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Featured Application: DEM extraction from airborne LiDAR data.

Abstract: Most filtering algorithms suffer from complex parameter settings or threshold adjusting.
To solve this problem, this paper proposes an improved skewness balancing filtering algorithm
based on thin plate spline (TPS) interpolation. The proposed algorithm filters the nonground points
in an iterative manner. A reference surface that reflects the fluctuation of the terrain is generated
using the TPS interpolation method. Accordingly, the elevation difference from each point to the
surface can be calculated. By applying the skewness balancing principle to these elevation differences,
nonground points can be removed automatically. To verify the validity and robustness of the
proposed method, the datasets provided by the International Society for Photogrammetry and
Remote Sensing (ISPRS) were adopted. The experimental results show that this presented method can
adapt to complex environments and achieve a higher filtering accuracy than the traditional skewness
balancing algorithm. Moreover, in comparison with the other eight filtering methods tested by the
ISPRS and four improved filtering methods proposed recently, the proposed method achieved an
average total error of 5.39%, which is smaller than that of most of these other methods.
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1. Introduction

In recent decades, the airborne light detection and ranging (LiDAR) technique has developed very
quickly and become an one important means for acquiring remote sensing data [1,2]. The airborne
LiDAR system is generally composed of a laser scanner, a global positioning system (GPS) and an
inertial measurement unit (IMU) [3]. With these three components cooperating with each other, a large
amount of LiDAR point clouds reflected from the ground and objects (cars, trees, buildings, etc.) can
be obtained. Compared with traditional remote sensing methods, such as photogrammetric mapping,
airborne LiDAR has the following advantages: (1) the external environment has little influence on
the LiDAR technique; thus, an airborne LiDAR system can generally work in any environment and
all-weather conditions; (2) LiDAR can describe the earth surface with a large number of points,
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which is beneficial for modeling; and (3) LiDAR pulses can penetrate the tree canopy, which makes
this technique convenient for detecting topography in forest areas [4–7]. Owing to these advantages,
airborne LiDAR has been applied to many applications, such as three-dimensional building model
construction [8,9], power line inspection [10], change detection [11], and land cover classification [12].

To realize these applications, one key step is to obtain a digital terrain model (DTM). In other
words, ground points should be separated from object points first. This process is called filtering.
In the past two years, many researchers have been making efforts in this area, and diverse
algorithms have been presented. These filtering algorithms can be classified into four categories:
slope-based [13–17], morphology-based [18–23], triangular irregular network (TIN)-based [24–27] and
segmentation-based [28–30] filtering algorithms.

The slope-based filtering algorithm was first proposed by Vosselman [14]. He assumed that
terrain does not change greatly. That is, if the slope between two adjacent points is greater than a given
threshold, there must be one point that belongs to an object. However, this assumption is false when
encountering undulating terrain, such as cliffs or ridges. To solve this problem, Susaki [17] modified
this method by adjusting thresholds based on local terrain. This improvement enables this method to
achieve promising results in complicated environments.

Morphology-based filtering algorithms always adopt progressive strategies. The filtering
thresholds are adaptively calculated as the filtering window changes gradually [23]. The main problem
for this kind of approach is how to set an appropriate filtering window. A larger filtering window
flattens terrain details, while a smaller filtering window cannot filter larger objects, such as building
roofs. Hui et al. [7] improved the progressive morphology approach by combining it with multilevel
Kriging interpolation. As a result, a smaller filtering error was achieved.

TIN-based approaches utilize a progressive manner to realize filtering. First, some located lowest
points are selected as seed points and a rough TIN surface is built based on these ground seeds. Then,
the iteration angle and distance of each point are calculated according to the TIN. The points are added
to the TIN if their iteration angle and distance are less than the predefined thresholds. This process is
iterated until no more points meet the requirements [24]. The built TIN is changed from coarser to
finer while the filtering accuracy is progressively improved. Conversely, the initial built TIN has a
great influence on the final filtering result. If the initial ground seeds are not selected correctly, the final
filtering results will have a larger filtering error. To resolve this problem, Zhao et al. [26] applied
morphological opening operations to obtain more potential ground seeds. Their experimental results
show that this improvement enhances the robustness of this traditional method.

Segmentation-based filtering algorithms always rely on two main steps, namely, segmentation and
filtering. In contrast to the abovementioned three kinds of methods, this kind of approach first applies
some segmentation methods, such as region growing, for clustering the scatter points. Then, filtering
is realized based on the segmentation results. Many researchers combine segmentation methods
with traditional filtering algorithms and obtain good filtering performance. For example, Tovari and
Pfeifer [28] modified the linear-prediction method proposed by Kraus and Pfeifer [31] using a region
growing algorithm and improved the filtering accuracy at break lines. Since segmentation-based
algorithms can use more semantic information, this kind of method generally performs much better
than other kinds of methods. However, the performance of this kind of method relies heavily on
the segmentation results. If the segmentation results are not accurate, a larger filtering error will
be obtained.

The above-mentioned filtering methods are mainly proposed for airborne laser scanning (ALS)
data. In addition to ALS, two other LiDAR techniques, namely, terrestrial laser scanning (TLS) and
mobile laser scanning (MLS), are also developed vary fast. Thus, many researchers have been focusing
on developing filtering algorithms for TLS or MLS data. Rodríguez-Caballero et al. [32] proposed an
adaptive filtering for TLS point clouds using morphological filters and spectral information. In their
method, the morphological filtering windows can be adapted to different types and sizes of plants.
Thus, a more accurate representation of the soil surface can be obtained. In order to improve the
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accuracy, robustness and efficiency of the filtering method, Che and Olsen [33] proposed a fast ground
filter for TLS data via scan line density analysis. By evaluating the local point density within a scan
line, the ground candidates are first separated. The region growth algorithm is then used to get a
better ground points clustering results. MLS owns a similar scan geometry to TLS. The main difference
between MLS and TLS is that the scanner of MLS keeps continuously moving. Wu et al. [34] first
organized the MLS data into vertical profiles and then candidate ground points were selected using an
alpha shape algorithm. Li et al. [35] proposed a new filtering method to filtering ground surface points
from MLS point clouds based on range constraint, slope constraint and angular position constraint.

From the aforementioned studies, it can be seen that although most filtering algorithms can
obtain good filtering performance, almost all the approaches need to predefine parameter thresholds.
For example, in the simple morphological filter (SMRF) algorithm proposed by Pingel et al. [22],
after optimizing the parameters, the filtering total error decreased from 4.40% to 2.97%. In the
progressive morphological filtering method proposed by Zhang et al. [23], five parameters need to be
set. Generally, optimized parameters always lead to a better filtering result. Conversely, optimizing
parameters is always time consuming. Moreover, determining an optimized parameter is generally for
inexperienced researchers. For these reasons, some filtering algorithms with good performance in the
literature are hard to use in practice.

To avoid complicated parameter settings, a statistical filtering algorithm called skewness balancing
was developed by Bartels et al. [36]. In this unsupervised method, no parameters, such as a threshold
or weighting factor, are required to be set. The algorithm can remove nonground points automatically.
Moreover, this approach can achieve promising performance in flat areas. However, since this approach
assumes that nonground points, such as building roofs, are always located above terrain, it is obvious
that this method will cause a larger filtering error in fluctuating areas. To boost this method’s
adaptability to complicated environments, this paper proposes an improved skewness balancing
filtering algorithm based on thin plate spline (TPS) interpolation. The proposed algorithm filters the
nonground points in an iterative manner. A reference surface that reflects the fluctuation of the terrain
is generated using the TPS interpolation method. Accordingly, the elevation difference from each
point to the surface can be calculated. By applying the skewness balancing principle to these elevation
differences, nonground points can be removed automatically. The proposed algorithm was tested
using the datasets provided by the International Society for Photogrammetry and Remote Sensing
(ISPRS). The experimental results show that this presented method can adapt to complex environments
and achieve a higher filtering accuracy than the traditional skewness balancing algorithm. Owing to
the simple principle and high automation, the proposed method has the potential to contribute to the
postprocessing of airborne LiDAR point clouds.

2. Materials and Methods

The proposed filtering algorithm based on progressive TPS interpolation is explained in the
following subsections. Section 2.1 introduces the principle of the traditional skewness balancing
algorithm, while the main problem of this traditional unsupervised method is illustrated by Figure 1
in Section 2.2. To resolve this problem, Section 2.3 presents the principle of the proposed method and
explains the detailed implementation procedure, including point cloud denoising, selecting ground
seeds, TPS interpolation, and filtering judgment.
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kinds of outliers have a direct influence on the filtering results. Thus, both kinds of outliers should 
be removed before filtering.  

 
Figure 1. A horizontal profile of the digital surface model (DSM) generated using raw light detection 

and ranging (LiDAR) point clouds without denoising. 

In this paper, the outliers are removed based on morphological operations. Since raw point 
clouds have no regular distribution, the LiDAR data should be organized first [37]. This paper 
organizes the 3-D LiDAR data as 2.5-D data using pseudo-grids, as shown in Figure 2. First, the 
cellsize of each grid should be defined according to the density of point clouds. In general, the 
cellsize is equal to 1 λ , where λ  is the density of point clouds. In so doing, we can try to make 
the grids with no points as few as possible. If there are more than one point falling into one grid, 
only the lowest elevation is kept as the characteristic value of the grid, as shown in Figure 2.  

 
Figure 2. Pseudo grids construction for point clouds. 

Generally, the outliers are isolated points and their elevations are far from the main body of 
the LiDAR points. Thus, this paper applies morphological dilation operation to the grids ( IM ) 
generated in last step. If the characteristic value of a grid changes greatly before and after the 
morphological dilation, the grid is labeled as a noisy grid. This step can be denoted as Equation (1). 

( )( ), , ,i j i j i jH abs IM Dilation IMΔ = − , (1)

Figure 1. A horizontal profile of the digital surface model (DSM) generated using raw light detection
and ranging (LiDAR) point clouds without denoising.

2.1. Removing the Outliers Based on Morphological Operations

Due to the influence of external environments or the instrument itself, the obtained LiDAR point
clouds always contain outliers. These outliers can be further classified as low and high outliers,
as shown in Figure 1. High outliers are commonly generated by laser pulses reflected from aircraft
or birds flying in the sky, while low outliers are always caused by multipath effects. Both of these
kinds of outliers have a direct influence on the filtering results. Thus, both kinds of outliers should be
removed before filtering.

In this paper, the outliers are removed based on morphological operations. Since raw point clouds
have no regular distribution, the LiDAR data should be organized first [37]. This paper organizes the
3-D LiDAR data as 2.5-D data using pseudo-grids, as shown in Figure 2. First, the cellsize of each grid
should be defined according to the density of point clouds. In general, the cellsize is equal to

√
1/λ,

where λ is the density of point clouds. In so doing, we can try to make the grids with no points as few
as possible. If there are more than one point falling into one grid, only the lowest elevation is kept as
the characteristic value of the grid, as shown in Figure 2.
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Generally, the outliers are isolated points and their elevations are far from the main body of the
LiDAR points. Thus, this paper applies morphological dilation operation to the grids (IM) generated
in last step. If the characteristic value of a grid changes greatly before and after the morphological
dilation, the grid is labeled as a noisy grid. This step can be denoted as Equation (1).

∆Hi,j = abs
(

IMi,j − Dilation
(

IMi,j
))

, (1)

where IMi,j is the characteristic value of the grid (i, j), Dilation
(

IMi,j
)

is the characteristic value after
morphological dilation, and abs is used to calculate the absolute value.

Morphological dilation is used to select the largest characteristic value in the structure element [23].
This dilation can be denoted as Equation (2). The structure element is a 3 × 3 window as shown in
Figure 3. If ∆Hi,j is greater than a predefined threshold that can be set as a constant, such as 5 m,
the corresponding grid is labeled as a noisy grid. Considering that the outliers are generally isolated
points, the outlier can be detected if the number of points with similar elevations is less than 3 in the
noisy grid.

Dilation
(

IMi,j
)
= max

(
IMi+u,j+v

)
i∈[−1,1],j∈[−1,1]

, (2)
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2.2. The Classical Skewness Balancing

The classical skewness balancing filtering algorithm was proposed by Bartels et al. [36]. According
to the central limit theorem, naturally measured samples will lead to a normal distribution [38].
Bartels et al. [36] made the initial assumption that ground point elevation is normally distributed.
A further assumption is that nonground point elevations disturb the abovementioned normal
distribution. Thus, by removing object points from raw points until the remaining points are normally
distributed, the ground points are obtained. To describe the asymmetry of a distribution, the skewness
is adopted and is defined as Equation (3):

sk =
1

Nσ3

N

∑
i=1

(Zi − µ)3, (3)

where sk refers to the skewness, N is the number of points, Zi is the i-th point’s elevation, and µ and
σ are the arithmetic mean and standard deviation, respectively. They are defined as Equations (4)
and (5):

µ =
1
N

N

∑
i=1

Zi, (4)

σ =

√√√√ 1
N − 1

N

∑
i=1

(Zi − µ)2, (5)
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Although skewness balancing has no requirements of point cloud maximum size and data format,
this method requires an implicit assumption that the number of ground points must dominate the
point clouds to ensure a normal distribution [39]. Thus, the skewness balancing needs to meet a
criterion of a minimum number of ground points, which is defined as Equation (6):

nmin =

(
Zα/2σ0

E

)
, (6)

where Zα/2 is the value for the alpha level, σ0 is the standard deviation of the population and E is the
acceptable margin of error. It can be estimated that the minimum number of ground points is 841 [38].
It is obvious that most test areas meet this requirement.

2.3. Principle of the Improved Method

Although skewness balancing can obtain a promising filtering result in flat areas, it will cause
a larger omission error in abrupt terrain. This effect is because there is an implicit assumption for
skewness balancing that all ground points are located above the objects. However, this assumption
is obviously unreasonable in undulating areas, such as mountains, cliffs, and ridges. As shown in
Figure 4, some ground points are higher than some nonground points (building roof) in abrupt terrain
environments. Thus, according to the principle of the skewness balancing, those ground points with
higher elevations will be misclassified as nonground points. Meanwhile, due to the undulations of
the ground, some nonground points with lower elevations will also be accepted as ground points.
Therefore, the classical skewness balancing algorithm cannot perform well in these kinds of areas.
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As shown in Figure 5, although both ground points and nonground points have elevation
jumps, that effect will be changed if we build an interpolated surface based on the ground seeds.
The ground seeds are points with the lowest elevations in local areas. Thus, the interpolated surface
can reflect the fluctuation of the terrain. Although the elevations of some ground points are higher
than those of nonground points, their corresponding elevation differences to the interpolated surface
are totally different.
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As shown in Figure 5, it is easy to find that the elevation differences between the ground points and
the interpolated surface are obviously smaller than the elevation differences between the nonground
points and the interpolated surface. This finding can avoid the misclassification of ground points and
nonground points in undulating terrains. Thus, the improved method can be realized by modifying
Equation (3) as:

sk =
1

Nσ3

N

∑
i=1

(∆i − µ)3, (7)

∆i = Zi − Ziter, (8)

where ∆i is the elevation difference of each point to the interpolated surface, and Ziter is the interpolated
elevation of each point.

The key procedures for realizing the improved method are ground seed selection and interpolated
surface construction. Ground seeds are the points with the lowest elevations and can be selected using
pseudo-grids as presented in the Section 2.1. Note that the cell size used here should be larger than the
largest size of an object. As such, we can guarantee that the seeds are true ground points. A thin plate
spline (TPS) was adopted to build the interpolated surface, since it can produce smooth, oscillation-free
surface [40]. Moreover, in comparison with the other three interpolation methods, namely, ordinary
Kriging, inverse distance weighting, and triangular irregular network, the TPS performs the best for
fitting the LiDAR data and is the only interpolator that does not erode the ground surface [41]. For a
set of ground seeds (Xi, Yi, Zi), i = 1, 2, · · · , n, the TPS can conduct interpolation to build a smooth
surface f (X, Y), which is denoted as Equation (9):

f (X, Y) = a0 + a1X + a2Y +
N

∑
i=1

wiR(‖(Xi, Yi)− (X, Y)‖), (9)

where R is a kernel function that is defined as R(r) = r2 log r, r is the Euclidean distance, and column
vector a(a0, a1, a2) and w can be estimated according to Equation (10):[

KP
PT0

][
w
a

]
=

[
T
0

]
, (10)

where K is a square matrix with a size of N × N, Kij is equal to R
(
‖(Xi, Yi)−

(
Xj, Yj

)
‖
)
, P is an N × 3

matrix with the i-th row defined as (1, Xi, Yi), and T is a tensor of the ground seeds.
The interpolated surface is obtained by minimizing the bending energy given by Equation (11) [42].

After obtaining the interpolated surface, Ziter of each point can be calculated easily.

I f =
x

[(
∂2 f
∂X2 )

2

+ 2(
∂2 f

∂X∂Y
)

2

+ (
∂2 f
∂Y2 )

2

] dXdY , (11)

3. Experimental Results

To evaluate the performance of the proposed method, the datasets provided by the ISPRS
Commission III were employed [43]. The datasets are selected from seven sites located in the
Vaihingen/Enz test field and Stuttgart city center. This paper chose one sample datum from each
site. These selected samples (samp12, samp21, samp31, samp41, samp54, samp61 and samp71)
cover different terrain features as shown in Table 1. These samples were classified correctly using
semiautomatic filtering and subsequent manual editing. Thus, these samples are convenient for
performing quantitative calculations.
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Table 1. Terrain features of the selected seven samples.

Samples Terrain Features

samp12 Small objects, mixed vegetation and buildings
samp21 Attached objects, narrow bridge, and low vegetation
samp31 Dense buildings, data gaps, and mixture of high and low objects
samp41 Data gaps, complex buildings, and low outliers
samp54 Gentle sloped terrains, dense objects
samp61 Buildings, embankments, data gaps, and roads
samp71 Bridges, embankments, underpasses, and roads

The filtering results of the seven samples are shown in Figure 6. Three accuracy metrics,
namely Type I error, Type II error, and total error, are were adopted for the quantitative analysis.
The Type I error is the proportion of ground points misclassified as nonground points, while the Type
II error is the proportion of nonground points that the method fails to reject. The total error is the
entire set of erroneous points. The filtering accuracy of the proposed method is shown in Table 2.
In terms of the total error, the proposed method performs the best for samp21. Moreover, samp21 also
has the smallest Type I error, which means that almost all the ground points are correctly classified.
From samp12 (a) and samp12 (b) in Figure 6, it can be observed that the terrain in this sample is
not too complicated. The main filtering challenge is the bridge, which has been removed effectively.
Samp41 has the largest total error since both its Type I error and Type II error are larger. In the area
of samp41, there are some complex buildings and low outliers. In particular, certain low outliers are
dense enough to be hard to remove. These points are wrongly selected as ground seeds, which affects
the accuracy of the interpolated surface. Therefore, the proposed method does not perform well in this
area. From Table 2, it can be concluded that the proposed method is biased in favor of minimizing
Type I errors because the average Type II error (9.94%) is more than two times the average Type I error
(4.17%). That result occurs because samp71 and samp41 have larger Type II errors. Because Type II
errors are easily modified, most filtering algorithms tend to suppress Type I errors at the expense of
larger Type II errors.
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Table 2. Accuracy indexes for the seven samples.

Sample
The Proposed Method

Type I
(%)

Type II
(%)

Total
(%)

samp12 5.55 8.49 6.97
samp21 0.47 9.65 2.50
samp31 5.52 3.44 4.56
samp41 7.43 11.14 9.29
samp54 2.26 5.34 3.91
samp61 6.57 8.71 6.64
samp71 1.41 22.82 3.84
Mean 4.17 9.94 5.39

4. Discussion

To objectively evaluate the performance of the proposed method, this paper compared the total
errors of the proposed method to the classic skewness balancing method and eight other algorithms
tested by the ISPRS [44]. As shown in Figures 7 and 8, the improved method proposed in this paper
performs much better than the classic skewness balancing method. The total errors of the seven
samples are all smaller than those of skewness balancing. As a result, the average total error of the
proposed method is much smaller than that of skewness balancing. Figure 8 shows that the proposed
method outperforms most of the previous filtering methods except for the progressive triangulated
irregular network densification (PTD) method proposed by Axelsson. The average total error of the
proposed method is only slightly larger than that of the PTD method. Considering that the PTD method
involves complex parameter settings, such as thresholds of iteration angle and distance, the proposed
method has the advantage of a high degree of automation with satisfying filtering accuracy.
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In recent years, some other modified filtering methods have also been proposed to improve
filtering performance. Li et al. [4] proposed an improved morphological filtering method based
on geodesic transformations of mathematical morphology. In their method, it is unnecessary to
select different window sizes or determine the maximum window size. Thus, the robustness and
automation of the morphological filtering method can be enhanced. Li et al. [5] put forward an
improved top-hat filtering with sloped brim to extract ground points. To suppress the omission error
caused by protruding terrain features, Li et al. [5] inspected the elevation change intensity of the
transitions between the obtained top-hats and outer brims. In doing so, the filtering performance of the
method towards various terrain environments can be improved. Most traditional morphology-based
algorithms have difficulties in protecting terrain details, especially when using larger filtering windows.
To solve this problem, Hui et al. [7] first proposed a hybrid filtering model that combines a traditional
morphology-based filter and an interpolation-based filter. The morphological filters removed the
nonground points with filtering window gradually downsizing. Meanwhile, Kriging interpolation
is adopted based on the corresponding filtering windows. The experimental results show that the
improved method has a significant advantage in protecting terrain details, thereby providing good
filtering performance. Lin and Zhang [29] improved the classic progressive TIN (triangular irregular
network) densification (PTD) method based on segmentation. In their method, point clouds are first
segmented by region growing. Then, each terrain segment is added to the TIN iteratively. In so
doing, the improved method can achieve a smaller omission error and total error than the traditional
PTD method.

All the above-mentioned methods evaluate the filtering performance using the data sets provided
by the ISPRS. This paper compares the type I error, type II error, and total error with those of the other
four methods, as shown in Figures 9–11. From Figure 9, it can be found that the proposed method
achieved smaller type I errors than most of other methods, especially for samp41. As a result, in terms
of average type I error, the proposed method performs the best. From Figure 10, it can be observed that
almost all the methods have a larger type II error for samp71. This result is because there are many
small low objects with similar elevations to the terrain in samp71. These objects are easily misclassified
as ground points. Moreover, we can also find that the type II errors of the proposed method are slightly
larger. Although the proposed method modified the classical skewness balancing algorithm using
TPS interpolation, some nonground objects with low elevations are still easily misclassified as ground.
In terms of the total error, as shown in Figure 11, this paper also outperforms the methods proposed
by Li et al. [4], Li et al. [5], and Lin and Zhang [29]. Furthermore, the total errors of the seven samples
do not change much. Thus, we can conclude that the proposed method can achieve good performance
in various terrain environments.
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5. Conclusions

Diverse changing terrain environments and complex parameter settings pose great challenges
to airborne LiDAR filtering. To improve the accuracy and automation of the filtering method,
this paper proposed an improved skewness balancing filtering algorithm based on thin plate spline
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interpolation. Our experiments indicate that the proposed method can achieve good filtering
performance without parameter settings. Thus, this method can be easily applied by inexperienced
researchers. In comparison with the other eight filtering methods tested by the ISPRS, the proposed
method also outperforms most of these methods. Although the average total error of the proposed
method is slightly larger than that of the PTD method proposed by Axelsson, the proposed method
has a high degree of automation. Furthermore, this paper also compared the results of some other
recently proposed improved methods. The comparisons indicate that the proposed method in this
paper can achieve the smallest type I error. Thus, a better DTM can be generated using the filtering
result since there are fewer non-ground points that are misclassified. Moreover, the total errors for the
seven samples are also small. Therefore, the proposed method can achieve promising and comparable
performance when faced with diverse landscapes. However, the Type II error of the proposed method
is slightly larger. Especially in areas with complex objects, the proposed method may erroneously
accept some nonground points as ground points. This problem can be overcome by cooperating with
segmentation methods in future research.
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