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Abstract: There is a growing body of literature which recognizes the importance of mechanical
equipment reliability during processing, and reliability assessment is important in guaranteeing the
precision, function, and use life span of mechanical equipment. For products with a long lifetime
and high reliability, it is difficult to assess lifetime and reliability using traditional statistical inference
based on a large sample of data from the lifetime test. Therefore, this study contributed to this growing
area of research, through a reliability evaluation method based on degradation path distribution
related to signal characteristics. In this research, an effective method for reliability assessment was
constructed, in which the signal features of the machining process were used to replace traditional
time data and fit equipment degradation model. The pseudo failure characteristic (PFC) was obtained
according to the failure threshold and the reliability curve was plotted by a PFC distribution model.
Experimental investigation on tool reliability assessment was used to verify the effectiveness of
this method, in which the trend that tool wear changes with the features was fitted by a Gaussian
distribution function and Logarithmic distribution function, to obtain a better tool degradation model.
The results illustrated the model could evaluate reliability of mechanical equipment effectively.
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1. Introduction

Reliability assessment for mechanical equipment is important in condition-based maintenance to
lower cost and improve equipment reliability, thus, it emerges repeatedly and has become an important
research area for mechanical equipment reliability analysis and life prediction [1–3]. Z.M. Wang [4]
proved that the bounded intensity process was suitable for reliability assessment of deterioration
in machine tools with frequent maintenance actions. How to assess reliability is also helpful for
predictive life [5] and maintenance time [6]. Performance degradation is one of the most important
elements during machining, which has a close relationship with product precision, by influencing the
total manufacturing effectiveness and stability of machine tools. In most circumstances, performance
degradation is the main failure for mechanical equipment and leads to the waste of product and time.
In addition, equipment condition is closely related to a machine’s efficiency and productivity, therefore,
research on reliability assessment of mechanical equipment is important, based on performance
degradation analysis [7].

As an important concern during processing, several studies are being conducted by many
researchers for reliability assessment. The traditional reliability evaluation method is usually based
on the failure life data [8], and the failure life time is obtained through the life test and accelerated
life test. The main function of the reliability life test is to process indiscriminate failure life data and

Appl. Sci. 2018, 8, 1619; doi:10.3390/app8091619 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7376-6977
http://www.mdpi.com/2076-3417/8/9/1619?type=check_update&version=1
http://dx.doi.org/10.3390/app8091619
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 1619 2 of 12

realize the reliability evaluation of the product through the test, which cannot effectively understand
product failure process and failure mechanism and cannot contribute to product reliability growth.
Traditional reliability analysis is based on the probability statistics method for the failure data from
a large sample, so failure data with a small sample is difficult to effectively analyze. For high
reliability and long-life products, it is difficult to get failure life time through the life test and
accelerated life test. Therefore, there are many new reliability evaluation methods. F. Kuang [9,10]
proposed a new reliability evaluation model based on quality loss and quality characteristics evolution.
H.K. Li [11] studied the tool reliability evaluation based on acoustic emission signals. Meanwhile,
this equipment performance degradation data can provide important information for reliability
evaluation, thus, two reliability evaluation methods based on performance degradation data were
presented, i.e., reliability evaluation method based on degradation path and reliability evaluation
method based on performance degradation distribution [12,13]. The reliability estimation approaches
of mechanical equipment are based on the historical performance degradation data, amongst which
statistical distribution models [14] have been used in this area, such as the regression model [15],
exponential distribution, and Weibull distribution [8,16–18]. In this research, a novel method for
reliability assessment of mechanical equipment based on process signals and degenerate data was
developed. Performance degradation data and process signals for mechanical equipment were
used fit the degradation path for reliability assessment. This kind of method depended on sizable
historical data and sensor signals from related equipment, and an experiment data set of tool wear
was used to verify the effectiveness of the method. The results showed that this method could
benefit reliability assessment. This paper was structured as follows. Section 2 introduced some basic
theories of this method and the flow path in detail. Section 3 provided a general process of reliability
assessment based on degradation paths. Section 4 used experimental data to verify the method. In this
section, the feasibility and practicability of this method were proved. Concluding remarks were given
in Section 5.

2. Theory

2.1. Method Flowchart

In this paper, the features of monitored vibration signals were extracted and the performance
degradation data was applied to reliability assessment for mechanical equipment. The process of
method is shown in Figure 1.
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There are three main parts, i.e., performance degradation path modeling and model parametric
estimating, pseudo failure life distribution and Testing Statistical Hypotheses, and reliability curve
and life prediction. The first part is the performance degradation path modeling and model parametric
estimating, where the performance degradation data of samples are known to fit the degradation
path using the features extracted from processing signals, and the model parameters that reflect
the degradation paths of different samples are calculated. The second part is pseudo failure life
distribution and Testing Statistical Hypotheses. Pseudo failure characteristics (PFCs) are collected
based on threshold values and the performance degradation model, and the distribution of the feature
is extracted and verified by Testing Statistical Hypotheses. The third part is reliability curve and
life prediction, i.e., the reliability curve is plotted, and the characteristics of different reliability can
be obtained. In the end, an example for tool analysis is investigated in this research to verify the
effectiveness of the method.

2.2. Basic Concepts of Performance Degradation

In the reliability degradation test, it is difficult to continuously monitor the degradation process of
product performance, so the performance characteristics of the product can be tested regularly in the
test process. The amount of performance degradation recorded, contains a lot of useful information
about product performance degradation and reliability [19,20].

For some products with obvious performance degradation characteristics, the degradation
mechanism is easy to understand, so product reliability can be directly derived by using the relationship
between degradation characteristics and time [21]. For products with performance degradation
characteristics that are not obvious, the quantitative relationship of the degradation model cannot
be directly expressed, and analysis methods and techniques such as regression analysis are needed.
In many cases, the degradation model of products is often a nonlinear function of the parameters,
and the calculation of the parameters of such models is often very large.

Assuming that the regression paths of the samples satisfy the model, the times at which the
different samples reach the failure threshold can be deduced. Since these times are not the actual
failure times of the samples, using them to evaluate product reliability is needed, so it is called
pseudo failure life time. The life time of each sample can be predicted, that is, the life distribution of
the product.

Relative to the failure time data, the reliability of the product performance degradation data
contains more information. In addition, through the product performance degradation information,
reliability analysis can be time and cost effective. Reliability analysis based on performance degradation
data will be one of the methods used to evaluate the reliability of high reliability and long-life products.

The use of degradation data, instead of failure time data, for product reliability life assessment
has the following advantages:

(1) For many products, degradation is a natural attribute and its performance data can be
monitored to obtain degradation data regardless of failure;

(2) Degraded data can be applied in cases where there are only a few or zero failures, which can
provide more information than failure time data;

(3) The degraded data can provide more accurate life estimation, than the accelerated life test
with little or no failure. In other words, for products with zero failure, useful reliability inferences can
be obtained using degraded data.

If degradation performance reaches a critical level, which can be defined as the failure threshold
Df, the failure will occur, then the product fault time T can be defined as the time that actual degradation
path D(t) reached the critical degradation level Df. The degradation paths of different products are
random, and the time of the degradation critical level will be also different from one product to another
product, so the random distribution can be used to describe the degradation and to establish the model.
Then this model can reflect the model parameters. Therefore, the product failure time distribution can
be derived by the degenerate data model, describing the relationship between D(t) and Df.
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3. Method

3.1. Performance Degradation Path Modeling and Model Parametric Estimating

For some obvious traits of performance degradation products, degradation mechanisms are
easy to understand, one can use the relationship between the degradation characteristics and time to
calculate the reliability of the product. For products with performance degradation characteristics
are not obvious, the quantitative relationship of the degradation model cannot be directly expressed,
and analysis methods and techniques such as regression analysis are needed. Therefore, the reliability
evaluation method based on the degraded path is proposed, as described in Reference [15].

Firstly, the performance degradation data of the products at different times are collected,
which do not have to reach the failure threshold, and the features associated with performance
degradation from monitored signals are extracted and used to replace time. Then, the appropriate
degradation model according to the performance degradation curve trend is selected. Different
distributions, as the alternatives, are chosen to match the relationship between the feature value and
performance degradation value. Linear, exponential, and Gaussian distribution are usually chosen as
the degradation model, as outlined in Reference [19]. Different distributions will also be discussed
depending on the features extracted.

Linear distribution can be expressed by Equation (1).

fLinear(x) = ax + b (1)

Exponential distribution can be expressed by Equation (2).

fExponent(x) = a·ebx (2)

Gaussian distribution can be expressed by Equation (3).

fGuassian(x) = a·e(−(
x−b

c )
2
) (3)

where a, b, and c are estimators of the distribution parameters and are different in different sample
modeling. So, the parameters of each performance degradation model are estimated according to the
recorded performance degradation data.

3.2. Pseudo Failure Characteristics Distribution and Testing Statistical Hypotheses

Assuming the failure threshold is Df and according to the obtained sample degradation model f(x),
in which x is defined as an independent variable that records performance degradation data and can be
time, signal characteristics, etc., the characteristic of each sample arriving at the threshold is deduced,
which is called the PFC. PFC data will follow the distribution of the failure characteristic. The failure
life of high reliability and long-life products generally follows Weibull distribution, logarithmic normal
distribution, or Gaussian distribution.

Primarily, we suppose that PFCs follow a distribution F(x), and F0(x) is a completely determined
continuous distribution function. Consider the hypothesis testing problem,

H0 : F(x) = F0(x) (4)

For example, the PFCs follow an exponential distribution F0(x) = 1− e−(x/θ)2
, and the parameter

θ can be obtained by maximum likelihood estimation, which is equal to the average of the samples.
Namely, the PFC values of the products need to be proven to follow one-parameter exponential
distribution parameter of θ.
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Samples X1, X2, · · · , Xn are taken and the sample size is n, and their sequential statistics are
X1 ≤ X2 ≤ · · · ≤ Xn. Arrange the samples to get their empirical distribution function Fn(xi) and
calculate δi,

Fn(xi) =


0, x ≤ Xi

i/n, Xi ≤ x < Xi+1

1, x ≥ Xn

(5)

δi is calculated by Equation (6).

δi = max{|F0(xi)− (i− 1)/n|, |F0(xi)− i/n|}, i = 1, 2, · · · , n (6)

Kolmogorov-Smirnov (KS) test parameters are listed in Table 1:

Table 1. Kolmogorov-Smirnov (KS) test table.

i xi F0(xi) (i−1)/n i/n δi

1
2
3

...
...

n

In this table, xi is the PFC of number i. The biggest δi is Dn, and that is,

Dn = max
i
{δi} (7)

Giving the significance level α, the critical value dn,α can be obtained by looking up the critical
value table of the Kolmogorov test, if Dn < dn,α, it follows the hypothesis H0. Otherwise, the hypothesis
is rejected.

3.3. Reliability Curve and Life Prediction

The PFC data obtained above are regarded as the complete life data, and the product is evaluated
according to the reliability evaluation method of the selected characteristic distribution.

Reliability [22] is the probability that the product will complete the specified function within the
specified time and under the specified conditions, which is denoted as R. The reliability that a function
of time, R(t), is called the reliability function. In this paper, reliability can be expressed as a function
R(c) that changes with the extracted characteristics. If the failure time of the device is represented by
the random variable T, the reliability function R(t) of the device will be

R(t) = P(T > t) =
∫ +∞

t
f (t)dt (8)

where f (t) is the probability density function, because the cumulative failure probability function
F(t) is

F(t) = P(T ≤ t) (9)

From Equations (8) and (9), it is easy to get:

R(t) = 1− F(t) (10)

It can be seen from the expression of the reliability function R(t), that the reliability R of the
device decreases with the increase in service time. This is because with the increase in service time,
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wear phenomenon appears in the equipment. Thus, the failure rate of the equipment increases,
resulting in the decrease of reliability.

There is a one-to-one correspondence between reliability function and working time. When the
reliability of the device is reduced to the given value R (0 ≤ R ≤ 1), the working time is called the
reliability life of the reliability degree R, denoted as tR, and the mathematical relationship is:

R(tR) = R (11)

When the reliability is equal to 0.5, the corresponding eigenvalue is defined as the median
eigenvalue, and when the reliability is equal to e−1, the corresponding eigenvalue is defined as the
reliable eigenvalue. The reliability curve is shown in Figure 2.
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The reliability curve can be obtained according to the hypothesis. According to the reliability
parameter formula of the product, the instantaneous loss efficiency, average loss efficiency, reliable life,
median life, reliability, and average life of the product can be obtained.

4. Case Study

4.1. The Wear-Feature Model of Tools

Milling experimental data came from Li’s team at the Singapore Institute of Manufacturing
Technology [23]. The data set contained tool wear and vibration signals of 315 cutting tests. Three piezo
accelerometers were used to measure the machine tool vibrations of the cutting process in different
directions, respectively. The machining tests were carried out with cutting speeds of 4.7 m/min and
spindle speed 23,600 rpm. In this experiment, tool life-cycle experiments were made by inspecting the
tool wear. The cutter’s wear was measured after a complete cutting distance using a LEICA MZ12
microscopy system (Leica Microsystems, Wetzlar, Germany). To decrease the influence of other factors
on the vibration signals, the cutting parameters were same in the experiments for three samples.
The collection frequency of experimental data was 50 KHz/channel.
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In many components of cutting vibration, the influence of tool wear on the vibration is obvious.
However, the cutting vibration increases with cutting tool wear, despite some fluctuation. It is mainly
related to factors such as material properties, built-up edge, and measurement error, which accumulate
in the cutting process. However, the influence on the overall upward trend of cutting vibration is small.

To show the feature trend with the number of milling significantly, vibration signals that had
better linear relationships with the tool wearing process were decomposed, then the intrinsic mode
functions (IMFs), frequency spectrums of IMFs, and the features relating to amplitude changes of
frequency spectrum were obtained, thus feature value Gn, as outlined in Reference [18] could be
calculated using

Gn(j) =
f=11.4 KHZ

∑
f=11.2 KHZ

Aj( f ) j = 1, 2, · · · , P (12)

where j is the number of cuts, and P = 315 in Figure 3. Aj( f ) shows the frequency spectrum amplitude
of IMF1 decomposed from vibration signals at the jth milling in f Hz.
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The results obtained from preliminary calculation of Gn in the milling process, are shown in
Figure 3. Despite the fluctuations in the amplitude, the amplitude of Gn is expected to continue
increasing with the number of cuts in the milling process; and the results of the correlational analysis
between Gn and tool wear show that there is a high correlation between the feature value and the
tool wear.

4.2. Distribution and Verification of Pseudo Failure Characteristics

Gaussian and Logarithmic distribution, as the alternatives, are chosen to calculate the parameters
of distribution depending on the different models between the feature value and the tool wear.

Gaussian distribution can be expressed by Equation (3) and used in model A.
Logarithmic distribution can be expressed by Equation (13) and used in model B.

fLogarithm(x) = a log10 x + b (13)



Appl. Sci. 2018, 8, 1619 8 of 12

Tables 2 and 3 show the parameter a, b, and c calculated for these samples’ distribution,
and relevancy (RE) is shown in Tables 2 and 3. As these tables show, the distribution fitting of
model A and model B are highly correlated.

Table 2. Estimated parameters of Gaussian distribution.

Parameters 1 2 3 4 5 6 7 8 9

a 0.1722 0.1569 0.1514 0.2009 0.2442 0.2538 0.1709 0.2426 0.2425
b 5.074 4.673 3.708 10.9 12.01 13.35 13.37 17 14.22
c 5.105 4.964 3.736 9.267 9.384 10.66 15.6 15.78 12.54

Relevancy (RE) 0.8953 0.8552 0.7844 0.8513 0.8657 0.8352 0.8719 0.909 0.9422

Table 3. Estimated parameters of Logarithmic distribution.

Parameters 1 2 3 4 5 6 7 8 9

a 0.1065 0.0956 0.1047 0.1425 0.1641 0.1494 0.07859 0.1193 0.1447
b 0.093 0.0923 0.0911 0.0384 0.0308 0.0386 0.0788 0.06602 0.05503

RE 0.8746 0.8656 0.8171 0.8381 0.8252 0.7927 0.8901 0.8402 0.8863

Assuming that the failure threshold of the cutting tool wear was 0.16 mm, according to the
degradation model, we calculated the PFC of each failure threshold value. The results are shown in
Table 4. From the chart, it can be seen that the PFCs obtained from Gaussian distribution were larger
than those obtained from Logarithmic distribution.

Table 4. The pseudo failure characteristics (PFCs) of each sample.

Sample Number 1 2 3 4 5 6 7 8 9

Gaussian Distribution 6.46 5.37 4.59 15.32 18.11 20.59 17.37 27.18 22.31
Logarithmic Distribution 4.26 5.11 4.55 7.14 6.13 6.49 10.79 6.14 5.31

Failure characteristics of cutting tools are assumed to be an exponential distribution, in which
maximum likelihood estimation is calculated, and the goodness of fit test is done based on the
Kolmogorov-Smirnov (KS) test.

Nine groups of samples were arranged to obtain their empirical distribution function and
calculated δi. The results are shown in Tables 5 and 6.

Table 5. Kolmogorov-Smirnov (KS) test of Gaussian distribution.

i xi F0(xi) (i−1)/n i/n δi

1 4.59 0.2598 0 0.111 0.2598
2 5.37 0.2967 0.111 0.222 0.1857
3 6.45 0.3448 0.222 0.333 0.1228
4 15.32 0.6337 0.333 0.444 0.3007
5 17.37 0.6798 0.444 0.556 0.2358
6 18.11 0.6949 0.556 0.667 0.1389
7 20.59 0.7407 0.667 0.778 0.0737
8 22.31 0.7684 0.778 0.889 0.1206
9 27.18 0.8317 0.889 1 0.1683
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Table 6. KS test of Logarithmic distribution.

i xi F0(xi) (i−1)/n i/n δi

1 4.26 0.4963 0 0.111 0.4963
2 4.55 0.5193 0.111 0.222 0.4083
3 5.11 0.5607 0.222 0.333 0.3387
4 5.31 0.5746 0.333 0.444 0.2416
5 6.13 0.6272 0.444 0.556 0.1832
6 6.14 0.6278 0.556 0.667 0.0718
7 6.49 0.6482 0.667 0.778 0.1298
8 7.14 0.6832 0.778 0.889 0.2058
9 10.79 0.8239 0.889 1 0.1761

According to the critical value table, the critical value dn,α was equal to 0.51332 at the 0.05
significance level, and Dn can be obtained in Tables 5 and 6. Since Dn < dn,α, both model A and model
B followed the hypothesis of exponential distribution.

4.3. Reliability Evaluation of Tools

The PFCs obtained are regarded as complete failure characteristic data, and the tool was evaluated
according to the reliability evaluation method of the exponential distribution. The reliability function
of the model A is shown below:

R(c) = RG(Gn) = e−Gn/15.2544 (14)

Figure 4 shows a reliability curve that follows an exponential distribution.
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When the reliability is equal to 0.5, the corresponding eigenvalue is defined as the median
eigenvalue GnR=0.5, and when the reliability is equal to e−1, the corresponding eigenvalue is defined
as the reliable eigenvalue GnR=e−1 .It can be obtained by Formula (14) that,

GnR=0.5 = 10.5735
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GnR=e−1 = 15.2544

The number of cuts of tool wear limit, marked as Nt, and the number of cuts based on the
characteristic value were found, then the number of cuts based on the median eigenvalue was marked
as N0.5, and the number of cuts based on the natural eigenvalue was recorded as Ne. The relative error
between actual cutting times and estimated cutting times was calculated and used to validate the
model and the method. The results are shown in Table 7.

Table 7. The number of cuts corresponding to the failure threshold.

Sample Number 1 2 3 4 5 6

Nt 285 274 276 285 236 230
N0.5 >315 >315 >315 274 274 274
Ne >315 >315 >315 >315 >315 >315

The estimated cutting times were higher than the test times, so the error was larger.
The reliability function of the model B is shown below:

R(c) = RL(Gn) = e−Gn/6.212 (15)

Figure 5 shows a reliability curve that follows an exponential distribution.
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It can be obtained by Formula (15) that,

GnR=0.5 = 4.306

GnR=e−1 = 6.212

The results of relative error and the number of cuts are shown in Table 8.
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Table 8. The number of cuts corresponding to the failure threshold.

Sample Number 1 2 3 4 5 6

Nt 285 274 276 285 236 230
N0.5 247 247 247 193 193 193

Relative Error (%) 13.3 9.8 10.5 32.3 18.2 16.1
Ne 270 270 270 238 238 238

Relative Error (%) 5.3 1.5 2.2 16.5 0.85 3.4

The relative error was concentrated between one and five percent, and the verification result was
good, so compared with model A, model B was superior and more suitable to evaluate tool reliability.

5. Conclusions

This paper presented the reliability assessment method of mechanical equipment based on the
performance degradation path, which was developed for reliability through exploring the relationship
between signal characteristics and performance degradation. The signal characteristic correlated
with the degradation of performance was obtained, then the estimation method based on the
feature-performance model was more practical. Performance degradation path modeling can help
to find performance degradation distribution fitting, and model parameter estimation shows the
difference between the samples; then the Pseudo Failure Characteristics (PFCs) can be calculated
based on the threshold gained from experience. Verification of PFC distribution indicated the validity
of failure features, and the function describing the failure characteristic distribution was chosen
to calculate the reliability curve. In this paper, a case study of tool wear was used to verify the
method. The vibration signal characteristic Gn was proved to be highly correlated with tool wear.
The wear-feature model that fits tool wear distribution was used to estimate model parameters of the
different tools, then the PFCs were calculated based on the tool wear threshold that was set at 0.16 mm
in this paper. Verification of failure characteristics indicated that Exponential distribution could be used
to describe the characteristic distribution. Then, reliability curve and failure characteristic prediction
could be obtained. In further work, the method can be used to calculate real-time estimate tool life and
improve processing quality. The paper contributes to our understanding of performance degradation
and provides a basis for reliability evaluation of mechanical equipment by the degradation path.
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