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Abstract: With an extension in service years, bridges inevitably suffer from performance deterioration.
Columns are the main components of bridge structures, which support the superstructure.
The damage of pier columns is often more harmful to bridges than that of other components.
To accurately evaluate the time-varying characteristics of corroded columns, this paper proposes a
new model for the bearing capacity evaluation of deteriorated reinforced concrete (RC) eccentric
compression columns based on the Hermite interpolation and Fourier function. Firstly, the axial
compression point, the pure bending point and the balanced failure point were selected as the basic
points, and the deteriorated strength of these basic points was calculated by considering factors
such as concrete cracking, reduction of reinforcement area, buckling of the steel bar, bond slip and
strength reduction of confined concrete. After that, the interpolation points were generated by a
piecewise cubic Hermite interpolating polynomial, and the explicit expression of the interpolation
points fitting function was realized by the trigonometric Fourier series model. Finally, comparison
studies based on measured data from forty-five corroded RC eccentric compression columns were
conducted to investigate the accuracy and efficiency of the proposed method. The results show that:
(1) the prediction results for bearing capacity of corroded RC columns are in good agreement with
the measured data, with the average ratio of predicted results to test results at 1.06 and the standard
deviation at 0.14; (2) the proposed model unifies the three stress states of axial compression, eccentric
compression and pure bending, and is consistent with the continuum mechanics characteristics; (3)
the decrements of axial load carrying capacity for 10% and 50% of the corrosion rate are 31.4% and
45.2%, while in flexure they are 25.4% and 77.4%, respectively; and (4) the test data of small-scale
specimens may overestimate the negative effect of corrosion on the bearing capacity of actual
structures. The findings in this paper could lay a solid starting point for structural life prediction
technologies based on nondestructive testing.

Keywords: bridge engineering; bearing capacity model; reinforced concrete column; materials
degradation; corrosion

1. Introduction

As the key node of interoperability of traffic systems, the bridge is a vital guarantee for the
development of the economy and social safety [1]. However, the problem of deterioration of bridge
structures has become acute as time goes on [2–4]. According to the Federal Highway Administration
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report, nearly 40% of the 61,5002 bridges in the United States have been in service for more than
50 years by the end of 2017, and 54,560 bridges are defective [5]. The capital requirement for repairing
these bridges is over $123 billion. Similarly, the safety situation of bridges in China is not optimistic.
At present, about 13% of bridges in China have serious problems caused by structural damage
and natural deterioration [6]. Steel corrosion is recognized as one of the most severe deterioration
factors that affect the durability of reinforced concrete (RC) bridges. Thus, the research on bearing
capacity time-varying evolution of corroded structures is of great scientific significance and engineering
application value in order to determine the operation status of existing bridges, as well as reduce the
maintenance costs.

The multiple effects of reinforcement corrosion on structures mainly include three aspects, that
is, the deterioration of reinforcement performance [7], the concrete cover cracking and spalling [8],
and the failure of the bonding mechanism between concrete and reinforcement [9]. Many studies
have taken into account the above effects on the capacity assessment, such as nondestructive testing
methods, which can use direct approaches, e.g., Mak et al. [10] and Bossio et al. [11] investigated
the correlation between corrosion-induced surface crack width and level of internal corrosion; or
indirect methods, e.g., Bossio et al. [12] examined the corrosion effects on the seismic capacity of
reinforced concrete structures, which often requires a transition from material damage to structural
performance degradation.

In bridge structures, eccentric compression members such as piers and main arches often act
as the crucial bearing units. The damage of these eccentric compression members is often more
unacceptable than that of other components. AASHTO 2011 (American code) [13] and JTG/T J21-2011
(Chinese code) [14] provide the evaluation methods for existing bridges, which are introduced briefly
in Appendices A and B. However, in the methods provided, the deteriorated resistance of serving RC
bridges is simulated as a product of initial resistance and deterioration coefficients. The deterioration
coefficients depend on detection data, which reflect the geometric characteristics, damage status
and state parameters. Although the deterioration coefficients are quantified by a fixed rating table,
the calculation process is still descriptive. The calculation results inevitably include the effects of the
subjectivity of state rating and uncertainty of weight division. There is still a certain gap between the
descriptive assessment and quantitative evaluation in the practical engineering application.

To quantitatively evaluate the time-varying characteristics of the corroded RC columns bearing
capacity, experimental research [15–17] has been carried out. Moreover, the bearing capacity models
of corroded RC columns have been developed, which can be generally classified into two categories.
One is the piecewise calculation method, which divides RC eccentric compression columns into an axial
column, small eccentric compression column and large eccentric compression column. According to the
different stress state of the components, the formulas for calculating the bearing capacity of corroded
RC columns are segregated. For example, Xia et al. [18] examined the relationships between the
average cross-sectional area loss of the steel bar, the average and maximum crack widths of concrete
cover, and the strength loss of the RC columns, and proposed the load-carrying capacity model of
large eccentric and small eccentric columns, respectively. Li et al. [19] built an analytical framework
regarding the strength of a uniaxial short column considering the concrete cover spalling, reduction of
concrete strength and supporting role of stirrup to longitudinal reinforcement caused by a corrosion
stirrup. According to the process of concrete cracking induced by the longitudinal rebar corrosion,
Zhang et al. [20] divided the bearing capacity degeneration into three stages: pre-cracking, cracking
and splitting, and the assessment model of the bearing capacity for the small eccentric compressive
members was established, considering the biaxial stress condition in the stage of pre-cracking,
the shear-tensile stress condition in the stage of cracking and the failure of the cover in the stage
of splitting. Such models focus on the mechanism of materials deterioration on the structure under a
single mechanical state. The essence is to modify the residual strength of a dangerous section under
the specific eccentricity, which keeps good consistency with the calculation formulas for uncorroded
members. In fact, the eccentric compression component is a member carrying both the bending
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moment and axial force. The effect of the axial force and bending moment is mutually restrictive.
When the axial force is given, there is a unique bending moment corresponding to it [21]. A continuous
moment–axial force (M–N) curve is the complete expression of the bearing capacity of members whose
geometrical dimensions and physical properties are determined. The second type is the model based
on the M–N curve. Tapan et al. [22,23] presented a bridge pier column strength evaluation method
utilizing a numerical procedure based on the layer method. The method uses damaged material
properties, and accounts for amount of corrosion and exposed bar length for each reinforcement,
concrete loss, bond failure, and type of stresses in the corroding reinforcement. Guo et al. [24]
established a numerical model to obtain a time-varying moment–axial domain of sound and corroded
bridge piers by discretizing the cross-sections into a series of fiber cells. Akiyama et al. [25] built a
semi-quantitative assessment framework for the interaction diagrams development using a simplified
nonlinear finite element method. Campione et al. [26] developed a simplified model to calculate the
interaction diagrams of RC columns subjected to corrosion processes, which was constituted by three
branches and four points. Compared to the single point calculation mode of the first type models,
an M–N curve formed by multi-points connection can more comprehensively and intuitively reflect
the corrosion effect on the degradation of bearing capacity of components under different loading
conditions. However, how to construct the M–N curve of corroded members has not yet reached a
unified consensus. More work is required to further understand and improve the bearing capacity
evaluation method of RC components.

This paper mainly focuses on the bearing capacity evaluation method for corroded RC columns
based on M–N curves. With consideration of the mathematical thoughts in [27,28], a new federated
bearing capacity evaluation method is established by integrating Hermite interpolation and Fourier
fitting, which unifies the three stress states of axial compression, eccentric compression and pure
bending. Unlike the existing calculation approaches, there are only three feature points that need to be
computed to obtain continuous smooth M–N curves in this paper, which has obvious advantages in
computational complexity. The performance of the proposed method is demonstrated by experimental
data from forty-five RC columns. Compared with the prediction accuracy of the existing model,
the proposed method can achieve satisfactory prediction results.

2. The Proposed Model

For RC members whose sectional dimension, reinforcement arrangement and material strength
are determined, the pure compression and pure bending can be regarded as two ultimate states of
eccentric compression. From a continuum mechanics point of view, the transition between three
mechanical states of pure compression, eccentric compression and pure bending should be continuous.
The curves of eccentric compression members should be smooth without breaking points. Based on
the above properties, this paper presents a bearing capacity evaluation model of deteriorated eccentric
members based on a unified formula (Figure 1). First, the axial compression point, the pure bending
point and the balanced failure point are selected as the basic points because of the definite stress
states. The deteriorated strength of the basic points is calculated by considering various deterioration
factors caused by steel corrosion. Second, the interpolation points are generated by the piecewise cubic
Hermite interpolating polynomial (PCHIP). Third, the explicit expression of interpolation points fitting
function is realized by the trigonometric Fourier series model. The flowchart of the proposed model is
shown in Figure 2.
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Figure 2. The flowchart of the proposed method.

The rest of this section is organized as follows. In Section 2.1, the residual strength of the corroded
axial compression point, considering concrete cracking, reduction of reinforcement area, buckling of
the steel bar and strength reduction of confined concrete, is elaborated. The model for prediction of
pure bending bearing capacity, considering reduction of reinforcement area, buckling of the steel bar
and bond slip, is provided in Section 2.2. Section 2.3 presents the model for computing the balanced
failure point by considering buckling of the steel bar, bond slip, reduction of reinforcement area and
strength reduction of confined concrete. The Hermite interpolation and Fourier fitting method are
addressed in Sections 2.4 and 2.5, respectively.

2.1. Axial Compression Point

The cross section of a corroded RC column under axial compression can be decomposed into
four different regions (Figure 3), i.e., the cracking area of unconfined concrete A1c, cracking area of
confined concrete A2c, no cracking area of confined concrete A3c and the longitudinal reinforcement
area considering the buckling effect A1,red [29].
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Figure 3. The bearing capacity model of corroded reinforced concrete (RC) column under axial
compression. A1c: cracking area of unconfined concrete; A2c: cracking area of confined concrete; A3c,
no cracking area of confined concrete; A1,red: the longitudinal reinforcement area considering the
buckling effect; H and b: the height and width of the rectangular column, respectively; s1: the lateral
spacing of longitudinal reinforcement; δ: the thickness of the concrete cover.

The bearing capacity model and strength contribution of the areas can be expressed as

N0 = ψ fc A1c + ψ fcc A2c + fcc A3c + β
(

A1,red fy
)
, (1)

A1c = (2bδ + 2Hδ)− 4δ2, (2)

A2c = bH −
[
(2bδ + 2Hδ)− 4δ2

]
− [(b− 2δ− 2ϕst − 2ϕ1)(H − 2δ− 2ϕst − 2ϕ1)], (3)

A3c = (b− 2δ− 2ϕst − 2ϕ1)(H − 2δ− 2ϕst − 2ϕ1), (4)

where fcc and fc represent the compressive strength of the confined concrete and unconfined concrete,
respectively; ψ is the strength attenuation factor of concrete under compression; β is the yield strength
attenuation factor of longitudinal reinforcement considering the buckling effect; ϕst and ϕ1 are the
diameters of the uncorroded stirrup and longitudinal bar, respectively; H and b are the height and
width of the rectangular column, respectively; and δ denotes the thickness of the concrete cover.

The attenuation factor ψ describes the characteristics of concrete expansion cracking caused by
corrosion of steel bars, which leads to reduction of the concrete compressive strength. The mathematical
model can be given as [30]

ψ=
f ∗c
fc

=
1

1 + k 2πnbars(vrs−1)X
bε0

, (5)

where f ∗c is the reduced compressive strength of concrete; k is the coefficient related to bar roughness
and diameter, as suggested in [30], k = 0.1; vrs is the volume expansion ratio of corrosion products;
nbars denotes the number of bars in the compression area; ε0 is the peak strain of normal concrete,
ε0 = 0.002; and X is the corrosion depth, which describes the uniform corrosion characteristics of steel
bars. According to [31], the reduction in the diameter of a corroding reinforcing bar after t years X
(mm) can be predicted by

X = 0.0116icorrt, (6)

where icorr denotes the corrosion current density (µA/cm2).
Due to Poisson’s effect, transverse deformation occurs when concrete is subjected to an axial load.

When the axial strain is large enough, the transverse strain is restrained by stirrups, which improve
the strength and ductility of concrete. The reinforcement characteristic value is an indispensable
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one among the many factors that affect the confined concrete. As suggested in [32], the compressive
strength of the confined concrete can be calculated by

fcc = (1 + 1.79λv) fc, (7)

where λv is the reinforcement characteristic value. When the corrosion of stirrups is not included,

λv = µv
fs,y

fc
, (8)

µv =
πϕ2

stC
sA3c

, (9)

where µv is the stirrup ratio without considering the corrosion of stirrups; fs,y is the yield strength of
uncorroded stirrups; C is the length of stirrups; and s is the space between stirrups.

When the corrosion of stirrups is not ignored, the stirrup ratio, considering the corrosion of
stirrups µvc, can be evaluated as

µvc =
Ast,red(t)C

sA3c
, (10)

fsc,y =
(
1− ayηs

)
fs,y, (11)

where Ast,red(t) represents the reduced area of the corroded stirrup; fsc,y is the yield stress of corroded
reinforcement bar; ηs represents the corrosion rate of reinforcement; and ay is the influence coefficient
of pitting corrosion on bar’s yield strength, ay = 1.18 when the bar is corroded in the solution,
and ay = 2.10 in a chloride environment [33].
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The reduced area of stirrups caused by uniform and pitting corrosion can be derived by

Ast,red(t) =
π(ϕst − 2X)2

4
− Ap(t), (12)

where Ap(t) is the reduced area due to pitting corrosion (see Figure 4), which can be calculated by [31]

Ap(t) =


A1 + A2

πϕ2
0

4 − A1 + A2
π·ϕ2

0
4


p(t) ≤ ϕ0√

2
ϕ0√

2
< p(t) ≤ ϕ0

p(t) > ϕ0

, (13)
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where

A1 =
1
2

[
θ1

( ϕ0

2

)2
− a

∣∣∣∣∣ ϕ0

2
− p(t)2

ϕ0

∣∣∣∣∣
]

, (14)

A2 =
1
2

[
θ2 p(t)2 − a

p(t)2

ϕ0

]
, (15)

a = 2p(t)

√
1−

(
p(t)
ϕ0

)2
, (16)

θ1 = 2arcsin
(

a
ϕ0

)
, (17)

θ2 = 2arcsin
(

a
2p(t)

)
, (18)

where p(t) is the pitting depth, which can be evaluated as

p(t) = 0.0116icorrtR, (19)

in which the pitting factor R =
Maximum depth of pit
Average depth of pit = 4 in this work.

It should be emphasized that the failure of reinforcing steels often results from the ductility
reduction of the local area caused by pitting corrosion. For longitudinal compressive steel bars,
corrosion easily leads to concrete cover peeling, which greatly increases the risk of buckling. In this
paper, the maximum allowable stress of compression bars is the minimum between the yield strength
and critical stress. The critical stress can be calculated as [34]

σcr =
3.46
√

Er Ik1

Aall
, (20)

Er =
4EsEp(√

Es +
√

Ep
)2 =

4Esβ1(
1 +

√
β1
)2 , (21)

with

I =
πϕ4

1
64

, (22)

where Ep is the hardening modulus of the steel bar, Ep = β1Es, with β1 = 1 in the elastic range or
assumed to be 0.03 at the yielding stage [29]; Aall is the area of longitudinal reinforcement; Er is the
elastic modulus of the corroded steel bar; Es is the elastic modulus of the steel bar; and k1 denotes the
stiffness parameter, for a corner bar, which can be calculated by

k1 =
√

2
Ep Ast

bs
, (23)

and for a mid-face bar, by

k1 =
48Ep Ist

s3
1s

, (24)

where Ist is the inertia moment of a stirrup, Ist =
πϕ4

st
64 ; Ast is the area of stirrup, Ast =

πϕ4
st

4 ; and ϕst is
the diameter of stirrup.

The yield stress attenuation coefficient β of longitudinal reinforcement caused by buckling can be
defined as β = σcr

fy
, and β ≤ 1.
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2.2. Pure bending point

The reference model for predicting the flexural strength of non-corroded reinforced concrete
section is based on the plane section theory and assumes that there is no slip between the steel bar
and concrete. When steel corrosion happens, slip appears between the concrete and steel bar, which
reduces the effect of strength and ductility. To take into account the slip effect, the reduction factor of
bond strength γ is introduced by assuming that the yield stress of longitudinal reinforcement between
two continuous bending cracks decreases uniformly. In addition, γ is defined here as the ratio of the
bond strength of the corroded bars to the bond strength of the uncorroded bars.

A model with consideration of the influence of concrete cover, confinement of stirrups and
corrosion current density on the bond strength was proposed by Lin et al. [35], which can achieve
satisfactory prediction results. The mathematical form can be expressed by

γ =

{
1 ηs ≤ 1.5%
e−ω(ηs−1.5%) ηs > 1.5%

, (25)

ω =


k1+k2(δ/ϕ1)

k4ξst+1
k1+k2(δ/ϕ1)

k4ξst+1

(
k3 ln

(
icorr
200

)
+ 1.0

) icorr ≤ 200µA/cm2

icorr > 200µA/cm2 , (26)

where ω is the degradation coefficient; ξst is the stirrup index of confinement, ξst =
Ap

st
nt ϕts , Ap

st is the

cross-sectional area of the stirrups in the splitting plane in mm2; nt and ϕt are the number and diameter
of the tensile steel bar, respectively; and k1, k2, k3 and k4 are parameters that can be determined by
experience, k1 = 3.23, k2 = −0.88, k3 = 0.17, k4 = 43.54. It should be emphasized that the four empirical
parameters are influenced by the test details, such as the specimen form, the corrosion current density,
the loading method and the shape of deformed ribs on the surface of steel bars, and more accurate
values require further verification and optimization.

In Equation (26), the adverse effect caused by the loss of the stirrup section is considered by
introducing ξst, however, the damage of concrete cover and the reduction of restraint capacity due to
the corrosion of stirrups are not reflected in the model. To cope with the above problem, the reduction
ratio coefficient Dst (Dst < 1.0), proposed by [35], is adopted in this study to calculate the modified
reduction factor of bond strength as

γm = Dstγ. (27)

When calculating with Equations (25) and (26), the loss of the stirrup section is not considered,
that is, the detrimental effect of stirrup corrosion on bond strength is completely conveyed by Dst,
Dst = 1− 0.68ηst, where ηst is the mass loss rate of stirrups.

The distribution of stress and strain in the pure bending section is shown in Figure 5. According to
the equilibrium condition of the force, the equivalent rectangle height of compression zone in concrete
x can be calculated by

x =
Af,red(γ− β) fy

α1 fccb
, (28)

where Af,red is the reduced area of the corroded longitudinal bar; α1 is coefficient with α1 = 0.94∼1.00
when the strength grade of concrete changes from C80 to C50.

The ultimate flexural strength is obtained by

M0 = Af,red(γ + β) fy

(
H
2
− a′s

)
+ Af,red(γ− β) fy

(
H
2
− x

2

)
. (29)

where a′s represents the distance between the resultant force point of reinforcement and the compression
edge of the section, a′s = δ + ϕst +

ϕ1
2 .
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compression edge of the section; εst: the ultimate tensile strain of the steel bar.

For symmetric reinforcement, compressed steel bars will not yield when the ultimate strength
is reached. The stress of the compressive steel bar is unknown here; assume x = 2a′s. In this case,
the ultimate flexural strength is obtained by

M0 = Af,redγ fy
(

H − 2a′s
)
. (30)

2.3. Balanced Failure Point

For the eccentric compression member, there is always a point in the M–N curve that makes
the steel bars and the compressive concrete reach ultimate strength simultaneously. This point is the
so-called balanced failure point, which is also the boundary point between large and small eccentric
compression member. At this point, the eccentric compression member achieves the maximum bending
moment that it can bear. Thus, the balanced failure point is also termed as the peak point. For the
corroded eccentric compression members, how to determine the relative height of the compression
zone corresponding to the balanced failure point is critical.

The relative height of the compression zone is relative to the elastic modulus and yield strength
of reinforcement. The elastic modulus changes little during the corrosion process, and the yield
strength decreases after the corrosion of reinforcing bars. Corrosion of reinforcing bars results in
deterioration of the bond performance between reinforcing bars and concrete, which destroys the
strain compatibility between reinforcing bars and concrete. A modified model for calculating the
relative height considering the corrosion is established in [36], which is given as

ξbc = xbc/h0 =
β2

1 + Φ(ηs) fred
εcuEs

, (31)

Φ(ηs) = 0.27152ηs + 1, (32)

where xbc represents the height of the compression zone; h0 is the effective depth of section, h0 = H− a′s;
Φ(ηs) represents the strain incompatibility coefficient; fred is the nominal yield strength of the corroded
steel bar; εcu is the ultimate strain of concrete, εcu = 0.0033 in this study; and β2 is coefficient with
β2 = 0.74 ∼ 0.80 when the strength grade of concrete changes from C80 to C50.
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The axial force and bending moment of the balanced failure point can be obtained by

NB = α1xbc fccb + Af,red(β− γ) fy, (33)

MB = Af,red(γ + β) fy

(
H
2
− a′s

)
+ α1xbc fccb

(
H
2
− xbc

2

)
. (34)

2.4. Hermite Interpolation

After obtaining the three basic points, how to build a continuous smooth M–N curve based on
the above three points became the focus of this study. A quadratic parabola can meet the fitting
requirements based on only three-points. However, the peak point of the M–N curve constructed
by a quadratic parabola often deviates from the balanced failure point. To address this problem,
the Hermite interpolation is used in this work. There are only two interpolated points required to
establish the Hermite function, and four boundary conditions, including the function values and the
first order derivative at the two nodes, must be satisfied. As the continuity and differentiability of the
original function are presented, the Hermite function is also named as the shape-preserving function.
The value and derivative of the Hermite function at any interpolation knot equals the real value and
derivative of the original function, which could make the interpolation function much more easily
converged to the prescribed target [37].

In the general case, a = x0 < x1 < x2 < · · · xn = b is a partition of the interval [a, b], for the given
points (xi, yi, di), where i = 0, 1, 2, · · · , n, yi and di are the function value and the first derivative value
at the point xi, assuming hi = xi+1 − xi, t = x−xi

hi
; the cubic Hermite interpolation spline curves on the

subinterval [xi, xi+1] can be expressed as

Hi(x) = αi(t)yi + αi+1(t)yi+1 + βi(t)hidi + βi+1(t)hidi+1, (35)

where αi(t), αi+1(t), βi(t), βi+1(t) are the basis functions, which can be expressed as
αi(t) = 1− 3t2 + 2t3

αi+1(t) = 3t2 − 2t3

βi(t) = t− 2t2 + t3

βi+1(t) = −t2 + t3

, (36)

According to the definition and Equation (36), the basis functions should satisfy the
following conditions:

αi(0) = 1, αi+1(0) = 0, βi(0) = 0, βi+1(0) = 0, αi(1) = 0, αi+1(1) = 1, βi(1) = 0, βi+1(1) = 0,
α′i(0) = 0, α′i+1(0) = 0, β′i(0) = 1, β′i+1(0) = 0, α′i(1) = 0, α′i+1(1) = 0, β′i(1) = 0, β′i+1(1) = 1,
and αi(t) + αi+1(t) = 1, βi(t) = −βi+1(1− t).

Standard cubic Hermite interpolation spline curves defined by Equation (36) satisfy Hi(xi) = yi,
Hi(xi+1) = yi+1, Hi′(xi) = di, and Hi′(xi+1) = di+1. In addition, the second derivative of the
polynomial used in the PCHIP function is not continuous. This lack of continuity in the second
derivative ensures that the original shape of the peak is preserved with only a minimal degree of
curvature existing between data points, resulting in an interpolated peak that retains the original
maxima and minima of the sampled peak [38].
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2.5. Fourier Fitting

After the obtainment of interpolated points, a Fourier model is adopted to realize the explicit
expression of interpolation data, because of its high efficiency, fast speed, and sufficient fidelity [39].
The trigonometric Fourier series form can be constructed by

f (x) = a0 +
m

∑
i=1

(ai cos(iωx) + bi sin(iωx)), (37)

where a0, ai, bi and ω represent the coefficient of the Fourier function; x and f (x) are the axial force
and bending moment of the interpolation point, respectively; and m is the number of terms.

Equation (37) can be expressed as AX = Y, with{
X = [a0, a1, b1, a2, b2, · · · , am, bm]

Y = [ f (x1), f (x2), · · · , f (xn)]
, (38)

and

A =


cos(wx1) sin(wx1) cos(2wx1) sin(2wx1) · · · cos(mwx1) sin(mwx1)

cos(wx2) sin(wx2) cos(2wx2) sin(2wx2) · · · cos(mwx2) sin(mwx2)
...

...
...

...
...

...
...

cos(wxn) sin(wxn) cos(2wxn) sin(2wxn) · · · cos(mwxn) sin(mwxn)

, (39)

As m ≤ [n/2] in Equation (39), the least squares solution is used in this paper. The least squares
solution can be obtained by

X =
(

AT A
)−1

ATY. (40)

In order to evaluate the accuracy and stability of the fitting model, the adjusted coefficients of
determination are utilized in this study [40], which are given as:

SSE =
n

∑
i=1

wi(yi − ŷi)
2, (41)

SST =
n

∑
i=1

wi(yi − yi)
2, (42)

R2
adj = 1− SSE/(n− p− 1)

SST/(n− 1)
, (43)

where SST is the residual sum of squares of y, which reflects the fluctuation of y; SSE is the sum of
square error of y, which reflects the effect of the error on response fluctuation; yi is the bending moment

at the interpolation knot, yi is the mean value, yi =
1
n

n
∑

i=1
yi; ŷi is the evaluation value of the bending

moment at the interpolation knot; and p is the number of non-constant terms in the Fourier fitting
function. The closer the modified coefficient of determination R2

adj is to 1, the higher the accuracy of
the response surface model achieves.

In this paper, the PCHIP and Fourier series fitting model were carried out in MATLAB 2011a.

3. Model Validation

In this section, two levels of verification are carried out. First, the prediction values obtained by
the proposed model are compared with the experimental data measured by different researchers to
illustrate the effectiveness and stability of the proposed method. After that, the comparison with the
existing models is implemented to further verify the accuracy of the proposed model.
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3.1. Validation by Experimental Data

Fifty corroded RC columns from [18,19,41–43] are utilized to verify the accuracy of the model.
The material properties, physical dimensions, load eccentricities and bearing capacity of the fifty
specimens mentioned above are given in Appendix C. The ratio of results predicted by the proposed
model to experimental results is shown in Figure 6.Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 22 
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Figure 6. Comparison between the predicted values and experimental data.

In Table A1, the data of specimen CUW-e1 are not given as it was broken during the experiment.
Based on the remaining forty-nine specimens, the ratio of prediction results to experimental results
is satisfactory with a mean value of 1.09 and standard deviation of 0.16. Comparing with the data
of members with the same dimension, it is easy to see that the data of the specimens AS-3, AL-3,
BL-2 and BL-4 are abnormal, whose load carrying capacity is lower than the specimens with a greater
corrosion degree. Possible causes include the fabrication failure of concrete components, the error of
eccentricity setting, and the unstable performance of concrete materials. After removing the outliers,
the accuracy improves, as the mean value of the ratio of prediction results to experimental results is
1.06, and the standard deviation is 0.14. As shown in Figure 6, only two data points (including an
outlier) exceed the 95% confidence interval. The prediction values of the proposed model agree well
with the experimental data from different scholars.

3.2. Validation by Existing Models

In this section, the performance of this proposed method is further demonstrated on a numerical
example in [22,26], referring to a column suffering from corrosion attack. As shown in Figure 7,
the column has a square cross-section of side 610 mm. The longitudinal reinforcement is constituted
by four 28-mm bars for each side, with a cover of 28 mm. The stirrups are constituted by 12-mm bars
with a pitch equal to 250 mm. The reinforcement ratio is 1.98%. All longitudinal reinforcements and
stirrups have the same corrosion rate. Table 1 gives the mathematical model of the moment–axial force
interaction diagrams established by the proposed method. As can be seen from Table 1, the Fourier
model fitting to interpolating points has high accuracy with a goodness of fit close to 1, which can
meet the need of constructing a smooth M–N curve.
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Table 1. Fourier fitting model to data in Figure 7.

The
Proposed
Method

General Model Fourier3:

f(x)=a0+
3
∑
i=1

(aicos(iωx)+bisin(iωx))

Goodness
of Fit

by R2
adj

0% −407.2 986.9 1833 225.9 −246.7 −39.12 −37.11 0.0002071 1

10% 6.43 × 1013 −9.64 × 1013 −1.92 × 1012 3.86 × 1013 1.54 × 1012 −6.42 × 1012 −3.84 × 1011 4.48 × 10-6 0.9999

50% 300 −146 168.6 −23.34 67.82 −3.868 15.87 0.0007697 0.9995

As can be seen from Figure 7, the proposed method is in good agreement with the M–N curves
calculated by [22] (numerical model) and [26] (simplified model with three branches and four points).
Taking data in [22] as the reference value, the maximum relative percentage error of axial compression
point, pure bending point and balanced failure point is only 7.9% under the no corrosion condition.
For a corrosion rate of 50%, the scatter is only in the range of 3.8% for compression.

Figure 7 also shows that the bearing capacity of reinforced concrete members is significantly
reduced with an increase in corrosion degree. When the corrosion rate increases from 10% to 50%,
the bearing capacity of the axial compression point degenerates from 31.4% to 45.2%, while the decrease
rate in pure bending point ranges from 25.4% to 77.4%. The balanced failure point moves down and to
the left and the critical eccentricity at this point increases first and then decreases with an increase in
corrosion degree. When the corrosion rate increases from 10% to 50%, the axial force of the balanced
failure point decreases from 48.0% to 67.6%, while the bending moment decreases from 30.3% to 65.9%.

In addition, as it directly connects three kinds of mechanical states: pure bending, eccentric
compression and axial compression, the proposed model could better explain the continuous transition
of the adjacent stress state. Compared with the above two models, the model proposed in this paper
is smoother and has less computational complexity with only three characteristic points needing to
be calculated.

Furthermore, this paper discusses the effects of different deterioration factors on the degradation of
bearing capacity under different loading conditions. For instance, Figure 8 shows the strength contributions
of the four parts A1c, A2c, A3c and A1,red on the axial compression bearing capacity under different corrosion
levels. As seen from Figure 8, with the increase in the corrosion rate, the contributions from A1c and A2c

decrease significantly because of the tremendous influence of concrete cracking, which accounts for 80% of
the total decline when the corrosion rate is 10%, while for a corrosion rate of 50%, the decrement proportion
is 73%; the contribution reduction of A1,red comes second; and A3c changes least. Thus, among the several
factors of deterioration in axial compression, concrete cracking predominates.
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Furthermore, this paper discusses the effects of different deterioration factors on the 
degradation of bearing capacity under different loading conditions. For instance, Figure 8 shows the 
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Unlike the axial compression state, according to Equation (30), the bearing capacity of members
under the pure bending state mainly depends on the contribution of reinforcement, among which
bond slip is the most remarkable factor affecting the reduction of bearing capacity, followed by the
reduction of reinforcement area. After the above comparison, it can easily be seen that when the stress
state transits from pure bending state to pure compression state, the influence of concrete on bearing
capacity is gradually strengthened, while the contribution of reinforcement is weakened gradually.

4. Structural Parameters Sensitivity Analysis of Influence on Corrosion Damage

At present, research on the bearing capacity evolution of corroded structures is mainly carried out
by experiments. However, a full-scale model test is arduous to execute, and limited by experimental
sites, funds and test equipment. The rationality of actual bridge structures performance evolution
predicted by the results of a small-scale test is also given in this section.

This section takes the example given in Section 3.2 as the benchmark model. The following six
cases are compared: (1) the reinforcement ratio remains constant, and the section size is set to b × h
= 1200 × 1200 mm; (2) concrete strength decreases by 20 %, fc = 22.08 MPa; (3) the yield strength of
reinforcement increases by 20%, fy = 496.8 MPa; (4) the diameter of the reinforcing bar is increased to
32 mm; (5) the thickness of the concrete cover increased to 38 mm; (6) the diameter of the stirrups is
reduced to 8 mm. Comparison results are shown in Figure 9, where Fcor/F refers to the ratio of the
reduced force caused by corrosion to force in the no corrosion members.

As shown in Figure 9, the sectional dimension has a certain effect on the degree of corrosion
influence. When the sectional dimension increases, the detrimental effect of corrosion on the axial
compression bearing capacity decreases. The main reason for this phenomenon is that with an increase
in sectional dimension, the proportion of core concrete area increases, while the negative effect of steel
corrosion on this area is relatively small, so the adverse effect of corrosion on the structure is weakened.
The improvement in yield strength of steel bars may lead to over-estimation of the reduction of the axial
force at the balanced failure point, while underestimate the impact of corrosion damage on the bending
moment. The strength of concrete, the thickness of concrete cover, the diameter of reinforcement and
the diameter of stirrups have little implications on the influence degree evaluation of the bearing
capacity reduction caused by corrosion damage.
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influence. When the sectional dimension increases, the detrimental effect of corrosion on the axial 
compression bearing capacity decreases. The main reason for this phenomenon is that with an 
increase in sectional dimension, the proportion of core concrete area increases, while the negative 
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structure is weakened. The improvement in yield strength of steel bars may lead to over-estimation 
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5. Conclusions

In this paper, the lack of unified consensus for a quantitative assessment of corroded reinforced
concrete pier columns is verified, and it is found that existing codes are not able to provide the
quantitative calculation of corroded RC eccentric compression members. To address this deficiency,
the interpolation and Fourier fitting model are employed to construct the M–N curve, and are validated
by the existing test data and models. Some concluding remarks can be summarized as follows.

(1) The traditional method needs to determine the eccentric compressive properties (large or
small eccentricity) first, and then calculate the bearing capacity according to different formulas.
The stress state of compressed steel bars also needs to be judged, which makes the traditional method
cumbersome and inconvenient in engineering applications. In addition, the inconsistency between the
formulas for calculating the bearing capacity of compression members with large and small eccentricity
makes the derivatives at the balanced failure point unequal. A cusp appears on the M–N curve, and the
curve is not smooth. To resolve the above imperfections, this paper proposes a new construction
method for the M–N curve. The proposed model connects bending, eccentric compression and axial
compression by a unified formula, and achieves a better interpretation of the continuous transition of
the adjacent stress state with simple calculations and less computational complexity.

(2) Comparison results based on the experimental data from forty-five corroded eccentric
compression columns demonstrated that the prediction performance of the proposed method is
satisfactory with an average ratio of predicted results to test results of 1.06 and a standard deviation of
0.14; the satisfactory results are also obtained from comparison with the existing models.

(3) The unified model provides a new feasible method for the construction of the M–N curve
used for bearing capacity evaluation of deteriorated RC members. The theories are well designed and
established, and the prediction result is more comprehensive which can intuitively reflect the effect of
corrosion on the bearing capacity under different mechanical conditions.

In this work, the relationship between the decrease in bearing capacity and corrosion rate is
established. To predict the time-varying bearing capacity of actual bridge structures, the model of
corrosion initiation time and corrosion rate under different environments should be analyzed for
further study.
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Appendix A. AASHTO 2011 (American Code)

As stated in the AASHTO Manual for Condition Evaluation of Bridges (AASHTO 2011) [13],
when evaluating the carrying capacity of existing bridges, the ability of structures to resist live loads
is emphasized.

The evaluation formula based on load factor rating method can be constructed below,

RF =
C− A1D

A2L(1 + I)
, (A1)

C = φRn (A2)

where RF is the rating factor; C represents the carrying capacity; φ is the evaluation coefficient; Rn

denotes the nominal member resistance; A1 and A2 represent the factor for dead loads and live loads,
respectively; D and L are the dead loads and live loads effect, respectively; and I is the impact factor.

The evaluation formula based on the load and resistance factor rating method can be expressed as

RF =
C− (γDC)(DC)− (γDW)(DW)± (γP)(P)

(γLL)(LL + IM)
, (A3)

C = ϕc ϕs ϕRn, (A4)

where DC denotes the dead-load effect of structural components and attachments; γDC is the load
factor for structural components and attachments; DW is the dead-load effect of wearing surfaces
utilities; γDW represents the load factor for wearing surfaces and utilities; P is the permanent loading
other than dead loads; LL is the live-load effect; IM represents the dynamic load allowance; γLL is the
evaluation live-load factor; ϕc is the condition factor, which indicates resistance variation in structures.
According to the qualitative description of the bridge condition, ϕc is equal to 1.00, 0.95 or 0.85; ϕs is
the system factor, which can reflect the degradation level of the superstructure. According to different
superstructure forms, ϕs is equal to 1.00, 0.95 or 0.85; and ϕ is the resistance factor.

Appendix B. JTG/T J21-2011 (Chinese Code)

According to the “Specification for Testing and Evaluating the Bearing Capacity of Highway Bridges”
(JTG/T J21-2011) [14], the bearing capacity of existing RC bridges is evaluated by

γ0S ≤ R( fd, ξcadc, ξsads)Z1(1− ξe), (A5)

where γ0 represents the importance factor of structure; S is the load effect function; R( fd, ξcadc, ξsads)

is the resistance effect function; Z1 is the comprehensive modification coefficient of load-bearing
capacity; ξe, ξc, and ξs represent the deterioration coefficient of load-bearing capacity, section-reduction
coefficient of concrete and steel bar, respectively; fd is the design value of material strength; and adc
and ads represent the geometric parameters of concrete and reinforcement, respectively.
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Appendix C. Sample Data Details

Table A1. The comparison between prediction results and experimental data in [18,19,41–43].

No. Data
Sources

Column
Designation b × h (mm) Eccentricity

(mm)

Diameter of
Longitudinal
Reinforcement

(mm)

Corrosion Rate
of Longitudinal
Reinforcement

(%)

Diameter
of Stirrup

(mm)

Corrosion
rate of

Stirrups
(%)

Concrete
Strength
(MPa)

Yield
Strength of

Steel bar
(MPa)

Cover
Thickness

(mm)

Stirrup
Spacing

(mm)

Experimentatal
Value (kN)

Predicted
Value
(kN)

1

[19]

Z0

100 × 100 0 9.2

0

6

0

57.8 354.44 15 60

710 748

2 Z5 0.5 4.85 665 672

3 Z10 0.8 9.6 632 633

4 Z20 1.2 13.0 545 588

5

[41]

Z1

250 × 350

40

18

0

8

0 47.5 432

25 200

3530 3950

6 Z2 70 0 0 46.8 432 2850 3150

7 Z3 150 0 0 43.3 432 1420 1670

8 Z4 40 0.98 0.98 47.8 424 3020 3500

9 Z5 70 1.56 1.56 49.0 420 2620 2850

10 Z6 150 1.34 1.34 53.7 428 1310 1610

11 Z7 40 3.51 3.51 42.5 416 2940 2710

12

[42]

Z0

100 × 200 130 10

0

6

0 45.8

360 25 100

260 210

13 Z1 1.8 /

34.2

248 200

14 Z2 2.3 / 245 199

15 Z3 2.5 / 230 198

16 Z4 4.3 /

30.7

221 190

17 Z5 8.7 / 207 170

18 Z6 12.2 / 190 150

19

[43]

NUW-e1

125 × 125

47

10

0

6

0

28.5 550 15 125

215 270

20 NUW-e2 64.63 165 202

21 NUW-e3 81.25 145 158

22 NUW-e4 116.88 92 101

23 CUW-e1 37.5

4.25 4.25

− −
24 CUW-e2 62.93 167 176

25 CUW-e3 80.14 145 139

26 CUW-e4 115.82 91 91
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Table A1. Cont.

No. Data
Sources

Column
Designation b × h (mm) Eccentricity

(mm)

Diameter of
Longitudinal
Reinforcement

(mm)

Corrosion Rate
of Longitudinal
Reinforcement

(%)

Diameter
of Stirrup

(mm)

Corrosion
rate of

Stirrups
(%)

Concrete
Strength
(MPa)

Yield
Strength of

Steel bar
(MPa)

Cover
Thickness

(mm)

Stirrup
Spacing

(mm)

Experimentatal
Value (kN)

Predicted
Value
(kN)

27

[18]

AS-0

200 × 240

50

20

0

6

/

25.93 380.05 30

200

805 1100

28 AS-1 1.73 / 795 900

29 AS-2 2.66 / 740 825

30 AS-3 4.61 / 628 750

31 AS-4 6.13 / 739 700

32 AS-5 8.82 / 728 640

33 AL-0

90

0 / 802 800

34 AL-1 1.63 / 651 690

35 AL-2 3.90 / 526 610

36 AL-3 4.97 / 372 570

37 AL-4 6.11 / 434 540

38 AL-5 8.31 / 411 510

39 BS-0

50

0 /

100

970 1180

40 BS-1 1.61 / 884 960

41 BS-2 2.45 / 837 915

42 BS-3 4.06 / 763 827

43 BS-4 5.66 / 690 770

44 BS-5 7.27 / 649 705

45 BL-0

90

0 / 848 830

46 BL-1 1.16 / 570 720

47 BL-2 2.92 / 509 670

48 BL-3 3.90 / 513 615

49 BL-4 5.81 / 430 570

50 BL-5 7.10 / 447 540
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