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different kinds of sparse impulse responses show that the proposed method without a priori 

channel information is comparable to the conventional method with a priori channel information. 
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1. Introduction 

Room impulse response (RIR) estimation is a problem in many applications that use acoustic 

signal processing. The RIR identification [1] is fundamental for various applications such as room 

geometry related spatial audio applications [2–5], acoustic echo cancellation (AEC) [6], speech 

enhancement [7], and dereverberation [8]. In [9], the RIR has relatively large magnitude values during 

the early part of the reverberation and fades to smaller values during the later part. This indicates 

that most RIR entries have values close to zero. Therefore, the RIR has a sparse structure. The sparse 

RIR model is useful for estimating RIRs in real acoustic environments when the source is given a 

priori [10]. There has been recent interest in adaptive algorithms for sparsity in various signals and 

systems [11–22]. Many adaptive algorithms based on least mean square (LMS) [11,12] and recursive 

least squares (RLS) [14–17] have been reported with different penalty functions. Sparse estimation 

research, such as that done by Eksioglu and Tanc [17], has proposed a sparse RLS algorithm, l1-RLS, 

which is fully recursive like the plain RLS algorithm. The algorithm of l1-RLS in [17] proposed a 

proper calculation method for the regularization factor. These recursive algorithms have the potential 

for sparse RIR estimation; however, the regularization factor should be established prior to applying 

these algorithms. The regularization factor calculation method requires information about a true 

sparse channel response for a good performance. The authors in [18,19] have also proposed recursive 

regularization factor selection methods; however, these methods still need the true impulse response 

in advance. 
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In this paper, we propose a new regularization factor calculation method for l1-RLS algorithm in 

[17]. The new regularization factor calculation needs no information for the true channel response in 

advance. This makes it possible to apply l1-RLS algorithm in various room environments. In addition, 

we derive a new model equation for l1-RLS in [17] with uncertainty in the regularization factor and 

show that the new model is similar to the total least squares (TLS) model that compensates for 

uncertainty in the calculated regularization factor without the true channel response. For the 

performance evaluation, we simulate four different sparse channels and compare channel estimation 

performances. We show that, without any information of the true channel impulse response, the 

performance of the proposed algorithm is comparable to that of l1-RLS with the information of the 

true channel impulse response. 

This paper is organized as follows. In Section 2, we summarize l1-RLS in [17]. In Section 3, we 

summarize the measure of sparsity. In Section 4, we propose a new method for the regularization 

calculation. In Section 5, we show that l1-RLS with uncertainty in the regularization factor can be 

modeled as the TLS model. In Section 6, we summarize l1-RTLS (recursive total least squares) 

algorithm as a solution for l1-RLS with uncertainty in the regularization factor. In Section 7, we 

present simulation results to show the performance of the proposed algorithm. Finally, we give the 

conclusion in Section 8. 

2. Summarize l1-RLS 

In the sparse channel estimation problem of interest, the system observes a signal represented 

by an 1M   vector 
1

( ) [ ]
T

k k M
k x x

− +
=  x  at time instant n, performs filtering, and obtains the 

output ( ) ( ) ( )
T

o
y i k k= x w , where 

1
( ) [ ]

T

o k k M
k w w

− +
=  w  is the M dimensional actual system with 

finite impulse response (FIR) type. For system estimation, an adaptive filter system applies with M 

dimensional vector ( )kw  to the same signal vector ( )kx  and produces an estimated output 

ˆ( ) ( ) ( )
T

y k k k= x w , and calculates the error signal ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )e k y k n k y k y k y k= + − = − , where ( )n k  

is the measurement noise, ( )y k  is the output of the actual system, and ˆ( )y k  is the estimated output. 

In order to estimate the channel impulse response, an adaptive algorithm minimizes the cost function 

defined by 

( )( )
2

0

1
arg min

2

k
k m

m

e m −

=

= 
w

w  (1) 

From the gradient based minimization, Equation (1) becomes 

( ) ( ) ( )k k k= R w r  (2) 

where ( )
0

( ) ( )
k

k m T

m

k m m −

=

=R x x  and 
0

( ) ( ) ( )
k

k m

m

k y m m −

=

=r x . This equation is the normal equation 

for the least squares solution. Especially, ( )o kw  is considered as a sparse system when the number 

of nonzero coefficients K  is less than the system order of M . In order to estimate the sparse system, 

most estimation algorithms exploit non-zero coefficients in the system [11–17]. In [17], Eksioglu 

proposed a full recursive l1-regularized algorithm by the minimization of the object function as shown 

in Equation (3). 

1

1

2
k k kJ  = + w  (3) 

where 
2

0

( ( ))
k

k m

k

m

e m  −

=

= . From the minimization of Equation (3), a modified normal equation was 

derived as shown in Equation (4). 

1
ˆ( ) ( ) ( ) ( ) ( )s

kk k k k k= −  =R w r w p . (4) 
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When we solve Equation (4), we should select the regularization factor as shown in Equation (5). 

( )

( )
( )( ) ( )

1 ( )

1

2
1

2

2
[ ( ) ( ) ( ) ( )]

( ) ( )

tr k

sM

k
s

f k f k k k
k f k

  

−

−

−
=  − + 



R

w w R
R w

 (5) 

where 
1

( ( )) ( )f k k=w w  and the subgradient of ( )f w  is 
1

sgn( )s =w w . In Equation (5), the 

regularization factor has the parameter,  , which should be set beforehand. In [17], the parameter 

was set as 
1

( )true truef = =w w  with truew  indicating the impulse response of the true channel. 

There was no further discussion about how to set  . However, it is not practical to know the true 

channel in advance. 

3. Measure of Sparseness 

In [20], the sparseness of a channel impulse response is measured by Equation (6). 

1

2

ˆ

ˆ
1L

L L L


−

 
  
 

= −
w

w
, (6) 

where ˆ
p

w  is the p-norm of ŵ  and L is the dimension of ŵ . The range of   is 0 1  . That is 

dependent on the sparseness of ŵ . As ŵ  becomes sparser, the sparsity,  , comes close to 1, and 

as ŵ  becomes denser,   comes close to 0. We often have small and none-zero value of  , even 

in a dense channel. For example, Figure 1 shows the relation of the value of   and the percentage 

of none-zero components in ŵ  with L = 215. In Figure 1, we consider all possible cases of none-zero 

components in ŵ . 

 

Figure 1. Sparsity (  ) vs. the percentage of none zero coefficients in the channel impulse response. 

4. New   Selection Method in the Sparsity Regularization Constant k  

Section 2 shows that the regularization constant k  in Equation (5) needs   to be set as 

1 1
truesystem impulse response true = = w . However, we need a new method in the constant selection 

because Equation (5) is not practical. Therefore, Section 4 proposes a new method to set this constant. 

For a practical method for the constant selection, we can consider using the estimated vector ŵ  

instead of using the true vector truew  because ŵ , the solution with l1-norm, will be closer to the 

sparse true vector than the solution of the conventional RLS. The more iteration is repeated, the more 

ŵ  converges to the true value. Conventional RLS also converges to the true value; however, the 

solution with l1-norm, is closer to the sparse true value. Therefore, we can use sparse estimate ŵ  

instead of truew  when we set  , and the uncertainty arising from this is compensated through a TLS 
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solution in the next section. When we determine   using the estimated ŵ , we choose between the 

average   and the current estimate 
1

ŵ . Table 1 summarizes the   selection steps. 

Table 1.   selection method in the sparsity regularization constant k  

Step 1 
Sparsity: ( )1

2

ˆ

ˆ
1L

L L L


−
= −

w

w
 [20] 

where L  is the length of the impulse response. 

Step 2 ( )1

1
ˆ( ) 0 99 ( 1) 0 01k k e  −=  − +   w  

Step 3 
( )

( )
1

1

ˆmin ( ) 0 98 if 0 75
( )

ˆmin ( ) 0 999 otherwise

k x
k

k






     
= 

  

w

w
 

The determination method for   value shown in Table 1 is as follows. In Step 1, the sparsity of 

the estimated ŵ  is calculated. The sparsity represents the sparseness of ŵ  as a number [23]. In 

Step 2, l1-norm of the estimated ŵ  is scaled and the value is averaged with the previous   value. 

The scaling value approaches 1 as the sparsity,  , gets close to 1. However, the scaling value gets 

close to 
1 0 37e−   as the sparsity,  , gets close to 0. Therefore, the scaling does not change l1-norm 

of ŵ  for the sparse ŵ . Instead the scaling changes the l1-norm smaller for the dense ŵ . In Step 3, 

the smaller one between the averaged   and the l1-norm of the estimated ŵ  is selected as the new 

  value. In this case, the   value becomes completely new if the l1-norm of the estimated ŵ  is 

selected, otherwise the previous trend is maintained. In Figure 1, the reference value 0.75 used in Step 

3 means that less than 16% of all the impulse response taps are not zero. 

5. New Modeling for l1-RLS with Uncertainty in the Regularization Factor 

If we set constant = , the regularization factor becomes 

( )

( )
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 (7) 

Then, 

( ) ( )

( )

1 ( )

1

2
1

2

2 constant

( ) ( )

tr k

M

k kk
sk f k

  

−

−

−
= + = +  



R

h

R w
 (8) 

Using Equation (8), Equation (4) becomes 

1
( ) ( ) ( ) ( ) ( )s

kk k k k = − +  R w r w  (9) 

1
sgn( )s =w w  is represented as 

1

1
( ) ( )s

i

k k
w

 
 
  = 
 
 
  

w w  (10) 

By applying Equation (10) to Equation (9), 
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1

1
( ) ( ) ( ) ( )k

i

k k k k
w

 

  
  
  +  = −   
  
    

R w r w  (11) 

where iw  is i-th element of ( )kw . Then it is simplified as 

1
ˆ( ) ( ) ( )

i

k k k
w



  
  
  +  =   
  
    

R w p  (12) 

Equation (12) is very similar to the system model in Figure 2 that is contaminated by noise both 

in input and in output. Suppose that an example of the system in Figure 2 is represented as 

1 1

1 1 1 1

1 1 2 2 2 2 1 1

( )

k i k k N i k N k o k

k N i k Nk i k k o k

k N i k N k N i k N k N o k N

x n x n y n

x n x n y n
k

x n x n y n

   
    − +  − + 
   
   

−  −−  − −  −   
   
   
   
   
   

− +  − + − +  − + − +  − +   

+ + +

+ + +
 =

+ + +

w , (13) 

where kx  is ( )x k , 
i kn 

 is ( )in k , and 
o kn 

 is ( )on k . Equation (13) is simplified as 

( )k = Aw b  (14) 

 

Figure 2. The model of a noisy input and noisy output system. 

If we multiply Equation (14) by A
H

 and average it, we get 

( ) ( )( )H HE k E= A A w A b  (15) 

We can rewrite Equation (15) as follows 

2

2

2

(0)(0) (1) ( 1)

(1)(1) (0) ( 2)
( )

( 1)( 1) ( 2) (0)

xyxx n xxxx

xyxx xx n xx

xyxx xx xx n

rr r r N

rr r r N
k

r Nr N r N r







 
 
 
 
 
 
 
 
 
 
 

 + −
 

+ −  =
 
 

−− − +   

w  (16) 

Then, it can be represented as 

( )2 ( ) ( )n k k+ = R I w p  (17) 
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When we compare Equation (12) with Equation (17), the two system models have almost the 

same form. Therefore, it is feasible that the TLS method can be applied to Equation (12) [24–30]. 

Therefore, we expect to obtain almost the same performance as l1-RLS with the true channel response 

if we apply the TLS method by the regularization factor with the new   in Table 1. In the next 

section, we summarize l1-RTLS (recursive total least squares) algorithm in [29]. 

6. Summarize l1-RTLS for the Solution of l1-RLS with Uncertainty in the Regularization Factor 

Lim, one of the authors of this paper, has proposed the TLS solution for l1-RLS known as l1-RTLS 

[30]. In this section, we summarize l1-RTLS in [30] for the solution of Equation (11). 

The TLS system model assumes that both input and output are contaminated by additive noise 

as Figure 2. The output is given by 

( ) ( ) ( )T
o oy k k n k= + wx  (18) 

where the output noise ( )on k  is the Gaussian white noise with variance 2

o . The noisy input vector 

in the system is modeled by 

1( ) ( ) ( ) M

ik k k C = +  x x n  (19) 

where  ( ) ( ) ( 1) ( 1)
T

i i i ik n k n k n k M=  −  − +n  and the input noise ( )in k  is the Gaussian white noise 

with variance 2

i . For the TLS solution, we set the augmented data vector as 

( 1) 1( ) ( ) ( ) R
T MTk k y k + =     x x  (20) 

The correlation matrix is represented as 

T c

 
=  
 

R p
R

p
 (21) 

where  ( ) ( )E k y k=p x ,  ( ) ( )c E y k y k= ,  ( ) ( )TE k k=R x x  and   2( ) ( )T
iE k k = = +R x R Ix . In [27,28], 

the TLS problem becomes to find the eigenvector associated with the smallest eigenvalue of R . 

Equation (22) is the typical cost function to find the eigenvector associated with the smallest 

eigenvalue of R . 

1
( ) ( ) ( ) ( )

2

TJ k k k k= R ww  (22) 

where ( )kR  is a sample correlation matrix at k-th instant, and ( ) ( ) 1ˆ
T

Tk k= −  w w  in which ˆ (k)w  

is the estimation result for the unknown system at k-th instant. We modify the cost function by adding 

a penalty function in order to reflect prior knowledge about the true sparsity system. 

( ) ( )
1

( ) ( ) ( ) ( ) ( ) ( 1) 1 ( )
2

T T
kJ k k k k k k f k = + − − + R w w ww w  (23) 

where   is the Lagrange multiplier and k  is the regularized parameter in [13]. We solve the 

equations by ˆ ( ) 0J k =
w  and ( ) 0J k =  simultaneously. ˆ ( ) 0J k = 

w  

( )2 ( ) ( ) ( 1) ( ) 0s

kk k k f k + − +  = R w w w  (24) 

( ) 0 ( ) ( 1) 1TJ k k k =  − = ww  (25) 

where the subgradient of 
1

( )f =w w  is 
1

sgn( )s =
w

w w . From (24), we obtain 

( )1 1( ) ( ) ( 1) ( ) ( )
2

s

kk k k k f k


− −= − − −  w w wR R  (26) 
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Substituting Equation (26) in Equation (25), we get 

( )1 1( ) ( 1) ( ) ( ) ( 1) 1
2

T

s

kk k k f k k


− − 
− − −   − =  
 

w w wR R  (27) 

or 

( ) 1

1

1 ( ) ( 1)( )
2

( 1) ( ) ( 1)

Ts

k

T

f k kk

k k k




−

−

+  −
= − 

− −

ww R

ww R
 (28) 

Substituting   in Equation (26) by Equation (28) leads to 

( )
( )

1

1 1

1

1 ( ) ( 1)( )
( ) ( ) ( 1) ( ) ( )

( 1) ( ) ( 1)

Ts

k

kT

f k kk
k k k k f k

k k k




−

− −

−

+  −
=  − −  

− −
w

ww R
w w wR R

ww R
 (29) 

Equation (29) can be expressed in a simple form as 

( )1 1( ) ( ) ( 1) ( ) ( ) ,s

kk k k k f k − −= − − w w wR R  (30) 

where 
( ) 1

1

1 ( ) ( 1)( )

( 1) ( ) ( 1)

Ts

k

T

f k kk

k k k




−

−

+  −
=

− −

ww R

ww R
. Because asymptotically ( ) 1k =w  as k →  , Equation (29) 

can be approximated as the following two equations. 

( ) ( )1 1 1( ) ( ) ( 1) ( 1) ( 1) ( 1) ( ) ( 1)sT
kk k k k k k k f k− − −− − − − −  − w w w wwR R R  (31) 

( ) ( ) ( )k k k=  w w w  (32) 

Finally, we obtain the estimated parameter of the unknown system as 

1 1ˆ ( ) ( ) ( )M Mk k kw += − w w . (33) 

For Equation (23), we can use the modified regularization factor k  in [30] 

( )

( )
( )( ) ( )

1( )

1

2
1

2

2
[ ( ) ( ) ( ) ( )]ˆ ˆ

( ) ( )ˆ

tr k

sM
aug augk

s
aug

f k f k k k
k f k

  

−

−

−
=  − + 



R

w w R
wR

 (34) 

where ( ) ( ) 1ˆ ˆ
T

T
aug k k= −  w w , ( ) ( ) 1ˆ ˆ

T
T

aug RLS RLSk k = −  w w , ( ) ( ) ( )ˆ ˆaug aug RLSk k k = −w w , and ( )ˆ RLS kw  is 

the estimated parameter by recursive least squares (RLS). As 
1

ˆ ˆ( )f =w w , the subgradient of

( ( ))ˆ augf kw  is 

1
( ) sgn( ( ))ˆ ˆ

s
aug augk k =w w . (35) 

As mentioned in Section 4, we apply new constant   in Table 1, to the regularization factor k  

in Equation (34) instead of 
1truew , where truew  is the true system impulse response. 

7. Simulation Results 

This section confirms the performance of the proposed algorithm in sparse channel estimation. 

In the first experiment, the channel estimation performance is compared with other algorithms using 

randomly generated sparse channels. In this simulation, we follow the same scenario in the 

experiments as [17]. The true system vector truew  is 64 dimensions. In order to generate the sparse 

channel, we set the number of the nonzero coefficients, S, in the 64 coefficients and randomly position 

the nonzero coefficients. The values of the coefficients are taken from an (0 1 S)N    distribution, 

where ( )N  is the normal distribution. In the simulation, we estimate the channel impulse response 

by the proposed algorithms that are l1-RLS using the   in Table 1 and l1-RTLS using the   in Table 

1. For the comparison, we estimate the channel impulse response by l1-RLS using the true channel 
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response; in addition, we also execute the regular RLS algorithm in an oracle setting (oracle-RLS) 

where the positions of the true nonzero system parameters are assumed to be known. For the 

estimated channel results, we calculate the mean standard deviation (MSD), where ( )2
ˆMSD trueE= −w w , 

ŵ  is the estimated channel response and truew  is the true channel response. For the performance 

evaluation, we simulate the algorithms in the sparse channels for S = 4, 8, 16, and 32. 

Figure 3 illustrates the MSD curves. For S = 4, Figure 3a shows that the estimation performance 

of l1-RTLS using the regularization factor with the   in Table 1 is almost the same as the l1-RLS using 

regularization with a true channel impulse response. However, the performance of l1-RLS using the 

regularization factor with the   in Table 1 is gradually degraded and shows a kind of uncertainty 

accumulation effect. In the other cases of S, we can observe the same trend in the MSD curves. 

Therefore, we can confirm that the new regularization factor selection method and the new modeling 

for l1-RLS can estimate the sparse channel as good as l1-RLS using the regularization with the true 

channel impulse response. In all the simulation scenarios, oracle RLS algorithm produces the lowest 

MSD as expected. 

  
(a) S = 4 (b) S = 8 

  
(c) S = 16 (d) S = 32 

Figure 3. Steady-state MSD for S = 4, 8, 16, and 32 when applying the new   method to the 

regularization factor (-o-: l1-RLS with the true channel response, -x-: l1-RLS with the new   method, 

-*-: proposed l1-RTLS with the new   method, -  -: oracle-RLS). 

Table 2 summarizes the steady-state MSD values as varying S from 4 to 32. The results show that 

the proposed l1-RTLS with the new   is comparable to l1-RLS with the true channel. 

In the second experiment, we compare channel estimation performance using room impulse 

response. The size of the room is (7.49, 6.24, 3.88 m). The position of the sound source is (1.53, 0.96, 1.12 

m) and the position of the receiver is (1.81, 5.17, 0.71 m), respectively. T60 is set to 100 ms and 400 ms. 

The impulse response of the room is generated using the program in [31]. We focus on the direct 

reflection part and the early reflection part in the RIR because the direct reflection and early reflection 

part of the RIR has a sparse property. This is the part that is estimated in the AEC applications [32]. This 

part is also related to localization and clarity in room acoustics [33–35]. Comparing the impulse 

response (IR) generated by setting T60 = 100 ms to the channel with 65 coefficients used in the first 
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experiment, it is equivalent to S = 4 in the channel with 65 coefficients. In the same manner, the IR 

generated by setting T60 = 400 ms is equivalent to S = 10. 

Table 2. MSD (mean square deviation) comparison. 

Sparsity (S) Algorithm MSD 

4 

l1-RLS with the true channel −40.6 dB 

l1-RLS with the new   method −37.8 dB 

proposed l1-RTLS with the new   method −38.5 dB 

Oracle-RLS −50.4 dB 

8 

l1-RLS with the true channel −39.5 dB 

l1-RLS with the new   method −28.4 dB 

proposed l1-RTLS with the new   method −38.5 dB 

Oracle-RLS −46.9 dB 

16 

l1-RLS with the true channel −38.4 dB 

l1-RLS with the new   method −18.2 dB 

proposed l1-RTLS with the new   method −37.6 dB 

Oracle-RLS −43.6 dB 

32 

l1-RLS with the true channel −37.6 dB 

l1-RLS with the new   method −9.1 dB 

proposed l1-RTLS with the new   method −37.3 dB 

Oracle-RLS −40.6 dB 

Table 3 summarizes the steady-state MSD values. The results also show the same trend as Table 2. 

In RIR estimation, the proposed l1-RTLS with the new   is also comparable to l1-RLS with the true 

channel. 

Table 3. MSD (mean square deviation) comparison in sparse RIR estimations. 

Reverberation Time (T60) Algorithm MSD 

100 ms 

l1-RLS with the true channel −38.5 dB 

l1-RLS with the new   method −34.7 dB 

proposed l1-RTLS with the new   method −35.4 dB 

Oracle-RLS −45.3 dB 

400 ms 

l1-RLS with the true channel −32.1 dB 

l1-RLS with the new   method −20.9 dB 

proposed l1-RTLS with the new   method −30.1 dB 

Oracle-RLS −36.0 dB 

8. Conclusions 

In this paper, we have proposed the regularization factor for recursive adaptive estimation. The 

regularization factor needs no prior knowledge of the true channel impulse response. We have also 

reformulated the recursive estimation algorithm as l1-RTLS type. This formulation is robust to the 

uncertainty in the regularization factor without a priori knowledge of the true channel impulse 

response. Simulations show that the proposed regularization factor and l1-RTLS algorithm provide 

good performance comparable to l1- RLS with the knowledge of the true channel impulse response. 
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