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Featured Application: The main purpose of this study is to present a precise denoising algorithm
to denoise the fiber Bragg grating (FBG) deformation spectra signal. The method combines
variational mode decomposition and wavelet thresholding. It can be applied in signal processing
in the structural health monitoring field.

Abstract: Damage detection using an FBG sensor is a critical process for an assessment of any
inspection technology classified as structural health monitoring (SHM). FBG signals containing noise
in experiments are developed to detect flaws. In this paper, we propose a novel signal denoising
method that combines variational mode decomposition (VMD) and changed thresholding wavelets to
denoise experimental and mixed signals. VMD is a recently introduced adaptive signal decomposition
algorithm. Compared with traditional empirical mode decomposition (EMD), and it is well founded
theoretically and more robust to noise samples. First, input signals were broken down into a
given number of K band-limited intrinsic mode functions (BLIMFs) by VMD. For the purpose
of avoiding the impact of overbinning or underbinning on VMD denoising, the mixed signals,
which were obtained by adding different signal/noise ratio (SNR) noises to the experimental signals,
were designed to select the best decomposition number K and data-fidelity constraint parameter
α. After that, the realistic experimental signals were processed using four denoising algorithms
to evaluate denoising performance. The results show that, upon adding additional noisy signals
and realistic signals, the proposed algorithm delivers excellent performance over the EMD-based
denoising method and discrete wavelet transform filtering.

Keywords: fiber Bragg grating; variational mode decomposition; discrete wavelet transform;
signal processing

1. Introduction

Fiber Bragg gratings (FBGs) have attracted more and more attention due to their small size,
high resolution, multiplexing capability, immunity to electromagnetic fields, and other interesting
features. Recently, FBG sensors have been considered as promising in structural health monitoring
(SHM) [1]. When the central wavelength of the reflected light shifts with the introduced structure
strain/stress, the FBG sensor performs as an optical strain gage for strain/stress measurements [2].
Furthermore, FBG sensors have shown great potential for monitoring applications in aluminum fatigue
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crack by analyzing the deformation spectrum signal with crack propagation [3]. However, the truthful
signal data contains various noises caused by the environment, personal operation, and other reasons.

In this paper, to identify and abstract valuable information from the initial signal, combined
with background noise, especially under a high-noise condition, we propose wavelet thresholding in
a variational mode decomposition (VMD) domain signal denoising method, called the VMD-DWT
denoising algorithm. The VMD was first proposed by Dragomiretskiy and Zosso in Reference [4]. It is
an ensemble, non-recursive variation decomposition mode, the basic mode being named band-limited
intrinsic mode functions (BLIMFs) uk, where the modes are extracted concurrently and their central
frequencies wk are estimated online using the alternate direction method. The research shows that
the frequency of BLIMFs is more compact than that of intrinsic mode functions (IMFs), and the VMD
outperforms the empirical mode decomposition (EMD) in signal–noise separation and robustness
based on some experimental data. Thus, the VMD can be used to remove the noise from non-linear
and non-stationary signal. In Reference [5], the VMD was used to denoise the vibration signals
caused by rotor-to-stator rubbing, and the analysis results show its superiority over empirical wavelet
transform (EWT) [6], ensemble empirical mode decomposition method (EEMD) [7], and EMD [8].
In Reference [9], VMD was successfully used to denoise a biomedical image, and in Reference [10],
a typical EGG signal was denoised using only VMD. Moreover, Zhang et al. [11] studied chatter
detection in a milling process based on the entropy of the basic modes decomposed using VMD and
wavelet packet decomposition (WPD). Jiang et al. [12] demonstrated a new coarse-to-fine decomposing
strategy of the VMD that can detect the weak repetitive transients of heavy noise signals at a high
quality. Recently, researchers have verified the basic decomposition modes of VMD related to spectrum
energy. The decomposition level K decides the energy distribution in each basic mode [13]. However,
in the literature, there are few studies on the definition method of decomposition level number K.
In Reference [6], the decomposition level of VMD coincides with that of the EMD decomposition
number. Moreover, in Reference [13], VMD combined with detrended fluctuation analysis (DFA)
is proposed to denoise noisy signals corrupted by white Gaussian noise (WGN), and the criterion
based on DFA is designed to select the number K. Gao et al. [14] applied simulated Acoustic emission
(AE)signals to its wave packages adaptively, and the number of wave packages is seen as the value K.
However, the reasonability of the operability of the decomposing strategy of VMD for the experimental
FBG signals are seldom discussed because it is difficult to establish the basic components of the
signals. Obviously, these predefined methods are disproportionate, and the selection method of the
best decomposition number K is worth investigating.

FBG signals detected under fatigue loading are a non-stationary time series. The degree of noise
interference in damage detection processing is changed with the diverse external load environment.
It is clear that wavelet denoising methods are widely used in signal processing, and a discrete
wavelet transform (DWT) can effectively remove noise and obtain the detailed information of the
signal [15,16]. In the case of VMD, the thresholding operation should be properly adapted to be
consistent with the energy characteristics of the decomposition basic modes. Inspired by improved
wavelet thresholding [17], in this paper, we propose a novel denoising method that combines
variational mode decomposition with the changed thresholding discrete wavelet transform, called the
VMD-DWT algorithm, to process experimental signals.

Several EMD denoising algorithms have been developed, such as EMD-soft [18], EMD-DFA [19],
and EMD-changed thresholding wavelet [20]. EMD [8] is a recursive procedure to analyze
non-linear and non-stationary multicomponent signals by deposing them into several amplitude-
and frequency-modulated (AM/FM) zero-mean principle mode signals, which are without predefined
basis vectors. However, EMD decomposition highly depends on the extremal point findings method.
A lack of a mathematical theory and the problem of recursive shifting and mode mixing in the
extraction process of IMF by EMD have inspired such solutions as empirical wavelets [21] and
recursive variational decomposition [4]. Nevertheless, these attempts have only partially addressed
the drawbacks of EMD. Recently, VMD, due to its advantages in noise resistance, the balance of
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the backward error, and a narrow-band definition of meaningful modes, has been proposed as
an alternative to EMD for dividing multi-component signals into different modes based on a clear
variational model [22]. VMD combined with a discrete wavelet thresholding algorithm for denoising
mixed and real experiment signals under various working conditions presents a superior effect
compared with traditional denoising based on EMD methods.

The proposed approach has two key advantages over the previous studies. First, the novel
changed thresholding VMD-DWT algorithm can be effectivity applied to denoise the FBG signals that
are obtained from the fatigue crack propagation detection experiment. Once the crack is initiated, the
amplitude fluctuation of the noise spectral signal measured from the experiment would be obviously
changed [3]. Therefore, a VMD combined with the changed thresholding wavelet method is proposed
to satisfy the future precise denoising demand of the damage signals. Second, although the VMD
or the DWT denoising algorithm has been studied in other signals, such as the EEG [11] and the
vibration signals [6], the combined denoising algorithm is seldom adapted in fatigue crack experiment
FBG signals. Moreover, the energy distribution in each basic mode has been considered in wavelet
thresholding. Additionality, compared with other decomposition parameter definition methods, in this
paper, it focuses on the physical characteristic of the signal and the real experiment environment.
Through analyzing the denoising results of different methods in mixed and real signals, the proposed
denoising method shows good performance in FBG signal denoising processing in the SHM field.

The remainder of the paper is organized as follows. We present the experimental design in
Sections 2 and 3 provides a brief description of VMD and the major concepts of DWT. Meanwhile,
it also discusses the possibility of adapting the wavelet thresholding principle in VMD decomposition.
Consequently, novel changed thresholding VMD-DWT strategies are presented. Section 4 explores two
cases. In Case 1, four denoising algorithms are applied to denoise the mixed signals. The processing
results show the effectiveness of the proposed method with respect to FBG signals, and the best
decomposition number K and data-fidelity constraint parameter α were obtained. In Case 2, real
experimental signals used to evaluate the novel denoising techniques are illustrated. This section also
includes a discussion of the results. In Section 5, the final conclusions are drawn.

2. Experimental Design

The purpose of FBG sensor damage detection is to analyze the deformation spectrum and
reflectivity intensity. Their bandwidths change with crack propagation. Spectrum characteristic
analysis results can be used to local the damage and quantify the severity. In this study,
an aluminum alloy structural component equipped with FBG sensors was designed to achieve crack
damage detection.

2.1. Specimens: Material and Geometry

Aircraft grade 2024-T3 aluminum alloy coupons 2.0 mm in thickness were manufactured at the
AECC Beijing Institute of Aeronautical Materials (Beijing, China). The specimens with dimensions of
300 × 100 × 2 mm, a straight 10 mm hole in the center of the plate, and a 2 mm through-thickness
pre-crack was processed by electric discharge machining (EDM) in the two sides of the hole to develop
a fatigue crack. The detailed geometry of the specimen is shown in Figure 1. All specimens have
the same geometry and were made of the same materials. The yield strength of the materials was
360 MPa, the ultimate strength was 490 MPa, the Poisson’s ration was 33, and the Young’s modulus
was 72,000 MPa. Results from Reference [23] indicate that the pre-crack around the hole has a larger
stress concentration and therefore has the most potential to develop the fatigue damage.
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Figure 1. (a) Schematic of the aluminum specimen and the FBG sensor layout. (b) Metallic
homogeneous coupons bonded with the FBG sensors under the fatigue experiment test.

2.2. Sensor Layout Design

The FBG sensor layout design is critical for damage detection. The sensors were bonded on the
surface of the plate to sense the damage condition. According to the existing experimental data from
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our pre-research testing and the finite element analysis at different crack lengths [23], the crack usually
initiates at the pre-crack position, grows on both sides of the hole, and then finally breaks the specimen.
Thus, the central hole region was marked as the target area. Sixteen FBG sensors bonded by the
liquid cyanoacrylate adhesive were uniformly placed on both sides of the hole. The adhesive Young’s
modulus of the FBG sensor was 1.7 MPa, and the length was 10.1 mm. Furthermore, the deformation
spectrum introduced by the crack damage was caused by the axial strain profile. Considering that, the
FBG sensors were placed at the terminal of the crack tip. The detail sensor placement layout is shown
in Figure 1a, where red lines represent the FBG sensors near the target region.

2.3. Experimental Setup

The experimental platform for fatigue hole-edge crack damage detection contained three
major parts: an optical sensing and data acquisition system, a fatigue crack measurement system,
and a fatigue load-cycling system, which are shown in Figure 2. FBG sensors (FSSR5025) manufactured
by the Changcheng Institute of Metrology and Measurement (Beijing, China), were used to monitor
the crack propagation behavior. The optical demodulator system (SM125, Micro Optics Inc., Danbury,
CT, USA) was adapted to record the reflection spectrum at various crack lengths from 1 to 30 mm, and
the measurement accuracy was 1 µε. Regions vulnerable to fatigue crack damage were monitored with
a traveling optical microscope and a charge coupled device (CCD) camera during loading, and the
discovered crack lengths were defined as the true crack lengths. The fatigue cycling load testing was
conducted using a hydraulic Mechanical Testing & Simulation (MTS) machine at room temperature,
and the constant amplitude tensile loading was applied to the bottom of the plate, with a fixed top
boundary. The amplitude was 80 MPa, the stress ratio was 0.1, and the load frequency was 5 Hz.
In addition, the fatigue testing experiment was paused for data acquisition, and the processing was
repeated twice to eliminate the operation error during each of the pauses. The overall experimental
setup is shown in Figure 2. The experiment signal data were investigated to evaluate the effect of the
de-noising algorithm and to monitor the size and location of the crack damage.
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2.4. Experimental Results

Fatigue cracks are naturally generated during fatigue testing. In fatigue testing, the healthy
and damaged signals are collected for damage monitoring. Figure 3 shows a plot of the reflectivity
spectrum versus the crack length for the specimen. In the following figure, external loads lead to
uniform or non-uniform strain field distributions along the sensor grating. When the strain field is
uniform, the FBG reflection spectrum only shifts in the amount proportional to the applied strain
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(assuming isothermal conditions) in Figure 3a. However, when the strain is non-uniform, the spectrum
shifts and distorts at the same time. Moreover, the spectrum broadens and shows multiple peaks in
Figure 3b.
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Figure 3. The reflection spectrum at different crack lengths obtained from the experiment. (a) The ideal
signals, and (b) the heavy noise signals.

According to previous research [3], when the results of the crack damage monitoring experiment
are ideal, the damage characteristics extracted from the deformation spectrum can be used to detect
crack damage. However, it can be seen in Figure 3b that partial experiment results obtain a substantial
amount of noise. The FBG sensing system is influenced by electrical items and the external environment,
and the noise is expected to be included in the reflectivity spectrum. The noisy irregular leap points
are magnified in the figure below with black cycles. Additionally, the noisy experiment signal affects
crack damage detection precision, so a precision denoising algorithm is required to estimate the initial
free noise signal from the experimental signal before the feature detection operation.
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3. The Principle of VMD-DWT-Based Denoising

During the late 1990s, Huang introduced the EMD algorithm [8]. It is widely used to recursively
decompose a signal into different unknown and separate spectral bands. However, the properties
of the EMD method includes a sensitivity to sampling noise and a lack of mathematical theory,
drawbacks that limit its application in signal de-noising. Though some attempts have been made
to address these issues, such as empirical wavelets and the recursive VMD mode, they continue to
persist. In 2014, Konstantin [22] introduced VMD, an entirely non-recursive variational decomposition
mode. In his research, VMD was described as different from the existing decomposition in that it
can extract the mode concurrently from the input signal online. Moreover, the mode is an ensemble
of modes, respecting central frequencies wk. The basic modes are obtained by applying the VMD
algorithm to the input signals, called band-limited intrinsic mode functions (BLIMFs) uk with respect
to the sub-energy of the signal. As the decomposition number is predefined, the decomposition
level decides the energy distribution in each basic mode. The authors in Reference [4] show the
high-order modes uk representing fast oscillations and the low-order modes uk representing slow
oscillations. The noise is almost in the high-frequency domain, so the experiment signal should
be separated into several high-order modes. For the purpose of enhancing denoising performance,
inspired by the translation invariant wavelet, VMD-based denoising techniques were developed.
The wavelet-changed thresholding principle was employed in the decomposition basic modes.
The VMD-changed thresholding algorithm is described in this section.

3.1. Brief Description of VMD

The goal of VMD is to decompose the input signal into sub-signal modes, uk, which have specific
sparsity properties. The basic modes K are most related to the center frequencies wk. A detailed
description of VMD can be found in Reference [4]. In order to assess the modes uk and the frequencies
wk, the resulting constrained birational problem, described as follows, needs to be solved using VMD:

min
{uk},{wk}

{
∑
k

∥∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)e−jwkt

]
‖2

2

}
(1)

Subject to ∑
k

uk = f (2)

in which the uk and wk are shorthand notations of the mode and its center frequency. The δ denotes
the Dirac distribution, ∂t denotes the partial differential, and ∗ indicates convolution.

The reconstruction constraint can be addressed by making use of both a quadratic penalty term
and Lagrangian multipliers λ. The argument Lagrangian L is expressed as follows:

L({uk}, {wk}, λ) = α∑K
k=1

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jwkt‖2

2

+‖x(t)−∑K
k=1 uk(t)‖2

2 + 〈λ(t), x(t)−∑K
k=1 uk(t)〉

(3)

where α represents the balance parameter in the data fidelity constraint and corresponds to the
bandwidth of the mode. The solution to the problem is the alternate direction method of multipliers
(ADMM). The Winner filtering in the Fourier domain is adopted to update the modes uk. According to
Reference [4], the embedded Winner filtering in the VMD algorithm makes the modes more robust to
sampling and noise. The sub-mode uk in the time domain and the filtered analytic signal transformed
by inverse Fourier can then be defined as follows:

ûn+1
k (w) =

f̂ (w)−∑i 6=k ûi(w) +
λ̂(w)

2

1 + 2α(w− wk)
2 (4)

ûk(t) = R{i f f t(ûk(w))} (5)
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in which the f̂ (w) shows the Fourier transform of the signal f (t). The R denotes the real analysis
signal part, and the i f f t(.) expresses the inverse Fourier transform of the signal.

The optimal wk by Fourier domain is given as follows:

wn+1
k =

∫ ∞
0 w|ûk(w)|2dw∫ ∞

0 |ûk(w)|2dw
. (6)

VMD was applied to the experimental FBG signal, shown in Figure 4a, and the BLIMFs from the
VMD of the experimental signal with the equal decomposition number of the EMD and the balance
parameter set to 400 can be seen in Figure 4c. Figure 4b depicts the IMFs extracted from the EMD of
the FBG signal. It is obvious that the intrinsic modes u6 and u7 contained little information that the
VMD decomposition was overbinning, and the results were redundant. Thus, the VMD predefinition
method where the basic mode number K was equal to the EMD decomposition level was unreasonable,
and a better use for the FBG experiment data can be seen in the following section.
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3.2. The Improved VMD-DWT Denoising Algorithm

The thresholding value could be self-adapted with spectral characteristics under different
signal models resulting from VMD. An improved wavelet-VMD algorithm based on the standard
wavelet-VMD is proposed for the spectrum signal denoising. Three key techniques were adopted in
this section: one is wavelet thresholding, another is the data-fidelity constraint parameter, and the
third is the decomposition number.

Compared with the traditional DWT denoising algorithm, the improved wavelet thresholding
in the proposed algorithm considers the energy in each basic mode, and the denoising result is
superior. Furthermore, in the traditional VMD algorithm, the decomposition number K is required to
be predefined, and its value has a predictable impact on the efficiency of filtering. In the literature,
the basic mode number K is usually defined with the same EMD decomposition number and the
wavelet packet number or is selected by calculating the scaling exponent α of the input signal. However,
the technologies above have a limitation in the experiment signal for the complicated frequency
components. Therefore, the number K was selected based on experience. In addition, the value of
the data-fidelity constraint parameter α can be estimated by analyzing the anti-noise performance at
different α values for the mixed signal of various SNRinput. The flow chart of the VMD-DWT denoising
algorithm is shown in Figure 5.

The real FBG signal f (i) with finite length N is described as follows:

f (i) = s(i) + n(i) i = 0, 1, 2, . . . , N − 1 (7)

where s(i) is the FBG noise free signal, and n(i) denotes random noise, which is associated with
environment. The purpose of the denoising method is to find an estimated f̃ (i) of the signal f (i) with
small error, i.e., completely remove the uncertain external disturbance noises from the experimental
signals. In order to simplify the operation, we assumed that the SNRout denotes the signal/noise
ratio (SNR) of the output signal and the SNRinput indicates the SNR of the input signal. Based on
the aforementioned analysis, the process of the VMD-DWT signal de-noising algorithm is shown
as follows:
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Step 1: The decomposition number K of the experiment signal is estimated. As discussed above,
the decomposition number is not universally predefined. Thus, the number K is defined based on
experience. Considering the difficulties of calculating quantitative evaluation indexes, the mixed FBG
signals by adding various SNRinput Gaussian white noise to the experimental signals has been used in
this paper to find the relationship between the decomposition number K and the denoising results.
In addition, the anti-noise performance of the proposed algorithm at different α values is analyzed
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with mixed signals under various SNRinput values. The best decomposition number K and the balance
parameter α for the realistic experiment signal are estimated based on the denoising results. Details
can be found in Section 4, Case 1.

Step 2: The best decomposition number K is determined. An input signal with length N is
decomposed into K band-limited intrinsic mode functions (BLIMFs) uk by VMD, with respect to the
sub-energy of the signal. The signal of length N in the time domain is extended 2N to address the
frequency domain.

Step 3: In wavelet decomposition, the predetermined and fixed equivalent filter-bank structure
is not possible. A translate wavelet is performed by using thresholding in each BLIMF. Thus, the
high-order BLIMF parts considered to be significantly corrupted by noise can be locally excluded. Based
on a previous study, it is better to adopt DWT sym5 as the wavelet basis and to set the decomposition
level at 6 [24].

This method is different from the traditional direct application of wavelet-like thresholding to
the decomposition modes, hard or soft. In practice, the result of soft thresholding shows greater
efficacy than the hard thresholding in FBG signals [24]. Soft thresholding is then applied to all BLIMF
samples when the samples’ extremums exceed the threshold, which means that they correspond to a
zero-crossing interval and need to be reduced in a smooth way. Thus, the extremum is reduced by
an amount exactly equal to the threshold. Considering the energy in each uk, the improved wavelet
thresholding is presented in Equation (8).

d̂l = f (x) =

 sign(di)(|di| − Ti

exp (
|di |

T −1)
2 ), |di| ≥ Ti

0, |di| ≤ Ti

(8)

Here, di presents the ith thresholding BLIMFs, and the standard deviation of the noise is estimated
by a robust estimator leading to more accurate estimates, based on the components’ median.

σ =
median(|ci| : i = 1, 2 . . . .N)

0.675
. (9)

As previously mentioned, the noise contained in the BLIMF samples is not standard distributed
with variance energy in each mode. In this sense, the reason for adapting a different thresholding Ti
per mode i will become clear in the sequel for the scale dependence. Mathematically, the described soft
thresholding operation yields Equation (9):

T = 100σ
√

2Eilg(N)/lg(j + 1). (10)

Here, the Ei shows the energy of the Ki BLIMFs and can be computed directly based on the
variation estimate of the first BLIMF using Equation (11).

Êk =
E2

1
β

ρ−k, k = 2, 3, 4 . . . (11)

where E2
1 is the energy of the first BLIMFs, and β and ρ are parameters for a specific VMD

implementation, mainly depending on the number of shifting iterations used. They can be estimated
based on the large number of independent noise realizations and their corresponding BLIMFs.
In Reference [25], the parameters β and ρ are 0.719 and 2.01, respectively.

Step 4: After performing the synthesis function on each scale separately, finally, the de-noising
signal is reconstructed by summing all processed BLIMFs after the denoising methods.
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4. Results and Discussion

This section should provide a concise and precise description of the experimental results,
their interpretation, and the experimental conclusions that can be drawn.

It is well known that the EMD-wavelet algorithm has been successfully used in removing the WGN
from noisy signals. However, few studies on VMD-based denoising have been conducted. The EMD is
highly dependent on methods of extremal point findings, which are sensitive to noise. The robustness
of the algorithm may be reduced by the degrees of freedom. To overcome these limitations, a novel
VMD decomposition scheme was used to obtain the recovered signal. The actual signal was processed
to obtain the best decomposition number K. The real experimental signal was processed for a quantity
evaluation of the denoising ability for four decomposition methods: the EMD-wavelet, EMD-DFA,
EMD-wavelet-changed threshold, and VMD-DFA. The details are shown in Cases 1 and 2.

Case 1: Applying VMD to Mixed FBG Noisy Signals

As discussed before, the predefined decomposition number K is key to the VMD method.
Previous studies set the number K to coincide with the EMD decomposition number. VMD may
have an overbinning decomposition. The DFA method can also be applied to the mode number K
definition. This may cause substantial simulation and experiment work since the FBG signal has not
been studied before. In this paper, we propose an experimental way of solving the decomposition
number definition problem. In Case 1, we obtained the actual FBG noisy signal by adding different
SNR levels of white Gaussian noise to the experimental FBG signal. To evaluate the de-noising effect,
quantitative evaluating indexes, such as the mean absolute error (MAE), the root-mean-square error
(RMSE), and the SNR, are proposed here to assess the de-noising methods [26,27]. Additionally, the
cross-correlation coefficient is proposed to estimate the correlation between the noisy signal and the
denoising signal.

MAE =
1
N

N

∑
i=1

(
s(i)− f̃ (i)

)2
(12)

RMSE =

√√√√ 1
N

N

∑
i=1

(
s(i)− f̃ (i)

)2
(13)

SNR = 10lg

 ∑N
i=1 s2(i)

∑N
i=1

(
s(i)− f̃ (i)

)2

 (14)

Coss correlation =
Cov

(
s(i), f̃ (i)

)
√

Var(s(i))Var
(

f̃ (i)
) (15)

where f̃ (i) represents the de-noising FBG signal, and the s(i) values are the noisy FBG signals. Cov(∗)
indicates the covariance function, and Var(∗) shows the variance equation.

The value of the data-fidelity constraint balance parameter α is inversely proportional to the
bandwidth of the signal mode and closely related to anti-noise performance. The bandwidth mode
widens as α decreases, and the modes may have poor anti-noise performance. However, the center
frequency mode will be less accurate according to the bandwidth mode, which decreases with a greater
α. Based on a previous study [3], the veracity of the damage of the primary wavelength relies heavily
on the center frequency of extracted modes. Therefore, it is necessary to find a proper value of α,
by not only considering the center frequency accuracy but also taking the anti-noise performance
into account.

In order to find a balance point of α, the anti-noise performance under different α values was
analyzed with different SNRinput mixed signals. The central frequency of Mode 1 corresponds to the
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central wavelength considered the damage characteristic, and the primary wavelength shifting with
different crack lengths was calculated with various values of α. The decomposition level was set as 6.
The interval of α was set within [1, 5000] according to research indicating that the mode separation
error is intolerable when α is over 5000 [28]. Hence, under different α values that increase from 1
to 5000 with a step width equal to 100, the center frequency of Mode 1 was calculated sequentially,
and the result can be seen in Figure 6. It was found that with a larger SNRinput, the center frequency
of noisy signals approached the center frequency of original signals more closely, which means a
better anti-noise performance. It is worth noting that the central frequency of Mode 1 in different SNR
noise signals most closely approaches the central frequency of the original signal with good anti-noise
performance when α is approximately 200. In this research, the value of α was set to 200 to guarantee
the value accuracy of the center frequency when the experiment signal was processed later.
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Taking the mixed FBG noisy signals shown in Figure 4a as an example, the proposed denoising
algorithm was applied to the samplings, and the results are given in Table 1. The EMD-wavelet,
EMD-DFA, and EMD-changed thresholding wavelet (named EMD-DWT) algorithms are used for
comparison due to their well-developed characteristics in terms of removing WGN from signals.
The parameters of VMD were also chosen as follows: α = 200, τ = 0, and ε = 1 × 10−7. EMD with
the traditional wavelet thresholding method was chosen as the basic denoising algorithm to evaluate
the effectiveness of other three methods. Moreover, the EMD-DWT algorithm was used to assess
the denoising performance under the VMD and EMD domains. Moreover, the traditional denoising
method of EMD-DFA was proposed as a reference algorithm. The mixed FBG noise signal with SNRs
from 5 to 35 dB were processed, and the quantity evaluation results can be seen in the following table.
Table 1(a) presents the SNRout of the above four denoising algorithms, Table 1(b) presents the cross
correlation, and Table 1(c) presents the MSE of the above-mentioned denoising methods. The bold
numbers in the figure below presents the best SNRout of the three traditional algorithms and the
proposed algorithm under different decomposition numbers.
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Table 1. (a) Comparisons the SNRout of the VMD with changed thresholding wavelet and EMD
denoising methods for mixed FBG signal. (b) Comparisons the cross correlation of the VMD with
changed thresholding wavelet and EMD denoising methods for mixed FBG signal. (c) Comparisons
the MAE of the VMD with changed thresholding wavelet and EMD denoising methods for mixed
FBG signals.

(a)

SNR (dB) 5 7 10 15 20 25 30 35

EMD-wavelet (soft) 28.27289 29.03794 29.94879 34.62247 36.03779 38.70505 40.36963 40.66328
EMD-DFA 21.45639 20.79891 27.80233 20.84781 37.91600 43.04961 48.30413 53.24952
EMD-DWT 22.98264 24.93801 27.80229 33.08285 37.91601 43.04964 48.30413 53.24952
VMD-DWT

K = 1 18.79288 18.65518 18.38846 18.80969 26.82166 27.21651 32.46437 32.66283
K = 2 23.01841 23.64160 19.52073 24.16615 29.21863 32.06180 34.01615 39.82442
K = 3 25.09874 25.09611 22.54665 27.92866 30.06698 37.79198 37.94835 44.41590
K = 4 28.44365 29.81668 24.83959 29.63455 33.04874 38.72096 39.84002 47.23453
K = 5 25.99756 25.96998 29.97101 34.78591 37.98547 43.04964 45.16942 50.30090
K = 6 25.34463 25.96834 28.86079 31.42557 35.30840 39.04831 48.58089 53.24953
K = 7 24.86184 25.77156 24.81353 31.26708 34.64873 37.34640 32.33718 47.70035
K = 8 24.32871 25.3521 24.18736 30.30249 33.72422 37.22826 30.94072 44.94072
K = 9 24.12876 24.8201 23.26579 30.10474 32.6836 36.1196 29.35118 41.35118

K = 10 24.09218 24.5655 22.57683 29.42232 32.57326 35.2429 28.75985 38.75985

(b)

SNR (dB) 5 7 10 15 20 25 30 35

EMD-wavelet (soft) 0.999211 0.999341 0.999463 0.999816 0.999867 0.999928 0.999951 0.999954
EMD-DFA 0.996210 0.995574 0.999120 0.995617 0.999914 0.999974 0.999992 0.999997
EMD-DWT 0.997322 0.998289 0.999120 0.999738 0.999914 0.999974 0.999992 0.999997
VMD-DWT

K = 1 0.993307 0.993061 0.999120 0.993247 0.997264 0.996479 0.989061 0.999711
K = 2 0.997981 0.997784 0.983889 0.998011 0.998034 0.997344 0.999127 0.999763
K = 3 0.998470 0.998468 0.998160 0.997895 0.999763 0.998193 0.999370 0.999816
K = 4 0.998510 0.999638 0.998997 0.999097 0.999880 0.999732 0.999457 0.999899
K = 5 0.998343 0.999466 0.999497 0.999897 0.999922 0.999974 0.999594 0.999937
K = 6 0.998452 0.998621 0.999261 0.999794 0.999865 0.999819 0.999921 0.999997
K = 7 0.998267 0.998529 0.998792 0.999702 0.999719 0.999374 0.999250 0.999891
K = 8 0.998037 0.998475 0.998582 0.999699 0.999638 0.998787 0.998633 0.999633
K = 9 0.997944 0.998361 0.997440 0.999618 0.999506 0.995454 0.998395 0.999395

K = 10 0.997924 0.998315 0.997741 0.999606 0.999426 0.992086 0.998349 0.999349

(c)

SNR (dB) 5 7 10 15 20 25 30 35

EMD-wavelet (soft) 0.241370 0.213610 0.177919 0.125300 0.083814 0.063342 0.053885 0.052942
EMD-DFA 0.389650 0.364545 0.254550 0.323424 0.079609 0.044027 0.024160 0.013852
EMD-DWT 0.439771 0.354689 0.254553 0.139824 0.079609 0.044027 0.024160 0.013852
VMD-DWT

K = 1 0.640044 0.653047 0.654553 0.633102 0.633446 0.622933 0.620225 0.518134
K = 2 0.315766 0.321990 0.448884 0.279824 0.276412 0.317596 0.234400 0.217975
K = 3 0.369700 0.296232 0.340961 0.291351 0.186823 0.117153 0.113686 0.114086
K = 4 0.296320 0.228715 0.265572 0.172845 0.157558 0.055798 0.073030 0.087924
K = 5 0.332780 0.261142 0.17698 0.119602 0.079603 0.044027 0.052551 0.042896
K = 6 0.317743 0.297420 0.259824 0.138284 0.103971 0.085524 0.022050 0.013030
K = 7 0.349587 0.305211 0.295239 0.142640 0.114192 0.107896 0.094784 0.076756
K = 8 0.369039 0.314728 0.339887 0.145079 0.123990 0.119463 0.106430 0.086430
K = 9 0.381169 0.318587 0.470725 0.149699 0.137336 0.121081 0.118543 0.078543

K = 10 0.384062 0.325191 0.427981 0.156916 0.138992 0.132615 0.129593 0.069593

For the VMD-changed thresholding wavelet algorithm, the decomposition number K determines
the proposed algorithm denoising performance. According to previous research, the results of three
parameters, the SNRout, the MAE, and the correlation coefficient, to quantitatively evaluate the
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denoising performance, were used to analyze the best VMD decomposition number under different
SNRinput values. It is clear that when the decomposition number K was set too high, too many basic
modes were obtained (overbinning); when the decomposition number was set too low, there may
be too few basic modes (underbinning). The three quantitative evaluating parameters show that the
denoising effect apparently does not reach the best expectations. Additionally, K is related to the SNR
of the input signal. A higher SNRinput of mixed signals corresponds to a higher decomposition level.
The best decomposition level number is 4 with a mixed signal with a low SNRinput; however, with
a mixed signal with a high SNRinput, the best basic mode number increases and maintains stability at
6. On balance, for a realistic experimental signal without adding noise, the best decomposition level
should be 6 in the denoising process.

In Table 1, the EMD-changed thresholding wavelet algorithm had better performance than the
traditional EMD-wavelet denoising method, which illustrates that the changed thresholding was
efficient at signal denoising. Moreover, comparing other algorithms, such as the EMD-wavelet method,
the EMD-DWT algorithm, and the EMD-DFA method, the changed thresholding VMD-DWT algorithm
showed the highest SNR and cross-correlation with the smallest MAE in four algorithms when the
decomposed number and balance parameter were chosen optimally. The quantitative denoising
analysis results indicate that the proposed algorithm had the best denoising effect, and among all
four methods mentioned, was the most robust. Additionally, the changed thresholding VMD-DWT
algorithm effectively removed noise from experimental signals, laying the foundation for further
experiments in FBG signal denoising operations.

Case 2: The Experimental FBG Signal

In Case 1, the best decomposition number level K, equaling 6, and the balance parameter α,
equaling 200, were obtained to process the realistic experimental signals collected from the damage
monitoring experiment mentioned above. The EMD-wavelet algorithm, EMD-DFA denoising method,
and the EMD-DWT method were selected for comparison to evaluate the denoising ability of the
proposed algorithm. The intuitive denoising analysis results of the initial experimental signals can
be seen in Figure 7a, and the noise that eliminated the realistic experiment signal is clearly shown in
Figure 7b. It can be seen that the VMD-changed thresholding wavelet could remove the noise more
completely than the other three algorithms.

To evaluate the proposed algorithm and other algorithms, the RMSE was proposed as a
quantitative evaluation index based on the literature [13]. The RMSE results of different denoising
algorithms can be seen in Figure 8. The figure shows the results of the RMSE indicator being used
to quantity the denoising ability of the proposed algorithm. For a quantitative index, the standard
deviation σ between the initial realistic experimental signal and the denoising signal was calculated,
and is mathematically expressed as in Equation (2).

The RMSE results presented at different crack lengths during the damage monitoring experience
are shown in Figure 8. The changed thresholding VMD-DWT denoising algorithm has the lowest
RMSE compared with the other methods. Thus, the effectiveness of this proposed algorithm in
denoising experimental FBG signals was verified. This technique has thus been successfully validated
in experimental conditions. These results may be used in crack growth monitoring.
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Figure 7. (a) VMD-changed thresholding denoising of the FBG experimental signal. The original
spectrum (blue) is filtered through a VMD→DWT→changed thresholding→IDWT→IVMD.
(b) The noisy part of the experiment FBG signal after denoising.

In order to denoise the FBG signals obtained from the fatigue crack detection experiment,
we proposed a VMD combined with the changed thresholding wavelet denoising method.
The thresholding definition in the algorithm considers the energy distribution in each basic mode.
Furthermore, in order to deal with the best balance parameters α, which was obtained by comparing
the central frequency of the original and mixed signals with well overlapped at different parameter
numbers. Different to other definition methods, the central frequency corresponds to the physical
parameter central wavelength of the spectrum. Additionally, the denoising performance under
different SNRinput mixed signals are used to acquire the best decomposition number K. It is obvious
that the proposed algorithm showed the best denoising ability for mixed signals for the highest
SNRinput and cross correlation, compared with the traditional signal denoising methods, such as the
EMD-wavelet (soft), EMD-DFA, and the EMD-DWT algorithm. Furthermore, in the fatigue crack
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propagation detection experiment, the real FBG signals were processed by four denoising methods,
and the results show that the proposed algorithm was superior than the other traditional methods,
since it retained the useful damage signal information and removed environment noise. Therefore,
the definition methods of the best decomposition number and balance parameter can be used in the
VMD-changed wavelet methods and the proposed denoising methods can process the FBG signal for
fatigue crack detection.
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5. Conclusions

In this paper, a recently introduced VMD was proposed to filter the mixed and real noisy
signals contaminated by FBGs. The main problem in VMD is selecting the decomposition number
K of the basic modes of BLIMFs and the balance parameter α. To solve the problem, mixed FBG
signals were used to find the best decomposition number K and the data-fidelity constraint α for
VMD denoising, and SNRout, the MAE, and the correlation coefficient were presented as denoising
performance indicators. In Case 1, the best balance parameter α was obtained by analyzing the
anti-noise performance at different α values. The mixed FBG input signals with different SNR noises
were broken down into the given numbers K of BLIMFs through VMD. After applying the changed
thresholding wavelet to the BLIMFs, the filtered signals were reconstructed from modes by summing
the de-noised BLIMFs. Additionally, the previously mentioned three indexes were used to evaluate the
denoising performance. The best decomposition number K could be defined when the VMD-changed
thresholding wavelet algorithm had the best denoising effect. It was found that the denoising results of
the proposed algorithm for the mixed signals were different. Furthermore, considering the mixed FBG
signals, the denoising results show that the proposed algorithm is superior to the EMD-changed
thresholding wavelet, the EMD-DFA, and the EMD-DWT filtering techniques. To illustrate the
effectiveness of this proposed method, we carried out Case 2. The input signal data were collected
from the crack monitoring experiment described in Section 2. Based on Case 1, the best decomposition
number K was set at 6, and the balance parameter was set to 200. It was found in the quantitative results
of RMSE indicators that the capability of VMD-changed wavelet methods in FBG signal denoising
was higher than that of other denoising algorithms. As previous discussed, the parameter of the
proposed definition methods considers the FBG signal physical characteristics and the VMD-changed
thresholding wavelet algorithm denoising performed better than other three traditional methods,
which can be used in FBG signals processing in the SHM field.
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