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Abstract: Networks and graphs are highly relevant in modeling real-life communities and their
interactions. In order to gain insight in their structure, different roles are attributed to vertices,
effectively clustering them in equivalence classes. A new formal definition of regular equivalence
is presented in this paper, and the relation with other equivalence types is investigated and
mathematically proven. An efficient algorithm is designed, able to detect all regularly equivalent
roles in large-scale complex networks. We apply it to both Barabási–Albert random networks, as well
as real-life social networks, which leads to interesting insights.
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1. Introduction

The availability of large datasets, derived from many sources of real-life social networks from
different kinds, allows deep research into the underlying structure behind these networks. It is
possible to distinguish between vertices on the basis of their local neighborhood structure in the graph,
which allows one to attach a role to vertices, such that vertices with similar roles can be identified
and clustered in groups. This clustering then forms a basis for higher-level analysis, focusing on
the inherent structure that many social networks have in common, independent of their size, origin,
or interpretation. In order to develop a full understanding of the underlying mechanics behind the
interactions in a social network graph, it is also necessary to model these networks, i.e., generate
artificial networks of different sizes, such that a maximum amount of observable properties of real-life
networks are mimicked as well as possible.

In this work, we investigate social networks using minimal regular equivalence relations, attaching
roles to vertices with a similar local neighborhood, which results in a good balance between being
too strict or too loose when analyzing the network structure. The relation between minimal regular
equivalence and other definitions, available in the literature, is then proven. We also introduce a fast
and efficient algorithm to calculate these minimal regular equivalences, which allows researchers
to quickly understand the structure of a network. We then apply our approach to both randomly
generated networks as well as real-life social networks.

The paper is organized as follows. First, we provide a literature review containing references to
previously published work in the field. Afterward, quite a few technical definitions are introduced,
unambiguously describing our approach and positioning it with respect to other equivalence relations,
through two rigorous mathematical proofs and accompanying counterexamples. This leads to the
description of the regular equivalence algorithm, using pseudo-code and a proof of correctness. Closing
this section is a discussion of the computational complexity of the approach. Next, the algorithm is put
to the test. Apart from investigating the runtime, we use it to study randomly generated networks,
culminating in a relation between the scaling exponent of the Barabási–Albert generator and the
ratio of edges vs. vertices for maximal colorings. Subsequently, the algorithm is used to investigate
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real-life networks, which are compared with the randomly generated networks. A discussion of the
results, together with an outlook to future work, closes the main body of the paper, while an appendix
describes in detail the inner workings of the network generator used.

2. Background and Context

Random networks have a long history, starting with Erdős and Rényi in the late 1950s [1]. The basic
idea is to generate graphs with a fixed number of vertices and afterwards adding edges, with each
possible edge effectively added to the graph with fixed probability p. This approach immediately gives
rise to interesting mathematical results but is inapt in modeling real-life networks [2]. Indeed, in many
social networks, vertices can be grouped in relatively small clusters, a fact not observed in Erdős-Rényi
random graphs. Watts and Strogatz [3] proposed a new model, which does exhibit this clustering
property well and generates so-called small-world networks with weak links [4]. This model also
sparked a large body of research and is successfully applied in many different contexts. However,
networks generated through the procedure by Watts and Strogatz are not scale-free, a property that
is sometimes observed in real-life networks: the distribution of vertex degrees in real-life networks
might follow a power law [5–7], such that the probability that an arbitrary vertex has degree k is
inversely proportional to kα for some α > 1 called the scaling exponent. This behavior is modeled
by the scale-free random network generator proposed by Barabási and Albert [8], which applies an
iterative growth process combined with edge addition through preferential attachment [9,10]. Up to
this date, the Barabási–Albert generator, together with its many variations, is used throughout the
literature as it is the most realistic scale-free network generator available [11–13].

Equivalence relations, defined on the vertices of a graph, allow thorough network analysis through
attaching positions or roles to vertices: the role of a vertex summarizes in some sense the structure
of its neighborhood [14,15]. Attaching roles is, in effect, nothing less than identifying similarity
between vertices based on the structure of surrounding subnetworks. Structural equivalence [16]
and automorphic equivalence [17] are thoroughly studied in the literature, but are mathematically
oriented, being defined in terms of purely graph-related definitions like automorphisms. From a
practical point of view, it is more interesting to investigate looser definitions of equivalence, such as
regular equivalence [18,19], which defines the role of a vertex not based on the set of its neighbors,
but instead on the roles of its neighbors. This circular definition allows for a more functional approach
to attaching roles to vertices and is a practical way to match the common concept of a vertex having a
role in a social context.

In recent years, work has focused on theoretical investigations of social networks and the
accompanying equivalences, focusing on axioms and logical characterizations [20–22], spectral
methods [23], blocks/blockmodeling [24–26], and general analysis [27]. These approaches are in
general much more mathematically oriented than ours, focusing on strict and rigorous scientific
analysis. They have been generalized in many directions, e.g., fuzzy graphs [28], applying
data-driven [29], and unsupervised role learning methods [30], some of these building upon massive
amounts of data in contrast to our approach. New methods extend the ideas of equivalence through
the use of additional measures when defining roles, like geodesic distance, modularity, community
structure, and cliques [31–33], which make use of complimentary concepts beyond our definitions.
Computationally, both theoretical considerations [34] as well as practical implementations have been
presented [35–38].

3. Materials and Methods

This section introduces our approach in three steps: first, we exactly define some concepts,
after which we introduce our regular equivalence algorithm that was specifically designed to tackle
large-scale and complex networks. As a last step, we provide a proof of correctness for our approach,
together with a computational complexity analysis that provides a theoretical upper bound for the
calculation time.
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3.1. Graphs and Equivalence Relations

In order to present our work unambiguously, we first need to introduce some classic concepts.
This is necessary as, in literature, multiple (slightly different) definitions appear for these notions,
sometimes leading to different conclusions which might turn out to be important to the discussion.

Definition (Graph/Network): We define a graph G = (V, E) to consist of a set of vertices V and a set of
edges E. An edge e = {u, v} connects the vertices u ∈ V and v ∈ V and is undirected.

Throughout this paper, the vertices will be divided in groups, following several definitions all
related to the concept of an equivalence relation from set theory.

Definition (Equivalence Relation): An equivalence relation R : V ×V → BOOL is a binary relation that
is reflexive, symmetric, and transitive.

As is commonly known, an equivalence relation in V always induces a partition of V, which puts
the vertices together in subsets of V such that every vertex is included in exactly one such subset.
We write uRv for two vertices u and v that are related to each other through R; they will be contained
in the same subset of V in the partition of V induced by R.

In literature investigating the roles and relations of vertices in graphs or networks, one often
encounters three specific equivalence relations, namely structural equivalence, automorphic
equivalence, and regular equivalence, the latter having slightly differing definitions depending on the
source [2,21,22,36].

Definition (Structural Equivalence): Two vertices u and v are structurally equivalent (notation: seq(u, v))
if and only if

∀(w ∈ V − {u, v}) : {u, w} ∈ E ⇐⇒ {v, w} ∈ E.

That is, seq(u, v) holds if and only if u and v have exactly the same set of neighbors, not counting
the vertices u and v themselves. It is necessary to exclude u and v because otherwise two connected
vertices could never be structurally equivalent.

To define automorphic equivalence, we first need to define the concept of an automorphism.
Definition (Automorphism): An automorphism of a graph is a permutation of vertices A : V → V

(notation: aut(A)) such that edges are mapped to edges:

∀(u, v ∈ V) : {u, v} ∈ E ⇐⇒ {A(u), A(v)} ∈ E.

Thus, an automorphism of a graph is a (possibly trivial) isomorphism of the graph and itself,
hence the name.

Definition (Automorphic Equivalence): Two vertices u and v are automorphically equivalent (notation:
aeq(u, v)) if and only if

∃(A : V → V) : aut(A) ∧ A(u) = v.

Thus, aeq(u, v) holds if and only if there exists an automorphism A that maps u to v.
The third type of equivalence relation will play an important role in this paper and is called

regular equivalence. In contrast with the other two equivalence relations that were discussed above,
there is no single definition of regular equivalence agreed upon in the literature. In order to define our
interpretation of regular equivalence exactly, we first need to introduce additional concepts. Firstly,
we have the concept of a coloring function c : V → N that attaches a color (natural number) to every
vertex of the graph. Coloring functions are used throughout graph theory in various contexts, like the
chromatic number of a graph. Secondly, we also need the concept of a spectrum.

Definition (Spectrum): The spectrum of a vertex u under the coloring function c is the function

su : N→ N : n 7→ |{v ∈ V|{u, v} ∈ E ∧ c(v) = n}|.
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Thus, the spectrum of a vertex is a function that takes a color (natural number) as argument and
returns the number of neighbors of the vertex with that color. Thirdly, we are now ready to define a
regular coloring function.

Definition (Regular Coloring Function): A coloring function c is called regular (notation: reg(c)) if and
only if

∀(u, v ∈ V) : c(u) = c(v)

⇐⇒

∀(n ∈ N) : |{w ∈ V|{u, w} ∈ E ∧ c(w) = n}| = |{w ∈ V|{v, w} ∈ E ∧ c(w) = n}|.

Thus, a regular coloring function attaches the same color to two vertices if and only if they have
exactly the same distribution of colors among their respective neighbors, which can also be written
using spectra as ∀(u, v ∈ V) : c(u) = c(v) ⇐⇒ su = sv. Note that such a coloring always exists by
giving each vertex a distinct color, which trivially fulfills the condition. We thus want to minimize the
number of colors used in a regular coloring function, which gives rise to the fourth auxiliary definition.

Definition (Minimal Regular Coloring Function): A regular coloring function c is called minimal (notation:
minreg(c)) if and only if

∀( f : V → N) : reg( f ) =⇒ |{n ∈ N|∃(u ∈ V) : c(u) = n}| ≤ |{n ∈ N|∃(u ∈ V) : f (u) = n}|.

Thus, a minimal regular coloring function uses the minimal amount of colors among all regular
coloring functions. Finally, we can now define regular equivalence.

Definition (Regular Equivalence): Two vertices u and v are regular equivalent (notation: req(u, v)) if and
only if

∀(c : V → N) : minreg(c) =⇒ c(u) = c(v).

Thus, u and v need to have the same color for all minimal regular coloring functions. The algorithm
that is presented in this paper will prove that the minimal regular coloring is uniquely defined for a
graph, and thus an equivalent definition could have been that two vertices are regular equivalent if
and only if ∃(c : V → N) : minreg(c) ∧ c(u) = c(v). We are aware that other definitions of regular
equivalence are used throughout the literature, but for the entirety of this paper we will adhere to the
one defined above.

As we have seen, multiple equivalence relations can be defined upon a graph. These different
relations have interdependencies to each other, in the sense that some equivalence relations are more
strict than others.

Definition (Strictness): For two equivalence relations R1 and R2, we say that R1 is more strict than R2

(notation: R1 ≺ R2) if and only if

∀(u, v ∈ V) : uR1v =⇒ uR2v.

It is now possible to prove that structurally equivalent vertices are also automorphically
equivalent, but not necessarily vice versa. Additionally, automorphically equivalent vertices are
regularly equivalent, but not necessarily vice versa. Stated otherwise, there is a clear ordering between
the 3 equivalence definitions, which we now demonstrate through the following two proofs. We start
by proving the relation between structural and automorphic equivalence.

Theorem 1. Structural equivalence is more strict than automorphic equivalence

Proof. Consider a structural equivalence relation R. It is sufficient to demonstrate that an
automorphism of the graph exists with A(u) = v and A(v) = u, given uRv. Given that the neighbors
of u and v are the same, possibly excepting u and v themselves, it is trivial to take the automorphism
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A : V → V such that

A(w) =


v if w = u,

u if w = v,

w otherwise.

In order to demonstrate that structural equivalence and automorphic equivalence are different
concepts, we need to provide a counterexample: a graph containing two vertices u and v that are
automorphically equivalent but not structurally equivalent. This can be done easily. A graph with
four vertices which are linearly connected to each other in a single chain is sufficient, as the two outer
vertices have different neighbors but are still automorphically equivalent.

We continue by proving the relation between automorphic and regular equivalence.

Theorem 2. Automorphic equivalence is more strict than regular equivalence

Proof. We need to prove that ∀(u, v ∈ V) : aut(u, v) =⇒ reg(u, v). Consider an automorphic
equivalence relation R and consider any two vertices u, v ∈ V such that uRv, that is, there exists an
automorphism A : V → V such that A(u) = v. We now need to prove that the minimal regular
coloring function attaches the same color to u and v. We will first prove that the coloring corresponding
to R is a regular coloring function.

Consider the coloring function c : V → V such that ∀(u, v ∈ V) : uRv ⇐⇒ c(u) = c(v). We will
now prove that su = sv, that is, u and v have the same spectrum. Indeed, as A is an automorphism
of the graph, every neighbor wu of u will be mapped by A to some neighbor wv of v; formally,
∀(wu ∈ V) : {u, wu} ∈ E =⇒ ∃(wv ∈ V) : A(wu) = wv ∧ {v, wv} ∈ E. Thus, there exists an
automorphism that maps wu to wv, namely A itself; thus, wuRwv and thus c(wu) = c(wv). We have
thus proven that we can map any neighbor wu of u to a neighbor wv of v while preserving the color.
This is tantamount to saying that the spectrum su is equal to the spectrum sv. Thus, the coloring
function c is indeed a valid regular coloring function and c(u) = c(v).

Now, although c is a valid regular coloring function, it still might be the case that it does not
use the minimal number of colors; that is, it might not be a minimal regular coloring function.
However, changing the regular coloring function c to a minimal regular coloring function c′ involves
attaching the same color to vertices that previously had a different color, because their spectrum
is the same (although no automorphism exists that maps them to each other). Thus, ∀(u, v ∈ V) :
reg(c) ∧ minreg(c′) ∧ (c(u) = c(v)) ⇒ (c′(u) = c′(v)). This concludes our proof, as we already
demonstrated that c(u) = c(v).

In order to demonstrate that automorphic equivalence and regular equivalence are different
concepts, we need to provide a counterexample: a graph containing two vertices u and v that are
regularly equivalent but not automorphically equivalent. Such a graph is more difficult to construct,
and one example is given in Figure 1.

As strictness is transitive, we immediately obtain that structural equivalence is more strict than
regular equivalence. In practice, both structural equivalence and automorphic equivalence are very
strict when applied to real-life social networks, having only very little vertices being equivalent to
each other. Indeed, two vertices are structurally equivalent if and only if they have exactly the same
set of neighbors (excluding themselves), which is something that rarely happens in real-life networks.
Additionally, two vertices are automorphic equivalent if and only if the connections of the whole,
global graph look exactly the same from their respective points of view, which is what automorphic
equivalence expresses informally. Thus, little structure is discovered when investigating these networks
using only structural equivalence and automorphic equivalence. In contrast, regular equivalence
is much “looser,” allowing more structure to be discovered, with more vertices being equivalent to
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each other. Thus, regular equivalence is an important tool that allows us to gain additional insight in
network structure. It does not require neighbors to be exactly the same vertices, as it is sufficient that
neighbors have the same role. Additionally, it takes into account the local connection-structure of the
vertices instead of the global structure, which is once more relaxing the condition for vertices to be
equivalent. It is thus possible to investigate the structure without having to look at too fine-grained
details, discovering meaningful relations or roles between the vertices.

vu

vu

a1

a2

b1

b2

b3

b4

c1

c2

b5

b6

b7

b8

a3

a4

Figure 1. Vertices u and v are regularly equivalent, but not automorphically.

3.2. Regular Equivalence Algorithm

In order to compute the regular equivalence relation for a graph, we now present an algorithm
that iteratively partitions the vertices in different groups. As we are looking for a coloring function that
uses a minimal number of colors, we start by attaching the same color to all vertices, and iteratively
add new colors to vertices that definitely cannot have the same color. This is determined through
the use of the spectrum of a vertex, which shows how many vertices of each color are adjacent to the
current vertex under scrutiny. The spectrum thus functions as a blueprint of the neighborhood of
a vertex.

3.2.1. Description of the Algorithm

We now continue with a description of the algorithm. In short, we start with all vertices in one
set, and iteratively split up this set in more sets, such that vertices that do not have the same spectrum
are put in different sets, effectively building a partition of all vertices in each step. The algorithm stops
when no vertices need to be separated from each other anymore, that is: each set in the partition only
contains vertices that have the same spectrum.

As we are going to repeatedly calculate and update the spectra of the vertices, we need a
function that keeps track of these spectra and groups the vertices with the same spectrum together,
and effectively calculates the partition. We denote this partition-building function by p, and this
p takes a spectrum su as input, i.e., a function N → N, and returns the set of vertices that have
the same spectrum i.e., {v ∈ V|su = sv}. This subset of V, which of course contains u itself,
is an element of the powerset of V (notation: 2V or P(V)) and we can thus formally write down
p : (N → N) → 2V : su 7→ {v ∈ V|su = sv}. It is key to our approach that the partition-building
function p can be calculated efficiently.

We now have all ingredients to discuss the algorithm that calculates the regular equivalences.
We first initialize the color of all vertices to the same temporary color, the number zero. In the
repeat-loop, we will calculate the spectra of the vertices under this coloring, and split up vertices that
have a different spectrum but still received the same temporary color during the previous iteration.
We thus introduce additional colors when the need arises and update the coloring function accordingly.
In this repeat-loop, we build up a new partition and initialize the partition to be the empty set. We then
calculate the spectrum su for all vertices u and group together the vertices with the same spectrum.
After all vertices have been processed, the partition-building function p will actually exhibit a number
of nonempty subsets of V, such that each u ∈ V is contained in exactly 1 of these subsets, i.e., p will
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correspond to a partition. If this number of nonempty subsets is equal to the number of colors used in
the previous iteration, this means that no colors have been updated since then and that no vertices u
and v with the same color but a different spectrum have been encountered. We thus found a minimal
regular equivalence coloring and can break the repeat-loop.

Otherwise, we remember the number of colors used in this iteration, and start updating the colors
of the vertices. This is done by iterating over all subsets in the partition, and attaching the same color
to all vertices in such a subset, starting with zero and incrementing the value of the color for each
subset processed. After finishing the repeat-loop, the algorithm returns the minimal regular coloring
function c, from which it is easy to derive the regular equivalence relation: two vertices u and v are
regular equivalent if and only if they have the same color, i.e., c(u) = c(v).

Algorithm 1 Regular equivalence.
Input: Graph G
Output: Minimal regular coloring function c
1: for u ∈ V do c(u)← 0 end for
2: ColorsUsed← 1
3: repeat
4: for s ∈ N→ N do p(s)← ∅ end for
5: for u ∈ V do
6: Calculate su
7: p(su)← p(su) ∪ u
8: end for
9: if |{s ∈ N→ N|p(s) 6= ∅}| = ColorsUsed then
10: break repeat-loop
11: end if
12: ColorsUsed← |{s ∈ N→ N|p(s) 6= ∅}|
13: CurrentColor ← 0
14: for x ∈ {p(su) ∈ 2V |u ∈ V} do
15: for y ∈ x do c(y)← CurrentColor end for
16: CurrentColor ← CurrentColor + 1
17: end for
18: end repeat
19: return c

This (mathematical) pseudocode leaves many choices for a practical implementation. The most
important decision concerns the use of the datastructure for the partition-building function p.
Our implementation uses a generic map-object. As such, the instruction for s ∈ N → N do
p(s)← ∅ corresponds to p.clear(), the instruction p(su)← p(su) ∪ u corresponds to p.get(su).add(u),
and the value |{s ∈ N → N|p(s) 6= ∅}| corresponds to p.size(). Moreover, the for-loop over
x ∈ {p(su) ∈ 2V |u ∈ V} corresponds to a loop over all p.values() and y ∈ x is of course also
implemented as a loop over x.

3.2.2. Proof of Correctness

We now prove the correctness of the above algorithm to calculate the regular equivalence relation.
First, we need to prove that the coloring function is indeed a regular coloring function; i.e., two vertices
have the same color if and only if they have the same spectrum. Second, we need to prove that this
coloring is indeed minimal, i.e., that it uses a minimal number of colors. Third, we need to prove that
the solution is reached eventually, i.e., that the algorithm will always terminate.

Theorem 3. The regular equivalence algorithm calculates the minimal regular coloring function

Proof. The algorithm starts with attaching the same color to all vertices. It then repeatedly calculates
all spectra; it groups together the vertices with the same spectra and separates vertices with different
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spectra by assigning a different color to them. If two vertices have the same spectrum, then the
algorithm will assign the same color to them. If two vertices have a different spectrum, then the
algorithm will assign a different color to them. This proves the first part of the theorem.

Secondly, it is never possible that two vertices with different colors should receive the same color
again, as they already received a different color in a previous iteration due to the fact that they were
already determined to have a different spectrum at that point. Indeed, introducing more colors can
never simplify the spectrum of any vertex; the total number of colors present in the spectrum of a
vertex can never decrease. The algorithm only introduces additional colors if needed; i.e., two vertices
were identified with different spectra but had the same color, so they have to be separated. Thus,
the algorithm will always use a minimal number of colors. This proves the second part of the theorem.

Thirdly, we start with assigning the same color to all vertices. In every iteration, at least one
additional color is introduced; otherwise, the algorithm stops iterating. At most |V| colors will be
used, when all vertices receive a different color. At that point, the iteration stops because the number
of colors used stays the same. Thus, in a finite number of steps, the algorithm will always terminate
and return.

3.3. Computational Complexity

Next, it is necessary to investigate the computational complexity of the algorithm at hand. Lines 1
and 2 are O(|V|) and constant time respectively. An upper bound for the repeat-loop can be easily
established as at least one color is added each iteration, with a maximum of |V| colors. In Line 4,
we initialize the partition-building function p, which can be done in constant time. The spectrum of a
vertex can be calculated in linear time through the use of adjacency-lists, a standard implementation
technique for graphs [39]. Adding the vertex u to the partition-building datastructure can be done
in constant time. Calculating the number of sets in the partition (Lines 9 and 12) can be done in
constant time, just like Line 13. Lines 14 and 15 together iterate over all vertices once (O(|V|)):
each vertex gets assigned its new color. Line 16 is executed at most |V| times and takes a constant
time. Taking everything together, the total computational complexity is O(|V|2), as the repeat-loop in
Line 3 combined with the iteration over all vertices in Lines 14 and 15 is the most significant part in
the analysis.

4. Results

In this section, we present experimental results using real-life social graphs and complex graphs
obtained using a generalized Barabási–Albert random network generator, described in Appendix A.

4.1. Runtimes for Calculating Regular Equivalences

First of all, we investigate practical running times for calculating regular equivalences.
We generated 350 random complex networks (using the algorithm in Appendix A), having
104 ≤ |V| ≤ 1.5× 106 vertices, each having 3|V| ≤ |E| ≤ 15|V| edges, which is representative for the
real-life social networks studied in this paper. We then calculated the minimal regular equivalence
relation using the algorithm above, and timed the execution, using Java 1.8.0_60 (x64) on an Intel
Core i7-5600U 2.6 GHz with 16 GB RAM. Results can be seen in Figure 2. The quadratic polynomial
y(x) = 10−10x2 + 4× 10−5x was fitted to the data with a coefficient of determination R2 = 0.93,
which means that the experimental values are statistically well explained by the quadratic polynomial.
For an average randomly generated graph, the repeat-loop was executed only about four times,
which explains the fact that the execution time is very low, although the computational complexity
was shown to be quadratic in theory. Moreover, it turns out that for real-life social networks the
execution time is very low as well. Our approach is thus a valid way to investigate real-life, large-scale,
and complex networks, allowing deep analysis which was previously very demanding with respect to
the required computational time.



Appl. Sci. 2019, 9, 117 9 of 17

0

50

100

150

200

250

300

350

400

450

500

0 250000 500000 750000 1000000 1250000 1500000

R
u

n
ti

m
e 

(s
ec

.)

|V|

Figure 2. Runtimes for calculating regular equivalences.

However, it is quite possible to construct a graph that needs O(|V|) iterations, resulting in the
maximum number of colors |V| needed for the minimal regular coloring. Two such graphs are shown
in Figure 3. For example, take some n ∈ N such that 6 ≤ n, then one can define the circular graph
on the left of Figure 3 as G = (V, E) with V = {vi ∈ N|1 ≤ i ≤ n} and E = {{vi, vi+1}|1 ≤ i <

n} ∪ {{vn, v1}, {v1, v3}, {v1, v4}}. The algorithm will then need O(|V|) iterations, after which all
vertices will have received a unique color. A second example is shown on the right of Figure 3. The key
to understanding that the algorithm takes many iterations in these cases follows from the fact that the
vertices receive a new color one by one, each iteration changing the spectrum of only 2 other vertices
(the neighbors). As such, the algorithm has to propagate through the graph linearly and that takes
O(|V|) iterations. Clearly, these two examples are fabricated and do not likely appear in real-life,
making them pathological situations with which we are able to stress-test the algorithm.

…

…

v1
v2

v3

v4

vn

vn-1

Vn-2

Figure 3. Graphs needing many iterations and the maximum number of colors.

4.2. Experiments

In this section, we will investigate properties of complex large-scale networks related to the
minimal regular equivalence relation. We will investigate, for both random graphs obtained by a
Barabási–Albert generator as well as for real-life social graphs, the minimal regular coloring function
and the accompanying minimal regular equivalence relation. More specifically, we will look in detail
at the number of colors required by such a minimal regular coloring function, and how this number
evolves in relation to the size of the network.

First, we will look into randomly generated complex networks, and see how the required number
of colors grows with respect to the size of the graph. We then will apply the algorithm to large-scale
real-life social networks and interpret the results.

4.2.1. Random Barabási–Albert Graphs

As a first experiment, we will investigate how the number of required colors for a minimal regular
equivalence coloring grows in function of the number of edges in a graph. To that aim, we will generate
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350 scale-free graphs, each having |V| = 106. However, each of these graphs will have a different
number of edges, randomly generated such that 1 ≤ |E| ≤ 107. These edges are distributed in a
scale-free way, through the use of a Barabási–Albert graph generator with appropriate parameters,
most important with scaling exponent α = 3 (see Appendix A for details). For each of these random
graphs, we computed the minimal regular equivalence relation and obtained a minimal number of
colors; see Figure 4. On average, one such experiment took a few minutes.
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Figure 4. Number of colors needed w.r.t. the number of edges.

As can be expected, graphs with very low numbers of edges need only a very low number of
colors, i.e., only a very small number of different spectra is obtained. As the number of edges in the
graph grows, so does the number of colors needed. Note that both axes are logarithmically scaled in
order to present the results in a clear way.

Note the flat top in the graph, occurring around |E| ≈ 2× 106. At that point, we need 106 colors,
i.e., the maximum number of colors available as every vertex gets its own color (no color is used
twice). We can conclude that, once a random graph contains a certain number of edges, the vertices
are sufficiently connected to each other such that typically no two vertices have the same spectrum.
If we continue adding edges, i.e., 107 � |E| (not depicted in the graph), we can expect the number of
colors needed in the long run to finally drop again, up until once again only one color is needed, in the
case of a complete graph with |E| = |V| ∗ (|V| − 1)/2.

Of course, the exact location where the flat top occurs deserves further investigation. This is done
in the following experiment, where we will investigate at what point the maximum number of colors
is typically reached. Thus, for a certain number of vertices |V|, we will identify the number of edges
|E| needed in a random Barabási–Albert graph to reach the number of |V| colors. As we are dealing
with stochastic processes, we need to formulate this in a more formal way using confidence intervals.
Formally, we will look for the number of edges needed, in order to obtain a 99% chance that we need at
least 99% ∗ |V| colors. We can rephrase this: for a graph with |V| vertices, we need to find the number
of edges |E| such that, if we generate a random Barabási–Albert graph with |V| vertices and |E| edges,
we have 99% probability that the number of colors needed in the minimal regular equivalence coloring
of that graph is at least 99% ∗ |V|.

In order to compute meaningful results, a large number of experiments was performed using the
algorithm below. The procedure accepts a number of vertices |V| and calculates the number of edges
|E| that is required to guarantee a 99% chance upon the required use of at least 99% ∗ |V| colors in the
minimal regular coloring.
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Algorithm 2 Relation between |V| & |E| to have many colors
Input: |V|
Output: |E|
1: |E| ← |V|
2: intervalSize← |V|
3: while intervalSize > 0.01 ∗ |V|
4: passed← 0
5: for 1 to 100 do
6: G ← RandomBarabasiAlbert(|V|, |E|)
7: colorsRequired← calcColors(G)
8: if colorsRequired ≥ 99% ∗ |V| then
9: passed← passed + 1
10: end if
11: end for
12: if passed < 99 then
13: |E| ← |E|+ intervalSize
14: else
15: |E| ← |E| − intervalSize
16: end if
17: intervalSize← intervalSize/2
18: end while
19: return |E|

In practice, the method has been parametrized by the number of experiments and the
confidence-probability, and it moreover contains some shortcuts and optimizations for speed.

Using this algorithm allows us to accurately estimate the relation between |V| and |E| to have
a 99% chance upon a coloring with more than 99% ∗ |V| colors. The algorithm has been executed
50 times, for various numbers of vertices up to 106. Results are shown in Figure 5.
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Figure 5. The number of edges required to obtain almost all possible colors.

Strikingly, we obtain that the relation is linear, and careful investigation of the data reveals that
the slope of the graph |E| = s|V| corresponds to about s ≈ 1.89.

The above results were, as already mentioned, obtained using a Barabási–Albert procedure that
always generates random scale-free networks with scaling exponent α = 3 (see Appendix A). However,
these results can be generalized for other scaling exponents, through the use of the parameter c that is
used in the Generalized Barabási–Albert generator. This parameter c is related to the scaling exponent
α through the equation α = 2 + 1

1+2c and can be used to let α range between 2 and 3 for the resulting
generated network.

Using different values for c with 0 ≤ c ≤ 5, a number of experiments were run with corresponding
values for α such that 2.09 < α ≤ 3. Most notably, the slope of the graph depicting the relation between
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|V| and |E| (when 99% of the colors is reached, cf. Figure 5) was recalculated for these different values
of c and is plotted in Figure 6. Clearly, for c = 0, we obtain again the slope of Figure 5 itself, which was
s ≈ 1.89. For larger values of c, the value of the corresponding slope grows linearly. These results are
striking and puzzling at first sight. However, they can be intuitively understood as follows (using the
Barabási–Albert algorithm from Appendix A).

Both for c = 0 and c > 0, “Step 2 edges” are added to connect the new vertex to already existing
vertices in the network growth process (see Step 2 in Appendix A). Moreover for c > 0, another c ∗m
“Step 3 edges” are added to vertices that are already present in the network (see Step 3 in Appendix A).
As these Step 3 edges are added proportionally to the product of the degrees of the vertices involved,
they have a strong tendency to confirm the already existing vertex degree structures. Hence, if two
vertices have similar roles in the growing network, this similarity tends to be more or less preserved
while adding these c ∗m Step 3 edges (despite some random noise effects). This preservation effect is
stronger for a Step 3 edge being added than for a Step 2 edge: in the latter case, only the degree weight
of one vertex is taken into account, not the degree weight of the new vertex (all new vertices start with
the same weight). Looking closely to Figure 6, we can derive from the slope of the graph that adding a
single Step 3 edge has approximately the same disruptive effect as adding 0.67 Step 2 edges.
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Figure 6. Relation between scaling parameter c and the slope s.

4.2.2. Real-Life Social Networks

The previous section contained experiments on the behavior of randomly generated networks
w.r.t. regular equivalence. We now look at regular equivalence for real-life social networks. To that aim,
we downloaded some large networks from the Stanford SNAP data collection [40], which is maintained
for the Stanford Network Analysis Project. It is a collection of more than 50 large network datasets
with sizes up to tens of millions of vertices and edges. Social networks, web graphs, road networks,
internet networks, citation networks, collaboration networks, and communication networks are all
represented. We downloaded the following networks for use in our experiments, in order of increasing
number of vertices.

• CA-AstroPh: This graph represents a collaboration network on astrophysics obtained from arXiv.
It covers scientific collaborations between authors that submitted papers within the Astrophysics
category. If two authors u and v co-authored a paper, the graph will contain an (undirected) edge
{u, v}. It will thus contain a small complete subgraph for every paper in the database, as all
authors on a single paper always induce a complete graph for these authors.

• CA-CondMat: This dataset corresponds to the collaboration network obtained from arXiv within
the Condense Matter Physics category. It was derived in a similar way as the CA-AstroPh network.
It has about 23% more vertices than CA-AstroPh but only about half the number of edges.

• Email-Enron: This is an email-communication network, covering email communication within the
company Enron, and consisting of about half a million emails. It was disclosed to the public by the
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Federal Energy Regulatory Commission during the investigation into the Enron scandal in 2001.
Vertices represent email-addresses, and an undirected edge {u, v} is added to the graph if either
u or v sent at least one email to v or u, respectively. Thus, the original direction of communication
is not available in the dataset.

• Slashdot0811: This dataset represents a social network derived from the website Slashdot, which is
a news website focusing on technology-related subjects. Users can post messages and tag each
other as friend or foe. They are represented by vertices and the tags are represented as undirected
edges. No distinction is made between friend-tags and foe-tags, so an edge {u, v} can have four
different meanings. This explains the reduction in |E| compared to the original dataset.

• DBLP: The DBLP-dataset is derived from the DBLP-database maintained by the University of
Trier, which contains a computer science bibliography with a comprehensive list of academic
research papers in different subjects all related to computer science. The dataset represents a
collaboration network where two authors (vertices) are connected through an (undirected) edge if
and only if they co-authored at least one paper.

• LiveJournal: This dataset was derived from LiveJournal, a website community allowing free
blogs. People can befriend each other and form groups together. We consider being friends/foes
a symmetric relation, and represent users as vertices and their friendships as undirected edges.

The networks were processed in order to prepare them for analysis by our software. This involved,
among other things, ensuring edges are undirected, removing double edges, and checking for
inconsistencies. The resulting networks that were used for the rest of the analysis are listed in
Table 1.

Table 1. Real-life social networks.

Network |V| |E| |E|/|V|

CA-AstroPh 18,772 198,050 10.6
CA-CondMat 23,133 93,439 4.0
Email-Enron 36,692 183,831 5.0
Slashdot0811 77,360 469,180 6.1

DBLP 317,080 1,049,866 3.3
LiveJournal 3,997,962 34,681,189 8.7

After calculation of the actual number of colors required in the minimal regular coloring of these
real-life social networks, it was obtained that they required only a relatively small fraction of colors.
Results are shown in Table 2. In this table, we will denote the number of colors used in the minimal
regular coloring as |C|. As can be seen in the column |C|/|V|, the percentage of colors used ranges
from 56% to 93%, while the minimal coloring was typically calculated very fast, matching the results
from Figure 2.

Table 2. Results for real-life social networks.

Network |C| |C|/|V| Runtime (s)

CA-AstroPh 14,734 78% 0.9
CA-CondMat 17,131 74% 0.5
Email-Enron 20,417 56% 0.4
Slashdot0811 61,457 79% 1.4

DBLP 233,466 74% 14.5
LiveJournal 3,703,526 93% 1684

It is striking that 4 out of 6 real-life complex social networks have about the same ratio |C|/|V|,
around 76%. In contrast, the two other networks investigated have either a much lower (56%) or much
higher (93%) ratio. Additionally, the runtime for processing the LiveJournal dataset seems to be higher
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than expected on the basis of its size alone. The underlying social phenomena and/or topological
structures that give rise to these wildly differing values is not clear and should be further investigated.

5. Discussion

In this work, we investigated social networks using regular equivalences. Minimal regular
equivalence was introduced, which allows one to attach roles to vertices with a similar local
neighborhood-structure, and which keeps a very good balance between being too strict and too
loose for efficient analysis of the global network structure. The hierarchic position of minimal regular
equivalence with respect to other equivalence relations was proven, and a fast and efficient algorithm
was introduced. Six real-life social networks with up to 4× 106 vertices and 35× 106 edges were
investigated, next to networks obtained with a Barabási–Albert random network generator. It was
obtained that, for a certain value of the scaling exponent α, the ratio of the number of edges to the
number of vertices is directly related to the minimum number of regular colors needed. The tipping
point, where almost all possible colors are needed, is reached at a certain ratio which is constant for all
networks with the same scaling exponent α. Moreover, this ratio was demonstrated to have a linear
relation to the parameter c that is used in the generalized Barabási–Albert generator, and an intuitive
explanation for this effect was given. Because regular equivalence as defined in this paper is a fast and
useful method to structurally analyze networks, it can also be used to test whether network-generators
mimic these equivalences well.

Future Work

First of all, it is of prime importance to apply the approach to many more real-life social networks,
and to investigate the underlying social phenomena that are the reasons for the different values for
|C|/|V|. What are the structures of the classes found? Are they homogeneous across the network? How
different are they from other (regular) equivalences? If we want to calculate the regular equivalence
relation for really large networks with up to 109 vertices, we might need to scale up the approach
taken, which can be done through improving the algorithm even further via incremental updates of
spectra instead of a double loop, which will decrease the computational complexity. By then, it will be
possible to compare the number of colors needed for real networks with their generated counterparts
and investigate any potential significant discrepancies. We expect these mismatches to occur for at
least certain types of real-life networks, and as such network generators should be redesigned so their
output mimics the regular equivalence structure in a more accurate way. Interesting future work
can thus include a thorough study of different types of real-life networks with respect to regular
equivalence as defined in this paper and the design of new network generators whose output features
the same regular equivalence structure as real-life networks. Lastly, the entire approach should be
adapted to directed networks. This involves an appropriate definition for directed regular equivalence,
and accompanying algorithms for both calculating the directed colorings and generating random
directed networks with matching colorings.

Supplementary Materials: All code and the datasets used are freely available and downloadable at https:
//github.com/biointec.

Author Contributions: Conceptualization and methodology: P.A, D.C. and M.P.; software, validation, formal
analysis, resources, visualization, writing: P.A.; investigation, writing-review and editing: P.A., D.C and M.P.

Funding: This research was funded by Ghent University—imec.

Acknowledgments: The authors wish to thank Ghent University—imec for the support.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/biointec
https://github.com/biointec


Appl. Sci. 2019, 9, 117 15 of 17

Abbreviations

The following abbreviations are used in this manuscript:

Seq(u,v) vertices u and v are structurally equivalent
Aut(A) permutation A is an automorphism
Aeq(u,v) vertices u and v are automorphically equivalent
Reg(c) coloring function c is regular
Minreg(c) coloring function c is regular and minimal
Req(u,v) vertices u and v are regularly equivalent

Appendix A. Barabási–Albert Graphs

Throughout this work, experiments with the minimal regular coloring algorithm have been
performed with generated scale-free networks. A specialized and efficient Barabási–Albert graph
generator was built and here we provide details about its design and the rationale behind the
decisions made.

The distribution of the vertex degrees in scale-free graphs follows a so-called power law. This
means that the probability for a vertex to have degree k is inversely proportional to kα for some α

called the scaling exponent, that is, P[k] ∝ k−α. For real-life networks it holds that, in case they are
scale-free, one typically has 2 ≤ α ≤ 3. Of course, real-life networks are often not scale-free at all.

A Barabási–Albert-style graph generator is built upon the principle of a growth process combined
with the idea of preferential attachment. The first version of this generator only produced scale-free
networks with α = 3, but it was generalized and expanded through the work of many researchers,
allowing different parameters, one of the most important being α. Other work focused on mimicking
the clustering coefficient of real-life networks, among others.

We implemented a version of the generalized Barabási–Albert random scale-free graph generator,
which is in common use in the scientific community [12,13]. As an input, the procedure expects a small
network G0 with n0 vertices and no edges, together with parameters m, the number of edges each
new vertex receives, and c, a parameter that influences the rate of new edges between already existing
vertices. The code will add edges by repeatedly executing these three steps:

1. Add a new vertex vs to Vs−1.
2. Add m ≤ n0 new edges, each one between vs and some vertex u ∈ Vs−1, which is randomly

chosen with a probability proportional to its degree.
3. Add c ∗m new edges, each one randomly chosen between vertices u ∈ Vs−1 and v ∈ Vs−1, with a

probability proportional to the product of their degrees.

The resulting scale-free network will have scaling exponent α = 2 + 1
1+2c [9]. The algorithm has

been optimized for efficiency in runtime and memory-usage and allows fractional parameters using
an improved statistical approach to edge-generation.
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