14 [47], the negative moments at the supports of continuous flexural members can
be increased or decreased by:

β(%) ≤ 30− 50c/d (15)

and β is no more than 20%.
In BS 8100-1:1997 [48], the neutral axis depth of the cross-section subjected to the largest moment

should be checked by the expression with the permissible percentage of moment redistribution as an
independent variable. In other words, β can also be treated as a function of c/d:

β ≤ 0.6− c/d (16)

with a maximum of 0.3.
The AS 3600-2009 [49] indicates that the elastically determined bending moments at any interior

support of statically indeterminate members with reinforcement of Ductility Class N (the uniform
elongation is no less than 5.0% and the tensile-to yield stress ratio is no less than 1.08) may be reduced
or increased by:

β(%) =


30% c/d ≤ 0.2
(30− 75c/d)% 0.2 < c/d ≤ 0.4
0 c/d > 0.4

(17)

In the DIN 1045-1:2008 [50], fib Model Code 2010 [51] and EN 1992-1-1:2004 [52], the provisions
for the moment redistribution are similar. The statically indeterminate members allowed for moment
redistribution are predominantly subjected to flexure and the ratio of the adjacent spans is in the range
of 0.5–2. Except for the neutral axis depth factor, the coefficient of the moment redistribution also
depends on the ductility of reinforcement and concrete strength, as listed in Table 8.
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Table 8. Coefficient of moment redistribution in DIN1045-1:2008 [50], fib MC2010 [51] and EN
1992-1-1:2004 [52].

Code Ductility of
Reinforcement Concrete Strength Coefficient

DIN1045-1:2008 [50]

High ductility
Lower than C50/60 β ≤ 0.36− 0.8c/d ≤ 0.3

Higher than C55/67 and
lightweight concrete β ≤ 0.28− 0.8c/d ≤ 0.2

Normal ductility
Lower than C50/60 β ≤ 0.36− 0.8c/d ≤ 0.15

Higher than C55/67 and
lightweight concrete 0

Fib Model Code
2010 [51] and EN
1992-1-1:2004 [52]

Class B, C or D
fc′ ≤ 50 MPa β ≤ 0.56− 1.25(0.6 + 0.0014/εcu2)c/d ≤ 0.3
fc′ > 50 MPa β ≤ 0.64− 1.25(0.6 + 0.0014/εcu2)c/d ≤ 0.3

Class A
fc′ ≤ 50 MPa β ≤ 0.56− 1.25(0.6 + 0.0014/εcu2)c/d ≤ 0.2
fc′ > 50 MPa β ≤ 0.64− 1.25(0.6 + 0.0014/εcu2)c/d ≤ 0.2

Note: (1) The ductility of steel are defined by minimum specified values for the characteristic values of the
tensile-to-yield stress ratio (f t/f y)k and the strain at maximum stress εuk. In DIN1045-1, high ductility: ( ft/ fy)k ≥
1.08, εuk ≥ 5.0%; normal ductility: ( ft/ fy)k ≥ 1.05, εuk ≥ 2.5%. In fib Model Code 2010 and EN 1992-1-1:2004,
Class A: ( ft/ fy)k ≥ 1.05, εuk ≥ 2.0%; Class B: ( ft/ fy)k ≥ 1.08, εuk ≥ 5.0%; Class C: ( ft/ fy)k ≥ 1.15 and ≤
1.35, εuk ≥ 7.5%; Class D:( ft/ fy)k ≥ 1.25 and ≤ 1.45, εuk ≥ 8.0%. (2) In DIN 1045-1, C50/60 presents the
cylinder compressive strength fc′ ≤ 50 MPa and the cube compressive strength fcube = 60 MPa; C55/67 presents
fc′ = 55 MPa and fcube = 67 MPa. (3) In fib Model Code 2010 and EN 1992-1-1:2004, εcu2 is the concrete ultimate
strain, for fc′ ≤ 50 MPa, εcu2(%0) = 3.5; for fc′ > 50 MPa, εcu2(%0) = 2.6 + 35[(90− fc′ )/100]4.

The ACI 318-14 [53] uses the net tensile strain εt as an indicator of the permissible moment
redistribution, as given by:

β(%) ≤ 1000εt ≤ 20% (18)

where εt is the tensile strain in the extreme layer of longitudinal tension steel at nominal strength,
excluding strains due to effective prestress, creep, shrinkage and temperature and is required to be
more than 0.75%.

Notably, the coefficient of the moment redistribution specified in the design codes are calibrated
through a safe envelope formed from the available experimental data with a certain probability and not
from the real values such as the database values used in the present study for constructing the models.

To study the performance of different approaches in design codes as well as the proposed ANN
and SVR models, comparisons of their predicted results were conducted. Based on the database
constructed in this study, as well as additional data points obtained from in literature [54], the ratios
of the predicted results obtained from different methods (including the proposed methods and the
provisions in the design codes) to the experimental results βpre/βexp are presented in Figure 15. It can
be seen that most of the ratios βpre/βexp based on the design codes were plotted below a scale of 1.0.
Table 9 summarizes the mean values, coefficient of variation (COV) and IAE of the ratio βpre/βexp for
different methods. The comparison shows that clear differences exist among various design codes.
The most liberal is the BS 8100-1:1997 [48], for which the mean value of the ratio βpre/βexp was 1.35,
and the COV and IAE were 0.62 and 30.68%, respectively. The DIN 1045-1:2008 [50] was moderate with
the ratio βpre/βexp of 1.08. Except for these two design codes, the mean values of the ratios based on
the other design codes range from 0.35 to 0.79, and the COV and IAE are within the ranges of 0.68–0.84
and 38.55–64.11%, respectively. Despite the conservative nature of the code methods, the predicted
values are significantly lower than the experimental results. These indicate the limitations and wide
variations between national standards. Meanwhile, it can be known that the mean values of βpre/βexp

for the ANN and SVR models were fairly close to 1.0, and the values of COV and IAE were very low.
This indicates that the proposed models can estimate the coefficient of moment redistribution with
sufficient precision. In addition, it can also be observed that the predicted results of the additional
specimens outside the database agreed well with the experimental results, which demonstrates the
applicability of the proposed models. In conclusion, the proposed ANN and SVR models can provide
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an approximate basis for the revision and unification of the moment redistribution provisions in the
various codes due to their relative comprehensive consideration of the influential factors as well as
their high accuracy.

Table 9. Comparisons between ANN, SVR models and methods specified in the design codes.

Method Mean COV IAE

ANN 1.0335 0.1095 6.77%
SVR 0.9952 0.0549 2.42%

CSA A23.3-14 [47] 0.6141 0.6818 52.20%
BS 8100-1:1997 [48] 1.3474 0.6208 30.68%
AS 3600-2009 [49] 0.5834 0.7040 45.61%

DIN 1045-1:2008 [50] 1.0761 0.8328 39.61%
Fib Model Code 2010 [51]

EN 1992-1-1:2004 [52] 0.7911 0.7496 38.55%

ACI 318-14 [53] 0.3485 0.8374 64.11%

Figure 15. Cont.
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Figure 15. Comparison of the ratio between the experimental and predicted results using different
methods: (a) ANN; (b) SVR; (c) CSA A23.3-14; (d) BS 8100-1:1997; (e) AS 3600-2009; (f) DIN 1045-1:2008;
(g) fib Model Code 2010 and EN 1992-1-1:2004; (h) ACI 318-14.

5. Conclusions

An experimental study of 24 continuous RC beams and 12 continuous RC frames with various
design parameters was performed to investigate the whole process of moment redistribution. Moreover,
ANN and SVM models were established using MATLAB software (MathWorks, Neddick, MA, USA)
for predicting the coefficient of the moment redistribution based on a reliable database with a total of
111 datasets, which was achieved using the experimental results in this study and the test data gathered
from the published literature. The following conclusions can be drawn from the present study:

(1) In statically indeterminate RC structures, moment redistribution occurs during the whole
loading process, beginning from the cracking of the concrete and increasing sharply after the yielding
of the reinforcement at the critical section. Due to the complex process, the influential factors related to
the material, structure and loading should be fully considered in the prediction models.

(2) Through a process of trial and error, a BP neural network model trained by the
Levenberg–Marqardt (LM) algorithm, with 8 neurons in the input layer and 13 neurons in the hidden
layer, was selected as being optimal for predicting the coefficient of the moment redistribution. The R2

and MSE values for both the training and testing data were 0.95 and 0.0009, respectively, denoting that
the proposed ANN models have high prediction accuracy.

(3) Through a grid search algorithm, the values of the parameters involved in the SVR model
were determined as ε = 0.01, C = 20, and g = 0.03. With RBF as the kernel function, the proposed SVR
model exhibited good predictive performance. The values of R2 for the training and testing data were
0.99 and 0.95, and the MSE values were 0.001 and 0.008, respectively. Moreover, the comparison of
the performance indices showed that the accuracy of the SVR model is slightly higher than the ANN
model for predicting the coefficient of the moment redistribution.

(4) Efficiencies of the ANN and SVR model were compared with six structural design codes.
Despite the conservative nature of the code methods, most predicted values with the design code
were significantly lower than experimental results since the range of the mean values and the COV for
the ratio βpre/βexp were 0.35–1.35 and 0.62–0.84, respectively, whereas the mean values of βpre/βexp

for the two proposed models were closer to 1.0 and the COV values of βpre/βexp were 0.11 and 0.05,
respectively. The predicted values closely agreed with the experimental results.

ANN and SVR can be used as effective methods for the design of statically indeterminate RC
structures because they can allow structural designers to accurately predict the degree of moment
redistribution without conducting costly and time-consuming confirmatory experiments. Further
parametric studies can be carried out to analyze the impacts of input parameters on moment
redistribution to help the designers make more rational use of these parameters. Based on the
large amount of results obtained from the models with respect to various input values, mathematical
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formulae with a certain safe guarantee rate can be established in future research, which may provide
convenience for the application of the designers and references for the design codes.

Nevertheless, the developed models are valid within the range of variables investigated in this
study and the local invariance of some input parameters may lead to slightly negative effects on
the accuracy and modeling capability of the developed algorithms. Therefore, further experimental
research is needed to expand the database and thereby increase the accuracy and applicability of
the models.
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