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Abstract: Shock load from industrial wastewater is known to harm the microbial activities of the
activated sludge in wastewater treatment plants (WWTPs) and disturb their performance. This study
developed a system monitoring the activated sludge activities based on the relative oxygen uptake
rate (ROUR) and explored the influential factors with wastewater and the activated sludge samples
collected from a typical WWTP in the Taihu Lake of southern Jiangsu province, China. The ROUR was
affected by the concentration of toxic substances, mixed liquid suspended solids (MLSS), hydraulic
retention time (HRT) and pH. Higher toxin contents significantly decreased the ROUR and the EC50

value of Zn2+, Ni2+, Cr(VI), Cu2+, and Cd2+ was 13.40, 15.54, 97.56, 12.01, and 14.65 mg/L, respectively.
The ROUR declined with the increasing HRT and MLSS above 2000 mg/L had buffering capacities
for the impacts of toxic substances to some extent. The ROUR remained stable within a broad range
pH (6–10), covering most of the operational pH in WWTPs and behaving as an appropriate indicator
for monitoring the shock load. A toxicity model assessing and predicting the ROUR was developed
and fitted well with experimental data. Coupling the ROUR monitoring system and toxicity model,
an online early-warning system was assembled and successfully used for predicting the toxicity of
different potential toxic metals. This study provides a new universal toxicity model and an online
early-warning system for monitoring the shock load from industrial wastewater, which is useful for
improving the performance of WWTPs.
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1. Introduction

With the rapid economic development and urbanization, the quantity of wastewater discharge
increases and the demands for freshwater resources are increasing worldwide [1,2]. Wastewater
treatment plants (WWTPs) suffer from many difficulties to meet the rigorous discharge standards
nowadays, e.g., high pollutant concentration, complicated composition, poor biodegradability, and
unstable process [3,4]. It is important for WWTPs to maintain high microbial activities of the activated
sludge, which are critical in removing pollutants, particularly persistent organic pollutants (POPs),
emerging contaminants or potential toxic elements (PTEs). For instance, biological treatment in
WWTPs was reported to effectively degrade phenol [5], polycyclic aromatic hydrocarbons (PAHs) [6,7],
polychlorinated biphenyls (PCBs) [8], imidazole [9], 1-methyl-imidazole [9], N,N′-alkyl-imidazolium
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chlorides [9], and SS-ethylenediamine-N,N′-disuccinic acid [10,11], and the activated sludge was
also capable of adsorbing and removing PTEs [12,13]. However, the biochemical treatment units
in WWTPs are sensitive to high-level of toxic emerging substances or PTEs in influents and the
paralysis often occurs in case of a shock load. It is reported that the spill of cyanide and other illegal
chemical dumping can cause the shutdown of WWTPs and consequently release contaminants to the
surrounding environment [14]. Toxicity assessment methods require development for monitoring the
change of influent toxicity and guiding the rapid response strategies to protect WWTPs from the shock
load [15].

One important source of the shock load in WWTPs is industrial wastewater, which is characterized
by its extreme toxicity, inhibitive ability and high concentrations of complex pollutants [16–18].
Industrial wastewater harms the biochemical treatment units of WWTPs and seriously disturbs
their operation by inhibiting the activated sludge activities in WWTPs [19]. The ratio of 5-day
biological oxygen demand (BOD5) to chemical oxygen demand (COD), designated as B/C, can be
significantly reduced by industrial wastewater to <0.3, indicating a poor biodegradability and causing
the paralysis of the biochemical treatment units [20,21]. Due to the shock load and intermittent impacts
of PTEs, cyanide and other toxic substances in industrial wastewater, WWTPs might lose efficiencies in
removing pollutants to some extent and the effluent quality is affected [21,22], consequently increasing
the operation cost [23]. It is therefore necessary to monitor the industrial shock load and improve the
resistance of WWTPs to maintain the removal efficiency of refractory pollutants. However, due to the
uncertainty and complexity of pollutants in industrial wastewater discharge, most of which are not
conventional contaminants to be regularly measured in WWTPs, systems monitoring a broad spectrum
of pollutants and integrally evaluating the influent toxicity are of great urgency in WWTP management.

Biological monitoring is an alternative approach to evaluate the influent quality by assessing
the toxicity, instead of the accurate composition of wastewater [24]. Many studies on biological
early-warning systems use various indicators to monitor the influent toxicity in WWTPs, e.g., animals
and plants [25,26], special bacterial strains [27,28], microbial current [29–31], and respiratory rate [32].
Among them, luminescent bacteria are widely studied [33–35] but suffer from the difficulties in online
cultivation and monitoring [36–39]. Additionally, most of these approaches are still in laboratory
test, leaving a huge gap between the state-of-art concept and industrial practices. Besides, these
biological measurements are indirect methods as the indicator organisms are exogenous to the activated
sludge and unable to represent the real domestication and adaptability of the activated sludge during
wastewater treatment process [14]. An early-warning system directly monitoring the change of
the activated sludge activities can represent the real performance of WWTPs and provide a basis
for emergency measures of toxic substances in industrial wastewater, for effectively evaluating the
influent toxicity and alarming the shock load of industrial wastewater [3,40].

The oxygen uptake rate (OUR) is a theoretical indicator for characterizing the activated sludge
activities, representing the in situ changes of microbial activities in removing pollutants [41–43].
The OUR has been used for several cases of toxicity assessment like organic compounds, PTEs, and
complex wastewater [14,44]. For instance, the OUR is able to estimate the kinetic parameters in a
model including substrate hydrolysis, biomass growth and endogenous metabolism [45]. In addition,
the degree of the OUR also indicates the toxic and inhibitory level of pollutants [46,47]. Studies have
shown that the sizes and concentrations of pollutants inhibit the OUR of the activated sludge to
different extent [46]. Other operation parameters in WWTPs, like the activated sludge contents and
hydraulic retention time (HRT) have distinct influence on the OUR [48]. From the OUR of the activated
sludge in WWTPs, the influence of toxic substances on the biochemical treatment units is intuitional.
However, as the activated sludges have unique compositions across WWTPs, it is difficult to apply
one type of early-warning system in different WWTPs [49]. Therefore, a robust, reliable and universal
model simulating the OUR response to different environmental variables is needed to calculate and
predict the influent toxicity across WWTPs.



Appl. Sci. 2019, 9, 154 3 of 14

The aim of this work is to assemble an online early-warning system to monitor the activated sludge
activities in WWTPs affected by industrial toxins via the relative OUR (ROUR) and develop a model to
discuss the impacts of environmental variables on the ROUR, with a case study in a typical WWTP in
the Taihu Lake of southern Jiangsu Province, China. With the typical toxicity and inhibitory sources
in industrial wastewater as the target toxic substances, e.g., Zn2+, Ni2+, and phenol, we also studied
some influential factors, e.g., types and concentrations of toxins, the activated sludge contents and
HRT, to comprehensively explore their influence on the ROUR and predict the ROUR under different
conditions. Our findings help in better understanding and applying the online early-warning system
for the effective operation of different WWTPs response to the shock load from industrial wastewater.

2. Materials and Methods

2.1. Sample Collection and Instrumental Analysis

Wastewater and the activated sludge were collected from Nancao WWTP, Yixing city, Jiangsu
Province (E119◦58′48′ ′, N31◦30′20′ ′) in March, 2015. After transport to laboratory at 4 ◦C, they were
stored under 4 ◦C within 24 h before experiments.

The measurement of MLSS followed the standard method [50]. The PTEs contents in the activated
sludge were detected by inductively coupled plasma optical emission spectrometry (ICP-OES) (Optima
8300DV, Perkin Elmer, Waltham, MA, USA, 2011). Phenol concentration was measured by a modified
spectrophotometric method [5]. Briefly, 100 µL of the activated sludge sample was diluted in 900 µL
of deionized water, added with 400 µL of NH4OH (2.0 M), 200 µL of aminoantipyrine (2% w/w) and
400 µL of K3Fe(CN)6 (2% w/w). The absorbance at 500 nm was measured for the mixture using a
microplate reader (Synergy II multimode, BioTek Instruments, Inc., Winooski, VT, USA, 2014).

2.2. Laboratory Oxygen Uptake Rate (OUR) Monitoring System

The laboratory OUR monitoring system was consisted of a wastewater pump, an air pump, a
reaction chamber, an aeration device, a BOD bottle, a magnetic stirrer and a portable dissolved oxygen
(DO) detector, as illustrated in Figure 1. After mixing about 100 mL of synthetic wastewater and 20 mL
of the activated sludge in a BOD bottle, the activated sludge mixture was aerated until saturated DO
(around 10 mg/L in 20 min). The BOD bottle was then sealed and kept stirring by a magnetic stirrer.
The change of BOD was measured by a portable DO detector every 1 min at 20 ◦C until DO declined
to 1.0 mg/L. OUR (mg O2/L·min) was calculated from the dynamic of DO change following the linear
regression. The ROUR was calculated according to Equation (1).

ROUR =
OURn

OURc
× 100% (1)

where, OURn (mg O2/L·min) refers to the OUR postexposure to the nth toxins, and OURc (mg
O2/L·min) represent the OUR in negative control.
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Figure 1. Laboratory oxygen uptake rate (OUR) monitoring system. 1© wastewater pump; 2© air pump;
3© reaction chamber; 4© aeration probe; 5© BOD bottle; 6© stirring bar; 7© DO probe; 8© magnetic stirrer;
9© portable DO detector.
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2.3. Online Early-Warning System for Water Quality Based on the Relative Oxygen Uptake Rate
(ROUR) Index

To apply the developed method for in situ monitoring the ROUR in WWTPs, an online
early-warning system was assembled, consisted of a wastewater tank, a sludge tank, a filter, an
aerator, a water pump, a sludge pump, a batch reactor for DO measurement, a DO probe, and
a programmable logic controller (PLC), as illustrated in Figure 2a. The wastewater influent was
continuously pumped into the wastewater tank after filtering and the activated sludge samples were
directly pumped into the sludge tank. They were then mixed together in the batch reactor. The batch
reactor was kept stirring (200 rpm), completed aerated (10 min), DO-monitoring (10 min) and finally
discarded through the effluent tube. The whole online early-warning system was built up on a mobile
platform (650 mm × 400 mm × 1200 mm, length × width × height) manufactured with galvanized
steel plain sheets (Figure 2b,c). The flow rate of wastewater and the activated sludge was 350 and
50 mL/min, respectively. The aeration was achieved by a microporous aerator and the DO after
aeration maintained above 6 mg/L. The PLC software was programmed for either automatically or
manually controlling operational parameters of the early-warning system, including a main menu
(menu selection), a trend menu (real-time illustration of OUR change), a sampling menu (sample
injection and discard control), a device menu (device check), a warning menu (alarm for low ROUR
and system fault), and a setting menu (parameter setting).
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Figure 2. Online early-warning system. (a) Schematic program of the online early-warning system.
(b) The mobile platform for the online early-warning system. (c) Inside look of the mobile platform
for the online early-warning system. Up-layer, programmable logic controller (PLC); down-layer,
reaction system.

2.4. Experimental Procedure

From previous studies, some industrial toxic substances, e.g., Zn2+, Cu2+, Ni2+, Pb2+, aromatic
hydrocarbons, and antibiotics, were dominant in municipal WWTPs in Jiangsu Province [51–54].
Accordingly, Zn2+, Ni2+, and phenol were selected as the target toxins representing those substances in
this study. In the laboratory OUR monitoring system, the stock solution was prepared by dissolving
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1.041 g of ZnCl2, 1.104 g of NiCl2, and 0.500 g of phenol in 1.0 L of deionized water. They were then
serially diluted in wastewater with the activated sludge and the final concentration ranged from 0
to 60 mg/L (details see Table S1). According to the real operation parameters in most WWTPs in
Jiangsu Province (MLSS = 4000–5000 mg/L), MLSS content of the activated sludge was set from 1000
to 5000 mg/L to evaluate the impacts of MLSS on the ROUR. As MLSS had buffering capacities for
the inhibitory effects of toxic substances (see Section 3.2), the optimal MLSS content was 2000 mg/L
for the measurement of the ROUR and it was set for the following tests to assess the influence of pH
and HRT. The pH was adjusted by H2SO4 (1.0M) to 2, 4, 5, and 6 in acidic treatments, whereas under
alkaline conditions, NaOH (1.0M) was used to adjust the pH value to 8, 9, 10, and 12. The optimal HRT
was 20 min and set to 1–60 min to evaluate the impacts of HRT on the ROUR. For all the experiments,
the operation temperature was 20 ◦C.

In the online early-warning system, the MLSS content was 500 mg/L and the HRT was fixed as
10 min. The target toxins included Zn2+, Cu2+, Ni2+, Cr(VI), and Cd2+, prepared by dissolving 1.041 g
of ZnCl2, 1.054 g of CuCl2, 1.104 g of NiCl2, 1.951 g of KCrO4, and 0.816 g of CdCl2 in deionized water
as stock solution. From metal speciation predicted by MINTEQ program [55], all the PTEs were in
cation form, except for Cr (90% in form of HCrO4

− and 10% in form of CrO4
2−). Accordingly, the final

concentration was 0–10 mg/L for Zn2+, Cu2+ and Ni2+, 0–15 mg/L for Cd2+ and 0–40 mg/L for Cr(VI),
respectively (details see Table S2).

2.5. Data Analysis

All the data are mean ± standard deviation (SD) from triplicates. Statistical analysis was
performed using SPSS software (version 20.0, International Business Machines Corporation, Armonk,
NY, USA, 2012). All the data were validated for normality by the Brown-Forsythe test prior to a
one-way analysis of variance (ANOVA), and then evaluated using ANOVA followed by Duncan’s test.
Significant differences (p < 0.05) between the treatments are highlighted.

The decrease in the ROUR is caused by direct inhibition effects of toxic substances in industrial
wastewater, which suppress the cell activities and cell metabolisms. Various types of toxic effects are
found across toxins, such as membrane integrity loss as the result of cell lysis and protein activity
inhibition [56]. Accordingly, the general microbial activity inhibition can be expressed in the following
Equation (2), where kToxicity refers to the toxicity constant for different toxic substances, k−1

Toxicity
represents the effective concentration 50 (EC50), and KToxicity is the dynamic toxicity coefficient.

KToxicity =
k−1

Toxicity

k−1
Toxicity + [Toxin]

(2)

3. Results and Discussions

3.1. Dose-Effect of Toxic Substances on the ROUR

PTEs exhibited significant inhibition effects on the ROUR (Figure 3). Generally, the ROUR
decreased dramatically with the increasing concentration of PTEs, 12.0 ± 5.3% and 22.0 ± 15.1% for
Zn2+ and Ni2+ (60 mg/L), respectively. As for phenol, a similar declining behavior was found and the
ROUR decreased to 36.0 ± 5.5% when phenol concentration was 60 mg/L. Additionally, our results
indicated a positive correlation between the ROUR-reciprocal and the concentration of toxic substances,
suggesting that Hill equation could describe the equilibrium inhibition state [57], as expressed in
Equation (3).

ROUR =
k−1

Toxicity

k−1
Toxicity + [Toxin]

(3)

where k−1
Toxicity was 13.40, 15.54, and 8.21 mg/L for Zn2+, Ni2+, and phenol, respectively.
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The ROUR reflects the metabolic activities of the activated sludge, which are normally catalyzed by
enzymes in microbial cells [41]. As the biodegradation of pollutants by the activated sludge depends
on the microbial activities [58], higher concentration of metals can damage enzymatic activities,
consequently resulting in the inhibited activities or even death of cells [59,60]. Accordingly, the ROUR
decreased gradually with the increasing PTE concentrations. In the present study, the EC50 of Zn2+

for the activated sludge (13.40 mg/L) was similar with those obtained from individual bioreporter
strains, e.g., 10.9 mg/L by Psychrobacter sp. bioreporters [24] and 16 mg/L by Pseudomonas Shk1
bioreporters [42], but much lower than other previous studies on the activated sludge (around 50 to
60 mg/L) [42,61]. Similarly, the EC50 of Ni2+ and phenol in the present study was also lower than
previous studies on the activated sludge (21–190 mg/L for Ni2+ and 416–608 mg/L for phenol) [48,62,
63] or by Pseudomonas Shk1 bioreporters (96 mg/L for Ni2+ and 482 mg/L for phenol) [64,65]. Different
experimental system might explain this discrepancy. Most of the previous studies used an enclosed
system to test the oxygen consumption after 10 min-aeration [42,61], which was easy in operation but
hardly applied for online OUR monitoring as the wastewater samples required sequential collection.
In contrast, our laboratory monitoring system used the batch reactor by injecting wastewater and the
activated sludge simultaneously and cultivating the mixture with different HRT (ranging from 1 to
60 min, 10 min for the dose-effect of PTEs), consequently resulting in relative longer exposure of the
activated sludge to the toxic substances and lowering the EC50. Our results suggested that the EC50

varied across toxic compounds, and the developed laboratory OUR monitoring system could simulate
WWTP-like process and provide accurate EC50 values to evaluate the impacts of the shock load by
industrial wastewater.

3.2. Impacts of Mixed Liquid Suspended Solids (MLSS) on the ROUR

MLSS had buffering capacities for the inhibitory effects of toxic substances, as the ROUR increased
with the MLSS contents for both PTEs and phenol (Figure 4). When the MLSS content was 5000 mg/L,
the ROUR reached 99.0 ± 5.5% and 79.8 ± 21.5% for Zn2+ and Ni2+, respectively. Phenol had
the same trend and the ROUR increased to 66.6 ± 12.7% at 5000 mg/L of MLSS. Accordingly, the
ROUR-reciprocal was positively correlated with MLSS-reciprocal, as expressed in Equation (4).

ROUR−1 ∝ [MLSS]−1 (4)

As the carrier of microbes in the activated sludge, MLSS content represents the amount of
microbial biomass [66]. At higher MLSS or biomass, microbes tend to form aggregates and improve
their resistance to toxic substances by decreasing the surface area of single microbial cells directly
exposure to toxins [67]. In addition, microbes are capable of excreting extracellular polymeric
substances (EPS), which are involved in the detoxification process [68,69]. Accordingly, higher MLSS
can improve the resistance of the activated sludge to the shock load from toxins in industrial wastewater,
designated as the buffering effect.
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3.3. Impacts of Hydraulic Retention Time (HRT) on the ROUR

HRT also showed significant impacts on the ROUR (Figure 5), which declined with the increasing
HRT, from 51.0 ± 5.1% to 41.0 ± 2.7% (Zn2+), 58.0 ± 10.7% to 22.0 ±5.0% (Ni2+) and 32.0 ± 5.8% to
16.0 ± 2.8% (phenol), respectively. The reciprocal of distance between ROUR and 1.0 (the ROUR value
in the absence of toxic substances) was positively correlated with HRT, as expressed in Equation (5).
We speculate that the remaining activated sludge activities decreased according to the integral of toxin
exposure and linked to the function of HRT, as defined in Equation (6), where ROURt represents the
ROUR at time = t.

1− ROUR ∝ [HRT]−1 (5)

ROUR = 1−
∫ HRT

0
ROURtdt (6)
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HRT represents the duration of direct interaction between the activated sludge and toxic
substances [48]. As the persistent toxicity causes gradually inactivation of proteins in the active
cells [70], the ROUR is dependent on the exposure time or HRT. Previous studies also reported that
the increasing HRT led to the decrease of MLSS, EPS concentration, sludge viscosity, and the ratio of
food to microorganisms [71]. Therefore, the inhibition of microbial activities in the activated sludge
increased with higher HRT.

3.4. Impacts of pH on the ROUR

The effects of pH on the ROUR behaved as a bell shape, as illustrated in Figure 6. The ROUR
peaked at pH 6–10 and achieved above 80% comparing to that in the absence of toxic substances.
It declined dramatically to below 10% under extremely acidic (pH < 4) or alkaline (pH > 10) conditions.
The activated sludge was reported to be sensitive to pH, as most bacteria can only survive in a
relatively narrow range of pH [72] and the activities of some microorganisms were inhibited under
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low or high pH conditions [73]. For example, pH from 5.1 to 6.1 markedly depressed the metabolisms
of the activated sludge [74]. Additionally, pH control was critical for optimizing the performance
of WWTPs [75]. Our results suggested that the ROUR was quite stable within a broad range of pH
(6–10), covering most of the operational pH in WWTPs, and was suitable as an indicator for online
early-warning system measuring the shock load of industrial wastewater.
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3.5. Toxicity Model Predicting the ROUR under Different Conditions

As discussed above, the ROUR was significantly affected by the concentration of toxic substances,
MLSS content, and HRT. It is therefore important to develop a mathematical model simulating the
effects of both toxic substances and environmental variables to compare the ROUR in different WWTPs
with distinct operation parameters. In the present study and considering the microbial activity
inhibition by toxic substances as described in Equation (1), the integral effects of these parameters
were expressed in the following Equation (7) to predict the ROUR of the activated sludge.

ROUR = 1−
∫ t

1 OURt·dt
OUR0,0

= 1−

∫ t
0

(
k−1

Toxicity

k−1
Toxicity+[Toxin]/[MLSS]

×OUR0,t

)
·dt

OUR0,0
(7)

Here, OUR0,0 and OUR0,t represent the OUR in the absence of toxic substances at time = 0 and
t, respectively. If the OUR of the activated sludge is consistent along with time, the equation can be
converted as Equation (8) and fit well with Equations (3) to (7) above.

ROUR = 1−
k−1

Toxicity

k−1
Toxicity + [Toxin]/[MLSS]

× HRT (8)

Although numerous studies have reported the impacts of toxin concentration and other
parameters on the OUR or other indicators representing the activated sludge activities [27,28,32],
our work is the first attempt to explain the toxic effects in a theoretical model, and the results suggested
that toxic substances, MLSS and HRT were all key factors affecting the ROUR.

3.6. Online Monitoring the ROUR for Industrial Wastewater Containing Potential Toxic Elements (PTEs)

The performance of the online early-warning system based on the ROUR index was illustrated
in Figure 7. Different PTEs showed distinct effects on the ROUR and the predicted ROUR by the
developed toxicity model matched the experimental data. All the ROUR decreased with the increasing
concentrations of PTEs but to different extent. According to the model calculation, the EC50 value of
Zn2+, Ni2+, Cr(VI), Cu2+, and Cd2+ on the activated sludge activity was 13.40, 15.54, 97.56, 12.01, and
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14.65 mg/L, respectively (Figure 7f). It is worth mentioning that the metal toxicity followed the order:
Cu2+ > Zn2+ ≈ Cd2+ ≈ Ni2+ > Cr(VI), consistent with the results from previous studies as Cu2+ > Zn2+

≈ Cd2+ > Ni2+ [59] and Ni2+ > Cr(VI) [49].
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Zn2+ and Ni2+ in industrial wastewater are mainly originated from electroplating in various
industries including automobiles, construction, shipbuilding, light, etc. [48,76,77]. The predominant
sources of Cr(VI) are industrial wastewater derived from the processing of chrome ore, metal surface
treatment, leather tanning, printing, and dyeing [78]. High concentrations of Cu2+ are often found
in the discharge from electrical and electronic industries, light industry, machinery manufacturing,
construction industry, and national defense industry [79–81]. The majority of Cd2+ in industrial
wastewater is from the activities of electroplating, pigments, plastic stabilizers, alloys, and battery
manufacturing [82,83]. Data from eight typical WWTPs of five cities in China showed that the metal
concentrations in industrial wastewater are averagely 1755 mg/L for Zn2+, 68 mg/L for Ni2+, 317 mg/L
for Cr(VI), 524 mg/L for Cu2+, and 17 mg/L for Cd2+, respectively [84]. Comparing to the EC50 value
obtained in this study (Figure 7f), municipal wastewater with 0.76% (volume) of the shock load from
industrial wastewater containing Zn2+ will lose 50% of the activated sludge activities and might cause
the failure of WWTPs. The volume percentage of the shock load from industrial wastewater potentially
resulting in the WWTP paralysis was 22.85% (Ni2+), 30.78% (Cr(VI)), 2.29% (Cu2+), and 86.18% (Cd2+).
Accordingly, WWTPs are more sensitive to the shock load of industrial wastewater containing Zn2+,
followed by Cu2+, Ni2+, Cr(VI), and Cd2+. Zn2+ and Cu2+ in industrial wastewater are very sensitive
toxic substances affecting the performance of WWTPs and should be defined as prior pollutants for
WWTP management. Ni2+ and Cr(VI) are considerably sensitive toxins in industrial wastewater,
whereas Cd2+ is the least sensitive metal on the activated sludge activities in WWTPs although its EC50

value is similarly as other PTEs.

4. Conclusions

In the present study, we assembled an online early-warning system and successfully applied it
for monitoring the activated sludge activities under the shock load from industrial wastewater based
on the measurement of the ROUR. The ROUR was sensitive to the concentration of toxic substances
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(0–60 mg/L), MLSS content (1000–5000 mg/L), and HRT (0–60 min), remaining high stability in a
broad range of pH (6–10). A toxicity model was developed to simulate the influent toxicity under
different operation parameters and could be used in the online early-warning systems to predict the
influence of toxic substances from industrial wastewater across WWTPs. Both experimental data and
model prediction suggested that PTEs remarkably affected the activated sludge activities and the
influence was dependent on metal species. Considering the order of PTE’s EC50 values (Cu2+ < Zn2+ <
Cd2+ < Ni2+ < Cr(VI)), the performance of WWTPs showed different sensitivity and response to the
shock load from industrial wastewater containing different PTEs. This study provides an effective
on-line toxicity monitoring system for early-warning WWTPs facing the shock load of industrial
wastewater and is helpful for WWTP management to achieve stable and satisfactory performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/1/154/s1,
Table S1: Concentrations of toxic compounds for the laboratory ROUR system, Table S2, Concentrations of toxic
compounds for the online early-warning system.
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