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Abstract: In this paper, we propose a new approach to recognize the motional patterns of human
postures by introducing the data density functional method. Under the framework of the proposed
method, sensed time signals will be mapped into specific physical spaces. The most probable cluster
number within the specific physical space can be determined according to the principle of energy
stability. Then, each corresponding cluster boundary can be measured by searching for the local
lowest energy level. Finally, the configuration of the clusters in the space will characterize the most
probable states of the motional patterns. The direction of state migration and the corresponding
transition region between these states then constitute a significant motional feature in the specific
space. Differing from conventional methods, only a single tri-axial gravitational sensor was employed
for data acquirement in our hardware scheme. By combining the motional feature and the sensor
architecture as prior information, experimental results verified that the most probable states of the
motional patterns can be successfully classified into four common human postures of daily life.
Furthermore, error motions and noise only offer insignificant influences. Eventually, the proposed
approach was applied on a simulation of turning-over situations, and the results show its potential
on the issue of elderly and infant turning-over monitoring.

Keywords: cluster number; cluster boundary; data density functional; posture recognition; tri-axial
gravitational sensor

1. Introduction

State-of-the-art techniques on time-dependent biomedical signal analysis significantly exhibit
their successful progress both on robust sensor architecture and elegant statistical learning-based
approaches [1,2]. Prospective experimental schemes and research in recent years has focused on
the interpretations between physiological and functional expressions in terms of biomedical signals
from heart rate variations, brainwave monitoring, respiration rates, and so forth [3–6]. Additionally,
several methods of rehabilitation based on statistical learnings have also fulfilled fruitful performances
for the recovery of human activities damaged by injury or known diseases, such as heart failure [7],
stroke [8–11], Parkinson’s disease [12] and osteoporosis [13]. Among these applications, the hardware
schemes of data acquirement commonly utilized wireless sensors [14–17], personal portable devices [9,16,18],
robotic assistance [19–22], or other commercial equipment [1,23,24]. The acquired results were then fed into
relevant image- or video-based techniques [10–12,17,21,25,26] for further human posture recognitions.

Sensor-based approaches often offer the merits of portable convenience and contactless
framework [15]. Under the hardware schemes, human activities and motional patterns were detected
and recorded by employing inertial sensors [1,2,15–17] and/or image sensors [1,23,24,27]. The acquired
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analog signals were then commonly analyzed using machine learning methods [15,17,22,23,27–32].
Thus, the data acquirements of human mobility and activities can have less interventions in the duration
of data collection. Informative feature extractions mainly rely on the support vector machine [27,33],
K-means clustering algorithm [33,34], or linear discriminant analysis [35], whereas the hidden Markov
model was commonly used for human activity recognition [22,31,33,34]. To further increase the
accuracy of posture recognition in both industry and academia, the image and inertial sensor fusion is
a popular technique, performed by commercial equipment, the Microsoft Kinect [1,10,11,23]. Based on
the proposed experimental schemes, the approaches could be categorized as the skeleton-joint-based
approach [1,17,24,28–32] and the silhouette-based approach [23,36]. Further combining the technique
of virtual reality, these approaches can provide an alternative [10–12] for guiding correct motions in
rehabilitation and can simultaneously motivate the psychological emotions of users. Although the
accuracy of activity recognition can be significantly increased by adding the number of sensors set
up on the skeleton points, high-budget apparatus and complex hardware structures might reduce the
acceptance from users.

Among relevant methods, contemporary physics-based techniques were also ambitiously
developed to find effective solutions on the pattern recognition of biomedical signals.
For instance, the Hilbert-Huang transform based on the method of physical energy spectrum
analysis [37] can decompose analog signals into several independent modes in frequency domains.
Then, the relationship between signal powers and informative features can be further delineated in
specific modal spaces, so that the significant features can be extracted according to the importance
of the corresponding signal powers. On the other hand, the method of multiscale entropy analysis
based on classical thermal statistics [38–40] well clarifies the importance of systematic complexity in a
developing biological system. The biological system, having higher systematic complexity estimated
using multiscale entropy, will exhibit higher initiative to accommodate itself to the surrounding
environment or external pressures.

Since the aforementioned methods were established on theoretical fundamentals in both physics
and information theory, abundant informative features hidden in a biological system of interest would
be sufficiently extracted. Under a similar framework, the data density functional method (DDFM) was
erected on the foundation of combining many-particle physics and machine learning methods [41].
To improve the feasibility technically, this article proposes an alternative avenue by balancing the
complexity of sensor architecture and the approximation of feature extractions. By utilizing the
structural orientation from a single tri-axial gravitational sensor (G-sensor) as prior information and
introducing the concept of kernel mapping simultaneously, the time signals can be mapped into higher
dimensional physical spaces under the framework of DDFM. The data points are treated as physical
particles to measure the cluster significance and similarity in specific physical spaces. Then, the cluster
centroids can be estimated using any sophisticated machine learning method so that the most probable
cluster number and the corresponding cluster boundaries can be delineated by measuring the local
lowest energy levels. Eventually, the human motional patterns can be recognized by the directions of
state migrations in the physical space.

2. Materials and Methods

2.1. Theoretical Framework

Differing from the conventional methods of machine learning, we proposed a new method for the
high-scale data analysis based on the density functional theory (DFT). The mathematical framework of
the DFT, founded on quantum mechanics [42,43], provides an elegant approach for high-scale data
systems. In an N-particle system within a three-dimensional (3D) physical space, for instance, all data
information could be fully elucidated using a 3D particle probability density function (PDF) [44–46]
rather than processing 3N-dimensional correlative estimations. In other words, the framework of DFT
offers participants an approach to reduce the computational complexity by extracting the data PDF in a
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system of interest. Therefore, although in an N-dimensional system wherein each dimension includes
M data lengths, the conventional methods have to deal with a problem with N ×M data sizes; the
computational complexity can be reduced by only utilizing N data PDFs under the DFT framework.
In scientific applications, the DFT has been utilized in the fields of quantum chemistry, solid state
theory, material science, bioscience, molecular dynamics, and so forth [44,45,47–50]. Based on the
theoretical investigations from the DFT, the DDFM further fused the functionality of estimations
from machine learnings so that the N-particle system can be assigned statistical meanings, such as
significance, centrality, similarity, and so on [15,41]. Once the data PDF n(r) in a system of interest with
arbitrary high-dimensions can be sufficiently defined, the data features in the system could be extracted
by respectively estimating the corresponding kinetic and potential energy density functionals, t[n] and
u[n], under the DDFM framework.

The corresponding theoretical forms in each term of the DDFM in a D-dimensional energy space
can be generally expressed as [45,51,52]:

t[n] =
∫

k≤kF

|k|2

2
dΩ(k)/

∫
k≤kF

dΩ(k), (1)

and

u[n] =
1
2

∫ n(r′)
|r− r′|d

Dr′, (2)

where k is a D-dimensional wave number enclosed by a hyper-volume element dΩ and kF is the
corresponding hyper-Fermi vector. The parameters r and r’ are the observation point and the source
point in the feature coordinates, respectively. For approaching the motional patterns of interest, the
theoretical form of DDFM in a two-dimensional (2D) physical space can be simplified as [41]:

t[n] =

∫ kF
0 dk·k·

(
k2

2

)
∫ kF

0 dk·k
= 2π2·n(r), (3)

and

u[n] ∼=
1
2

N

∑
i=1

n
(
r′i
)

r− r′ir 6=r′i

, (4)

where the relation between the wave number and the PDF is governed by the D-dimensional space-PDF
relation [41]:

kF[n] = 2π[D·n]1/D. (5)

The dimensional factor D = 2 in our case. Full mathematical forms of Equations (3) and (4)
can be referred to the algorithm flowchart. For easy programming implementation, the integrational
parameter appearing in u[n] of Equation (4) had been merged in Equation (8), as follows. The factor N
is the data length and i is the location index of ith data point.

It is obvious that the kinetic energy density functional (KEDF) t[n] shown in Equation (3) is
directly proportional to the data PDF, while the potential energy density functional (PEDF) u[n]
shown in Equation (4) has an inverse correlation with the pair-data distance. In the views of statistical
learning, the theoretical forms of the KEDF and the PEDF imply the measurements of data weighting
(significance) and the data similarity, respectively [41]. Therefore, the global morphology of the
Hamiltonian density functional (HDF) exhibits the corresponding centrality of each data cluster, and
that of the Lagrangian density functional (LDF) delineates the corresponding cluster boundaries [15,41].
Theoretically, the mathematical forms of the HDF and the LDF can be respectively expressed as:

H[n] = γ2t[n] + γu[n], (6)
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and
L[n] = γ2t[n]− γu[n]. (7)

The adaptive scaling factor γ in Equations (6) and (7) was used to resolve the issue of dimensional
mismatch occurring in mapping the datasets from original spaces to physical spaces. The form is
expressed as [15,41]:

γ =
1
2
〈u[n]〉
〈t[n]〉 . (8)

Consequently, the adaptive scaling factor is simply the ratio of global expected values between the
u[n] and t[n]. It should be emphasized that the adaptive scaling factor will be estimated automatically
due to the fact that it is an intrinsic characteristic of the system.

2.2. Experimental Framework

Figure 1a sequentially illustrates the flow of data collection and the method of data analysis in
the study. In the experimental framework, a single tri-axial G-sensor with a sampling rate of 50 Hz
was first adhered to a subject’s chest as shown in Figure 1b and used to detect every change in human
posture. Three common postures in daily life are sequentially shown in Figure 1c–e. The characteristic
length and weight of the employed G-sensor is about 4 cm and 7 g, respectively. Thus, the employed
sensor is suitable for the applications of wearable sensing and personal health care as mentioned.
Then, a wireless communication protocol using the technique of radio frequency data buffer (RFDB)
associated with Bluetooth 4.0, Xenon [53,54], was adopted for the long-term experiments. Eventually,
all well-collected data would be automatically uploaded to a personal cloud database or a portable
device for further customized posture analysis.

The procedure of algorithmic execution is illustrated in Figure 2. The analog datasets acquired by
the G-sensor in each sensing axis will be mapped into their corresponding 2D Cartesian space in a
matter of axis-to-axis. Then, each set of the 2D mapped data points will be sequentially fed into the
algorithm to estimate the cluster number i as shown in Step (1). As illustrated in the algorithmic flow,
the initial cluster number is set to be one and the initial number will be continuously updated until
reaching the stop conditions (see Step (7)). While the cluster number is given, the data PDF in the 2D
space will be estimated using any sophisticated machine learning estimator in Step (2). In this case, the
Gaussian mixture model (GMM) [55–57] was adopted for the following algorithmic estimations. Then,
the corresponding KEDF and PEDF can be estimated using Equations (3) and (4), respectively, in Step
(3). When i≥ 2, as shown in the algorithmic flow, these density functionals become linear combinations
of measurements contributed from i clusters. After each estimation of density functionals, the adaptive
scaling factor listed in Equation (8) will then be calculated to avoid the issues of scaling deformation
occurring in the data mapping procedure (see Step (4)). Therefore, in Step (5), the HDF and the LDF
respectively listed in Equations (6) and (7) can be estimated accordingly.
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g. (b) Shows the related location of the sensor that was directly adhered on a subject’s chest. The 
directions of sensing axes of the G-sensor were also depicted in each photo of various postures. (c–e) 
Respectively exhibit the analyzed postures from lying face-up, to turning left, and to turning right. 
Eventually, the posture recognition would be achieved using the proposed data density functional 
method (DDFM). 

Figure 1. The procedure of data collection is shown in (a). The changes in human posture will be
detected using the tri-axial gravitational sensor and the collected data will then be transmitted to a
personal cloud database. The longest dimension of the sensor is about 4 cm and its weight is about
7 g. (b) Shows the related location of the sensor that was directly adhered on a subject’s chest. The
directions of sensing axes of the G-sensor were also depicted in each photo of various postures. (c–e)
Respectively exhibit the analyzed postures from lying face-up, to turning left, and to turning right.
Eventually, the posture recognition would be achieved using the proposed data density functional
method (DDFM).Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 13 
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Figure 2. The detail algorithmic flow of the proposed DDFM. Whole algorithm can be divided into
two main blocks. In the first block, the main function focuses on finding the most probable cluster
number in the studying system. As listed from Steps (1) to (7), the crucial density functionals will be
estimated to find the global Hamiltonian functional (HF), so that the most probable cluster number can
also be estimated after the process reaches the stop conditions. In the second block, the cluster number
will be used to estimate the best Lagrangian density functional (LDF) and the corresponding cluster
boundaries can then be delineated by finding either the zero points of the LDF derivative or the lowest
level of LDF that only encloses one center.

It should be emphasized that the proposed DDFM algorithm provides an avenue to estimate the
most probable cluster number in a studying system [41]. Based on the concept of energy stability in
physics, the most probable cluster number can be estimated by measuring the turning point in the
trend curves of the global Hamiltonian functional (HF). The theoretical form of the global Hamiltonian
functional is shown in Step (6). Meanwhile, the DDFM algorithm also provides the stop conditions to
automatically terminate the estimation process. As listed in Step (7) of Figure 2, two stop conditions
were used in the DDFM algorithm. Generally, the whole estimation process will be terminated
when the global Hamiltonian functional reaches a stable value. Additionally, the ill-conditioned PDF
estimation was also employed for the termination of estimation to avoid the over-estimation of cluster
number. At this stage, the most probable cluster number can be defined and the most probable value
is i− 1, as shown in Step (8). Eventually, the corresponding cluster boundaries can be delineated by
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finding either the zero points of the LDF derivative or the lowest level of LDF that only encloses one
center, as described in Step (9).

3. Results

Five healthy subjects, three females and two males, were recruited in this studied case to simulate
the expected human motional patterns. The average age of these subjects is 22.8 years old with a
standard deviation of 1.92 years old, and the average height is 161.8 cm with a standard deviation of
7.43 cm. Since the collected signals from the subjects were highly similar, one dataset of signals from a
subject was randomly employed in the following study. Figure 3 depicts the original time-dependent
signals collected by the tri-axial G-sensor in each corresponding sensing axis. Each numbered principal
axis (PA) is correspondent to each sensing axis. In the proposed experimental scheme, two different
periodic times, 20 and 40 s, were adopted and the motions were repeated eight times within three
minutes. The different periodic times between these studying cases were deliberately arranged in the
experiments in order to check the immunity of DDFM from the different experimental circumstances.
The signals shown from Figure 3a–c sequentially describe the repeated motional patterns from lying
face-up to turning left (TL) in each PA and that from (d)–(f) shows the patterns from lying to turning
right (TR), respectively. By considering the hardware architecture shown in Figure 1, the direction
of PA 1 was the same as the rotating axis of the subject body so that the signal variation in PA 1
was much weaker than that in both PA 2 and PA 3 in each studied case. The waveforms of PA 3
shown in Figure 3c,f are similar and they also have similar signal levels in the lying states. On the
contrary, the directions of waveforms of PA 2 shown in Figure 3b,e are opposite, even though they
also have similar signal levels in the lying states. These sequential variations of motional patterns
in PA 2 and PA 3 caused by the architecture of the G-sensor constitute the feasible features of the
motional pattern recognition in the study and may be used to compensate for the lack of sensor number.
Thus, these features were used as the prior information in the DDFM algorithm.
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Figure 3. The original time signals collected from each corresponding sensing axis of the G-sensor.
The analog signals delineated from (a–c) describes the motional patterns of a human from lying
face-up to turning left (TL), whereas those from (d–f) show the patterns from face-up to turning
right (TR). The experiments were repeated eight times within three minutes with two different time
periods, 20 and 40 s. The results classified using the DDFM are also exhibited in each plot in advance.
PA = principal axis.
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To introduce the DDFM to the time-dependent signal analysis, the datasets were first mapped
into 2D pseudo-physical spaces as shown in Figures 4 and 5. Figures 4 and 5 respectively exhibit the
classified results of motional patterns of Lying-to-TL and Lying-to-TR states. By comparing these
classified results, it is obvious that the difference in the periodic times employed in the experiments
would not substantially affect the accuracy of the DDFM algorithm. Meanwhile, the overshooting
signals depicted in Figure 3 also only offered insignificant noise levels. As expected, the scattered
plots of Figure 4a,b exhibit the ignorable motional patterns in PA 1, whereas that of Figure 4c reveals
significant physical couplings between body motions and the rotating directions of the G-sensor.
Additionally, according to Steps (6)–(9) in the proposed algorithmic flow, the most probable cluster
number and the corresponding cluster boundaries could be well defined by estimating the systematic
global Hamiltonian functional and the energy characteristics of LDF morphologies, respectively.
The data PDFs in the 2D pseudo-physical spaces were statistically estimated using the GMM method
associated with the expectation-maximization (EM) algorithm, and the corresponding trend curves
of the global Hamiltonian functional were also delineated in Figures 4d and 5d. The average global
Hamiltonian functional was then used to track the most probable cluster number, and the characteristic
factor was set to be ε = 0.02HF[n]i−1 in each case. As indicated by the red arrows in the plots, the most
probable cluster numbers in these studied cases all pointed to cluster number two, as expected. It
is also noted that the fluctuations that occurred behind the most probable numbers were caused by
non-ideal effects [41]. For instance, the GMM-EM algorithm cannot exactly catch the main locations
of clusters in the studied cases, as shown in Figure 4f. Additionally, the chaotic changes of human
posture also cause non-ideal covariance matrices of data PDFs so that the irregular data distributions
increase the estimation errors of the EM algorithm.
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Figure 4. Estimation of a Lying-to-TL case using the proposed DDFM algorithm. From (a–c),
the scattered plots show the mapped results of the time signals in their corresponding physical
spaces. Meanwhile, the classified results are also exhibited, as well as their corresponding specific states
of motional patterns. There are three states in this case: lying, transition, and TL. The most probable
cluster number is indicated by the trend curve of the global Hamiltonian functional, as illustrated in
(d). The cluster number was assigned as prior information for constructing the LDF morphologies,
as shown from (e–g), and the corresponding cluster boundaries can be defined by finding the lowest
energy levels that only enclose one cluster center. The corresponding cluster boundaries have been
indicated by the black arrows in the plots.
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Eventually, the most probable cluster numbers were employed as input information for
constructing the morphologies of the LDF in the proposed DDFM algorithm, and then the
corresponding LDF morphologies are respectively shown from (e)–(g) in Figures 4 and 5. In order
to speed up the estimation process, the skill of downsampling was used in the procedure of LDF
estimations and the adopted ratio was 20%. The corresponding cluster boundaries were successfully
delineated by visualizing the corresponding LDF morphologies in each studied case. Each of them can
be directly defined, as implied in Step (9) of the algorithmic flow, by finding the lowest energy levels
that only enclose one cluster center, as indicated by the black arrows. It should be emphasized that since
the LDF was a linear combination of the PDFs with different weighting factors, the LDF morphology
is equivalent to a probabilistic map. The data points enclosed by their corresponding boundaries
were classified as the same clusters and were assigned into the specific states of motional patterns.
The other data points that were not classified into these clusters were assigned into the transition
state. It should be emphasized again that these specific states of motional patterns were defined by the
prior information associated with the G-sensor architecture. In other words, the different directions of
state migrations in these cases, respectively show in Figures 4c and 5c, exhibit important inter-state
features for systematic motional pattern recognition. By considering the G-sensor architecture and the
directions of state migrations, the directions of PA 2 are always along the tangential direction of the
state migration, while that of PA 3 is along the normal direction. The phenomenon was evidenced by
the mapped plots shown in Figures 4c and 5c, wherein the illustrations of human turning were also
inserted. Since this information only can be recognized by simultaneously checking the directions of
state migrations and the G-sensor architecture, it was assigned as the inter-state feature for resolving
the issue of motional pattern recognition. All classified results are illustrated in (a)–(c) of Figures 4
and 5, and the results were then fed back into the time signals as exhibited in Figure 3. Therefore,
the most probable states of the motional pattern in the time signals are successful classified using the
proposed DDFM algorithm.
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Figure 5. Estimation of a Lying-to-TR case using the proposed EEFM algorithm. The most probable
states of the motional patterns in this studied case are lying, transition, and TR. The difference between
Figures 4 and 5 is the direction of state migration in (c), and it is also a significant pattern feature
for motional pattern recognition. (a,b) similarly show the insignificant mapped results from PA 1.
The corresponding LDF morphologies are sequentially exhibited in (e–g).
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To verify the proposed DDFM algorithm, a simulation of turning-over monitoring was employed
to validate the feasibility. Figure 6 shows an experimental mapping plot, which was a simulation of
turning-over situations. These results shown in Figure 6 were randomly picked from a relevant dataset
of the subjects. Under the experimental scheme, a subject lay on a bed and faced up. Then, the subject
turned left twice (now face-down) with a periodic time of 10 s. By combining the extracted features
from the Lying-to-TL and -TR cases, the experimental results can be automatically divided into four
states, as expected. Each cluster centroid was marked by a black dot in Figure 6. The migrations of
the mapped data points and the illustration of human turning again evidences the feasibility of the
inter-state features. Especially, the states of face-up and face-down can be well recognized using the
proposed DDFM algorithm due to their inter-state features. The inclination with a value of 10.6 degrees
might be caused due to the unbalanced postures during the subject motions. In a nutshell, the proposed
algorithm and the experimental scheme offer a simple avenue to resolving the demanding issue of
elderly and infant turning-over monitoring.
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the features extracted from the Lying-to-TL and -TR cases, the states of face-up and face-down can
clearly recognized using the proposed DDFM algorithm. The inclination might be caused by the
unbalanced natural motional strength of the subject.

4. Discussion

The proposed DDFM algorithm provides an avenue for resolving the problem of motional pattern
recognition. The successful classified results of motional patterns of Lying-to-TL and Lying-to-TR cases
in specific physical spaces have been respectively shown in Figures 4 and 5, and that in time domains
has been shown in Figure 3. An algorithmic flow is provided as well. By mapping the time signals into
a 2D physical space, the most probable cluster number can be estimated using the trend curves of the
global Hamiltonian functional and the most probable cluster boundaries can also be determined by
finding the lowest energy levels in the LDF morphologies. Thus, the DDFM is a self-consistent method
for pattern recognition.

In the proposed experimental scheme, the rotating directions of the sensor architecture were
used as prior information for the algorithmic estimations, so that the most probable states of motional
patterns can be definitely determined by combining the features extracted from PA 2-PA 3 scattered
plots, i.e., the proposed inter-state features. By simultaneously considering the direction of state
migration in the PA 2-PA 3 plot of Figure 4c and the sensor architecture, the progressively increasing
curve exhibits an increase in both of the electric voltages in PA 2 and PA 3. Then, this motional pattern
was classified to the Lying-to-TL case. A similar deduction can be applied to the Lying-to-TR case
in Figure 5c. Therefore, the motional pattern recognitions can be correctly and easily recognized
using the proposed DDFM algorithm. The classified results of the patterns can be remapped into the
time-dependent space, and the classified time signals of the cases are respectively shown in Figure 3. It
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is worth discussing the limitation of the proposed algorithm. As aforementioned, the non-ideal
effects, as exhibited in Figures 4d and 5d, will occur in the estimation procedure of the global
Hamiltonian functionals. In these cases, the employment of the estimator and the chaotic level
of the data distribution might significantly limit the accuracy of cluster number estimation and that of
the cluster boundary definition as well.

5. Conclusions

In summary, the proposed DDFM algorithm and sensor architecture offer a nonparametric
experimental scheme for the time-dependent data classification and motional pattern recognition.
The most probable cluster number and the corresponding boundaries can be well defined, so that the
most probable states of the motional patterns can be easily extracted. The successful experimental
results and the simulation of turning-over monitoring reveal the feasibility of the proposed method.
In order to make a contribution to clinical investigation, the proposed method would further fuse
the key techniques from other objective methods for resolving the issues of pattern recognition
and automatic segmentation in the future. In addition to solving the proposed segmentation and
recognition in time-dependent problems, the proposed scheme can be further implemented to the
major topics in clinical research, such as the patterns of cough in subjects in the intensive care unit
(ICU), gait analysis, the patterns of vital physiological signals, work-related postures in industrial
settings, and so forth.

Author Contributions: S.-J.H. and C.-C.C. designed the investigation and prepare the manuscript. S.-J.H. and
C.-J.W. collected data and wrote the programs.

Funding: This research was funded by Ministry of Science and Technology, Taiwan, with a grant number of
MOST 107-2221-E-008-090.

Acknowledgments: We would like to acknowledge the support from Ministry of Science and Technology and
Chronic Disease Research Center, National Central University, Taiwan. We also thank Professor Terry B. J. Kuo
in Laboratory of Translational Research, Institute of Brain Science, National Yang-Ming University, Taiwan,
for providing the high performance accelerometers and the XenonBlue protocol.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, C.; Jafari, R.; Kehtarnavaz, N. A Real-Time Human Action Recognition System Using Depth and
Inertial Sensor Fusion. IEEE Sens. J. 2016, 16, 773–781. [CrossRef]

2. Qian, Z.; Bowden, A.E.; Zhang, D.; Wan, J.; Liu, W.; Li, X.; Baradoy, D.; Fullwood, D.T. Inverse Piezoresistive
Nanocomposite Sensors for Identifying Human Sitting Posture. Sensors 2018, 18, 1745. [CrossRef] [PubMed]

3. Hui, X.; Kan, E.C. Monitoring vital signs over multiplexed radio by near-field coherent sensing. Nat. Electron.
2018, 1, 74–78. [CrossRef]

4. Tsai, H.J.; Kuo, T.B.; Lee, G.S.; Yang, C.C. Efficacy of paced breathing for insomnia: Enhances vagal activity
and improves sleep quality. Psychophysiology 2015, 52, 388–396. [CrossRef] [PubMed]

5. Kuo, T.B.; Hong, C.H.; Hsieh, I.T.; Lee, G.S.; Yang, C.C. Effects of cold exposure on autonomic changes
during the last REM sleep transition and morning blood pressure surge in humans. Sleep Med. 2014, 15,
986–997. [CrossRef] [PubMed]
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49. Riley, K.E.; Pitoňák, M.; Jurečka, P.; Hobza, P. Stabilization and Structure Calculations for Noncovalent
Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories.
Chem. Rev. 2010, 110, 5023–5063. [CrossRef] [PubMed]

50. Neese, F. Prediction of molecular properties and molecular spectroscopy with density functional theory:
From fundamental theory to exchange-coupling. Coord. Chem. Rev. 2009, 253, 526–563. [CrossRef]

51. Zupan, A.; Burke, K.; Ernzerhof, M.; Perdew, J.P. Distributions and averages of electron density parameters:
Explaining the effects of gradient corrections. J. Chem. Phys. 1997, 106, 10184–10193. [CrossRef]

52. Zupan, A.; Perdew, J.P.; Burke, K.; Causá, M. Density-Gradient Analysis for Density Functional Theory:
Application to Atoms. Int. J. Quantum Chem. 1997, 61, 835–845. [CrossRef]

http://dx.doi.org/10.1007/s11042-015-2928-3
http://dx.doi.org/10.1016/j.ins.2016.01.020
http://dx.doi.org/10.1109/THMS.2014.2377111
http://dx.doi.org/10.3390/s140711735
http://www.ncbi.nlm.nih.gov/pubmed/24991942
http://dx.doi.org/10.1142/S1793536914500113
http://dx.doi.org/10.1103/PhysRevLett.89.068102
http://www.ncbi.nlm.nih.gov/pubmed/12190613
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://www.ncbi.nlm.nih.gov/pubmed/15783351
http://dx.doi.org/10.1007/s10558-007-9049-1
http://www.ncbi.nlm.nih.gov/pubmed/18172763
http://dx.doi.org/10.1038/s41598-017-18931-5
http://www.ncbi.nlm.nih.gov/pubmed/29323205
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1039/b907148b
http://www.ncbi.nlm.nih.gov/pubmed/19924312
http://dx.doi.org/10.1002/aic.10713
http://dx.doi.org/10.1103/PhysRevLett.50.1285
http://dx.doi.org/10.1103/PhysRevX.3.031002
http://dx.doi.org/10.1039/B615319B
http://www.ncbi.nlm.nih.gov/pubmed/17315059
http://dx.doi.org/10.1021/cr1000173
http://www.ncbi.nlm.nih.gov/pubmed/20486691
http://dx.doi.org/10.1016/j.ccr.2008.05.014
http://dx.doi.org/10.1063/1.474101
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:5&lt;835::AID-QUA9&gt;3.0.CO;2-X


Appl. Sci. 2018, 8, 1615 13 of 13

53. Lin, Y.C.; Hsieh, I.T.; Lin, W.T.; Huang, W.L.; Kuo, K.L.; Lee, G.S.; Lo, M.T.; Yang, C.C.H.; Huang, N.E.;
Kuo, T.B.J. Implementation of cloud computing healthcare based on xenon uploading system and Hilbert
transform. In Lecture Notes on Wireless Healthcare Research; Patrick, K., Su, M.-C., Eds.; University of Taiwan
System Press: Taiwan, 2013; pp. 115–124.

54. Lee, G.S.; Kuo, T.B.J. Cloud computing electrocardiographic system using xenon RF & GPRS transmission
Technique. In Lecture Notes on Wireless Healthcare Research; Patrick, K., Su, M.-C., Eds.; University of Taiwan
System Press: Taiwan, 2013; pp. 151–156.

55. Glowacz, A.; Glowacz, W.; Glowacz, Z.; Kozik, J. Early fault diagnosis of bearing and stator faults of the
single-phase induction motor using acoustic signals. Measurement 2018, 113, 1–9. [CrossRef]
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