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Abstract: In this research, a semi-analytical model of the adaptive piezoelectric metamaterial, built
upon continuum mechanics characterization, was formulated and analyzed to reveal the fundamental
features of bandgap with respect to unit-cell parameters under transverse wave. A new mechanism
to broaden the bandgap width, was then introduced through geometric cavity synthesis. It was
demonstrated that the cavities incorporated into the host structure of the piezoelectric metamaterial
can increase the electro-mechanical coupling of the system, which effectively yields broadened
bandgap width. Case studies were performed to demonstrate the enhanced performance of the
new design, as well as the tunability. Compared with the conventional piezoelectric metamaterial,
the metamaterial with cavity synthesis can increase the bandgap width from 45 Hz to 126.7 Hz.

Keywords: acoustic metamaterial; piezoelectric transducer; LC shunt circuit; bandgap width;
electro-mechanical coupling; geometric cavity

1. Introduction

Metamaterials, defined as artificial structures that exhibit physical properties not available in
natural material, have extraordinary capability in low-frequency sound/vibration attenuation, negative
refraction, and super lenses [1–8]. The acoustic metamaterials, consisting of periodically arranged
unit-cells, are capable of manipulating elastic wave propagation. An acoustic metamaterial may
utilize Bragg scattering or local resonance [9–14]. Bragg bandgaps stand for the zones between
incident and reflected waves, which are generated at wavelengths comparable to the spatial scale of
a unit-cell [15–17]. Different from the Bragg scattering mechanism, the local resonance mechanism
utilizes the sub-wavelength local resonances induced within a unit-cell. The local resonance can
alter the frequency-dependent effective mass densities, and/or bulk moduli of the continuum media.
In most cases, the internal resonators have highly contrasting elastic properties. Within the bandgap,
the elastic wave cannot propagate, and wave energy is reflected back or temporarily stored in
resonators [1,18,19].

Owing to their two-way electro-mechanical coupling, piezoelectric transducers have been adopted
to induce or enhance bandgap behavior in metamaterials [8,20–22]. Piezoelectric metamaterial with
periodic resonant circuits can directly produce the local resonance bandgap. This is because a
local resonance is created by the LC (inductor-capacitor) circuit, as the piezoelectric transducer acts
electrically as a capacitor. For example, piezoelectric periodic arrays are integrated into rods for
wave attenuation and localization [20]. In another example, multi-resonant shunts were adopted
to generate multiple bandgaps in a piezoelectric metamaterial [21]. Theoretical and experimental
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investigations on photonic rods and beams [23] with shunt circuits have been performed. Recently,
piezoelectric metamaterials were applied in two-dimensional wave steering [24] and vibration mode
customization [25]. Notably, piezoelectric metamaterial has advantages over the more conventional
mechanical metamaterial in two aspects: Relatively simple configuration and adaptivity. Piezoelectric
transducers are usually attached to the host structure directly, and even simple topology/geometry
can yield complex dynamic phenomena locally at the unit-cell level, and globally at the metamaterial
level. Moreover, the shunted piezoelectric transducers allow the online tuning of bandgap towards a
desired frequency range, as one can conveniently integrate tunable circuitry elements.

So far, almost all the studies on piezoelectric metamaterial are based on transfer-matrix method
or finite element analysis [22,26]. However, previous investigations concerning piezoelectric shunt
design and analysis in sensing/control applications, often resort to the lumped-parameter approach,
which can help in revealing the underlying physics with parametric influences [27–29]. It is worth
noting that circuitry dynamics in the electrical domain is described naturally by the lumped-parameter
model. The lumped-parameter approach is suitable for dealing with complex circuitry integration
schemes, as well as systems with nonlinearity [30,31]. A more common approach is to conduct
continuum mechanics-based modeling of the host substrate, followed by discretization with respect
to wavenumber, where an equivalent frequency-dependent Young’s modulus is used to reflect the
piezoelectric shunt circuit effect [22,26]. The shunt circuit effect is included as equivalent impedance
added to the original mechanical impedance of the transducer. However, such an approach may not
be able to deal with complex circuitry, especially those with multiple branches or nonlinear elements.

From the fundamental physics standpoint, one well-known limitation of piezoelectric
metamaterial is the relatively narrow bandwidth, compared with other types of acoustic metamaterials.
For example, Parra et al. demonstrated numerically and experimentally that the piezoelectric
metamaterial has bandgap width of 500 Hz around 5000 Hz [32]. On the other hand, the mass-in-mass
metamaterial with mechanical resonance, has bandgap width of up to 5.6 kHz around the frequency
of 24.8 kHz [33]. Therefore, the goal of this research is two-fold. Firstly, the lumped-parameter
model of the piezoelectric metamaterial is established, which is built upon the continuum mechanics
characterization of the host substrate and piezoelectric transducer at the unit-cell level, to reveal the
parametric influence on bandgap width. Transverse wave is considered throughout the modeling
and analysis, and the lumped parameters are derived based on the wavenumber involved.
Secondly, a new and effective design is introduced, based on incorporating geometric cavities in
the host structure, to increase the electro-mechanical coupling of the piezoelectric metamaterial.
The increased electro-mechanical coupling yields significantly broadened bandgap width. Systematic
case investigations through finite element analysis are conducted to demonstrate the modeling and
new design.

2. Lumped-Parameter Modeling of Piezoelectric Metamaterial

In this section, a semi-analytical investigation of one-dimensional piezoelectric metamaterial
integrated with LC shunt circuits is formulated. Firstly, the configuration of the unit-cell is described,
followed by energy analysis based on continuum mechanics characterization. A lumped-parameter
model of the piezoelectric metamaterial is formulated by incorporating the periodic boundary
condition of the unit-cell, where a representative circuitry configuration, i.e., parallel-connections of
the piezoelectric transducers, is considered. The dispersion relations of the piezoelectric metamaterial
are then established.

2.1. Configuration of Conventional Piezoelectric Metamaterial

The configuration of the unit-cell of piezoelectric metamaterial is shown in Figure 1. The unit-cell
consists of an aluminum substrate and two piezoelectric transducers bonded onto the top and bottom
surfaces of the substrate. Inductance element is connected to the top and bottom surfaces of the
piezoelectric transducer as the shunt circuit. Note that a piezoelectric transducer acts electrically as
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a capacitor. The combination of the piezoelectric capacitance and the inductive shunt, creates an LC
resonant unit. Moreover, since the piezoelectric transducer possesses two-way electro-mechanical
coupling, the local resonance in the electrical domain can affect the system dynamics in the mechanical
domain. As such, the LC resonance of the shunt circuit creates bandgap for the integrated system.
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Figure 1. Unit-cell of piezoelectric metamaterial.

2.2. Semi-Analytical Model of Unit-Cell

In this section, Euler-Bernoulli beam theory is used as the basis to analyze the integrated system.
The behavior of the metamaterial can be assessed through analyzing the dynamics of a unit-cell.
For each unit-cell, a perfect bonding condition between the piezoelectric transducers and the substrate
is assumed. Let l, b, h, and ρ denote, respectively, the length, width, thickness, and mass density.
Throughout this research, subscripts ‘b’ and ‘p’ are employed to indicate variables related to the host
beam substrate and the piezoelectric transducer, respectively. The modeling starts from the extended
Hamilton’s principle, ∫ t2

t1

(δT − δU + δW)dt = 0 (1)

where T is the kinetic energy, U is the potential energy, and W is the virtual work.
For the unit-cell, the kinetic energy is

T =
1
2

ρbhb

∫ lb/2

−lb/2

∫ bb/2

−bb/2

( .
w(x, t)

)2dxdy + ρphp

∫ lp/2

−lp/2

∫ (bp+bb)/2

bb/2

( .
w(x, t)

)2dxdy (2)

where w(x, t) is the displacement of the transverse wave. The directions of the coordinate system are
shown in Figure 1, and the origin is located at the center of the unit-cell being analyzed. The variation
of the kinetic energy, takes the form

δT = ρb Ab

∫ lb/2

−lb/2

..
w(x, t)δwdx + 2ρp Ap

∫ lp/2

−lp/2

..
w(x, t)δwdx (3)

where Ab and Ap are, respectively, the cross-sectional area of the host beam substrate and that of one
piezoelectric transducer. The linear constitutive relation of the piezoelectric transducer is [34].

τp = Epεp − h31D (4a)

E = −h31εp + β33D (4b)

where τp, εp, D, and E represent, respectively, the stress, stain, electrical displacement (charge/area),
and electrical field (voltage/length) of the piezoelectric transducer, and Ep, h31, and β33 are the Young’s
modulus at constant electrical displacement, the piezoelectric constant, and the dielectric constant
of the transducer at constant strain. Let Eb denote the Young’s modulus of the host beam substrate.
The elastic energy of the unit-cell comes from the host substrate and the two transducers, and the
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electrical energy comes from the two transducers. The variation of the elastic and electrical energies
can be derived as

δU =
∫ lb/2
−lb/2 Eb Ibw′′ δw′′ dx +

∫ lp/2
−lp/2 Ep Ipw′′ δw′′ dx− 2

∫ lp/2
−lp/2 Fph31Dδw′′ dx

−2
∫ lp/2
−lp/2 Fph31w′′ δDdx + 2

∫ lp/2
−lp/2 β33 ApDδDdx

(5)

where Ib and Ip represent, respectively, the second moment of inertia of the substrate and that of one
piezoelectric transducer, and Fp represents the first moment of area of each transducer.

Using the variation principle and setting the initial conditions as δw(t1) = δw(t2) = 0, one
can derive

∫ t2

t1

δTdt =
∫ t2

t1

[∫ lb/2

−lb/2
ρb Ab

..
w(x, t)δwdx + 2

∫ lb/2

−lb/2
ρp Ap

..
w(x, t)

[
H(x +

lp

2
)− H(x−

lp

2
)

]
δwdx

]
dt (6)
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t1

δUdt =
∫ t2

t1


(Eb Ib + Ep Ip)w′′ δw′

∣∣lb/2
−lb/2 − (Eb Ib + Ep Ip)w′′′ δw

∣∣lb/2
−lb/2 +

∫ lb/2
−lb/2 (Eb Ib + Ep Ip)wivδwdx

−2
∫ lb/2
−lb/2 Fph31D′′ δw

[
H(x +

lp
2 )− H(x− lp

2 )
]
dx− 2Fph31( D′δw′|lp/2

−lp/2 − D′′ δw|lp/2
−lp/2)

−2
∫ lb/2
−lb/2 Fph31w′′ δD

[
H(x +

lp
2 )− H(x− lp

2 )
]
dx

+2
∫ lb/2
−lb/2 β33 ApDδD

[
H(x +

lp
2 )− H(x− lp

2 )
]
dx

dt (7)

where H(x) is the Heaviside function. As the length and width of the piezoelectric transducer may be
smaller than those of the host beam substrate, terms associated with the piezoelectric transducer are
multiplied by

[
H(x + lp/2)− H(x− lp/2)

]
hereafter. The variation of the virtual work done by forces

from adjacent unit-cells (applied at the boundaries), can be expressed as [35].

δW = (Eb Ib + Ep Ip)w′′ δw′
∣∣lb/2
−lb/2 − (Eb Ib + Ep Ip)w′′′

∣∣lb/2
−lb/2 − 2Fph31(D′δw′

∣∣lp/2
−lp/2 − D′′ δw|lp/2

−lp/2) (8)

Substituting Equations (6)–(8) into Equation (1), the partial differential equations that govern the
motion of the unit-cell, coupled with the piezoelectric transducers are obtained,(

ρb Ab + 2ρp Ap

[
H(x +

lp
2 )− H(x− lp

2 )
]) ..

w(x, t)

+(Eb Ib + Ep Ip)wiv − 2Fph31D′′
[

H(x +
lp
2 )− H(x− lp

2 )
]
= Wc(x, t)

(9a)

(Fph31w′′ + β33 ApD)

[
H(x +

lp

2
)− H(x−

lp

2
)

]
= Ws(x, t) (9b)

where Wc(x, t) is the virtual work per unit length of the substrate/transducer, due to the mechanical
damping. In Equation (9b), the effect of the shunt circuit, i.e., the inductive load, is included as virtual
work done to the unit-cell. Let Ws(x, t), represent such virtual work per unit length of the transducer.
The actual virtual work done by the shunt circuit thus is

∫ lb/2
−lb/2 Ws(x, t)dx.

To analyze the dynamic behavior of the piezoelectric metamaterial, one unit-cell is considered,
where the Bloch-Floquet theory is employed. Specifically, the mechanical displacement and the
electrical displacement are both assumed to have the following representations [36,37],

w(x, t) = qei(kx x−ωt), (10a)

D(x, t) = Dei(kx x−ωt) (10b)

where kx is the wavenumber of the transverse wave involved, ω is its frequency, q and D are,
respectively, the amplitudes of mechanical and electrical displacements. Furthermore, let D1 and
D2 denote, respectively, the electrical displacements of the top and bottom transducers. Essentially,
these displacement representations reflect that the wave propagates in the piezoelectric metamaterial
that is spatially periodic. Our goal here is to develop a lumped-parameter model of the unit-cell, which
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can be used to elucidate the underlying physics of the piezoelectric metamaterial. Consider an arbitrary
wavenumber kx. Equation (10a,b) are substituted into Equation (9a,b), which are further integrated
over the cell length lb. After some manipulations (please see Appendix A for details), the governing
equations of the unit-cell are obtained as

m
..
q + c

.
q + kq + k1(Q1 + Q2) = 0 (11a)

1/C ·Q1 + k1q = V1 (11b)

1/C ·Q2 + k1q = V2 (11c)

where m is the mass, k is the stiffness, c is the damping coefficient, q is the mechanical displacement,
i.e., q = qe−iωt, Q1 and Q2 are the charges on the transducers on the top and bottom of the
substrate, respectively, i.e., Q1 = (bplp)D1e−iωt and Q2 = (bplp)D2e−iωt, C is the capacitance of
one piezoelectric transducer, k1 is the electro-mechanical parameter between a transducer and the host
beam substrate. Specifically,

m =
2 sin( kx lb

2 )

kxlb
ρbhbbblb +

2 sin( kx lb
2

lp
lb
)

kxlb
2ρphpbplb (12a)

k = 2Eb Ibkx
3 sin(

kxlb
2

) + 4Ep Ipkx
3 sin(

kxlb
2

lp

lb
) (12b)

k1 = −2
Fph31kx

bplp
sin(

kxlb
2

lp

lb
), (12c)

C =
bplp

β33hp
(12d)

It is worth noting that, in the unit-cell, two piezoelectric transducers are employed as a bimorph.
The top and bottom piezoelectric transducers are identical, and thus have the same capacitance value.
The charges, Q1 and Q2, and the voltages across the transducers, V1 and V2, are related to the specific
connection configurations, and will be explained subsequently. More importantly, the equivalent
mass, stiffness, and electro-mechanical constant are expressed as explicit functions of wavenumber
and geometry/material properties. Indeed, in this piezoelectric metamaterial, wave propagates along
the continuous beam substrate. The wavenumber indicates the number of waveform cycles per
unit length, which decides the corresponding local beam deformation and strain/stress distributions
within the unit-cell. Therefore, the equivalent mass, stiffness, and electro-mechanical constant are
all wavenumber-dependent.

The effect of the circuitry dynamics to unit-cell behavior, where the transducers are connected
to inductive shunt in the parallel manner, is now investigated. To derive the governing equations of
the integrated system, the electrical dynamics of the unit-cell is examined first. Figure 2 illustrates
the equivalent circuit model. The electrodes bracketing the piezoelectric transducers cover fully,
the top and the bottom surfaces of each transducer. The electrode layers are connected to an inductive
circuit/load. Here the piezoelectric transducers are equated to voltage sources in the equivalent circuit
model [28]. A piezoelectric transducer generates electrical displacement due to the mechanical strain,
thereby acting as a voltage source. The only cause of mechanical strain is assumed to be the axial strain
due to bending wave. The governing equations of a unit-cell integrated with transducers connected
with the inductive shunt in the parallel manner, can be written as

m
..
q + c

.
q + kq + k1(Q1 + Q2) = 0 (13a)

L(
..
Q1 +

..
Q2) + R(

.
Q1 +

.
Q2) + 1/C ·Q1 + k1q = 0 (13b)
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where L is the inductance value adopted under the parallel-connection configuration, and R is the
inherent resistance in the circuitry elements. In this parallel-connection, as the piezoelectric transducers
attached to the top and bottom surfaces of the host substrate are identical, the instantaneous charges
on the two transducers are equal, i.e., Q1(t) = Q2(t). To evaluate the unit-cell dynamic characteristics,
harmonic responses are assumed with frequency ω, i.e., q(t) = q0ei(−ωt+ϕ1), Q1(t) = Q0ei(−ωt+ϕ2),
and Q2(t) = Q0ei(−ωt+ϕ3), where ϕ1, ϕ2, and ϕ3 are the phases. For a two-DOF (degree-of-freedom)
unit-cell, governed by Equation (13a,b), the dispersion equation under the undamped condition can be
derived as (

−ω2m + k
)(
−2ω2L + 1/C

)
− 2k2

1 = 0 (14)
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The resonant frequency of the original unit-cell (before the circuitry is integrated) and that of the
LC shunt with parallel connected transducers are denoted as, respectively,

ω2
0 = k/m, (15a)

ω2
LC = 1/(2LC) (15b)

Meanwhile, based on the equations of motion (Equation (13a,b)), which characterize the dynamic
interaction between the host structure and the piezoelectric transducers, an important parameter,
the non-dimensional system-level electro-mechanical coupling coefficient [28], is identified as

k2
e =

k2
1C
k

=

(
−2 Fph31kx

bp lp
sin( kx lb

2
lp
lb
)
)2(

2Eb Ibkx3 sin( kx lb
2 ) + 4Ep Ipkx3 sin( kx lb

2
lp
lb
)
)

β33hp
bp lp

(16)

As indicated in several previous studies concerning piezoelectric transducer-based sensing and
control, this system-level electro-mechanical coupling coefficient reflects quantitatively, the two-way
energy conversion between the mechanical and electrical domains [29]. Larger ke indicates stronger
electro-mechanical coupling, and therefore more effective energy conversion between the mechanical
and the electrical domains through the transducers.

2.3. Piezoelectric Metamaterial with Cavity

First, the role of the electro-mechanical coupling coefficient in the context of piezoelectric
metamaterial, warrants further discussion here. Apparently, according to Equation (16), this non-
dimensional coupling coefficient is primarily related to the transducer material property, h31, i.e.,
the piezoelectric coupling constant at the material-level. It is also related to the piezoelectric capacitance,
the Young’s moduli, the geometry of the substrate and the transducers, and the wavenumber involved.
It can be increased with the integration of a negative capacitance element or negative stiffness effect [28].
These indicate that there is potential to increase the system-level electro-mechanical coupling through,
either unit-cell material/geometry tailoring and/or circuit design. In this research, the material
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properties of the transducer and the host structure are kept unchanged. The circuit configuration
also remains unchanged. In conventional piezoelectric metamaterial, a significant portion of the
energy of the acoustic wave is stored in the mechanical stiffness of the structure, including both the
host structure and the piezoelectric transducers, and is not converted into electrical energy due to
the limited electro-mechanical coupling coefficient. Subsequently, only a small portion of acoustic
wave energy can be transferred into electrical energy, which creates reactive force to affect the wave
propagation. As a result, the wave manipulation capability of the system is very limited, reflected by
the relatively narrow width of the bandgap.

Based on the fundamental modeling and the abovementioned qualitative analysis, in this research,
the design enhancement of piezoelectric metamaterial by geometry tailoring is explored. Specifically,
it is proposed to introduce a cavity in the host structure substrate of each unit-cell, as shown in
Figure 3a,b. Our hypothesis is that the cavity can effectively reduce the unit-cell stiffness, and hence
increase the portion of energy that is converted into electrical energy through the piezoelectric effect
when the substrate is subjected to wave motion. Consequently, the reactive force from LC resonance
would be increased, and the wave attenuation effect and the bandgap width would be enhanced.
In such a case, the lumped parameter mass and stiffness of the unit-cell system are modified as:

mc =
2 sin( kx lb

2 )

kxlb
ρb(hbbblb − hcbclc) +

2 sin( kx lb
2

lp
lb
)

kxlb
2ρphpbplb (17a)

kc = 2Eb(Ib − Icav)kx
3 sin(

kxlb
2

) + 4Ep Ipkx
3 sin(

kxlb
2

lp

lb
) (17b)

where hc, bc, and lc are the height, width, and length of the cavity introduced, respectively, and Icav

represents the moment of inertia of the cavity volume.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 17 
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Figure 3. (a) Unit-cell with cavity; (b) Configuration of the piezoelectric metamaterial and the
coordinate system.

With the introduction of the cavity, the resonant frequency of the unit-cell (before the circuitry is
integrated), then becomes

ω2
0c =

kc

mc
(18)
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The system-level electro-mechanical coupling with substrate cavity takes the form

k2
ec =

k2
1C
kc

=

(
−2 Fph31kx

bp lp
sin( kx lb

2
lp
lb
)
)2(

2Eb(Ib − Icav)kx3 sin( kx lb
2 ) + 4Ep Ipkx3 sin( kx lb

2
lp
lb
)
)

β33hp
bp lp

(19)

The dispersion equation can be re-written as(
− ω2

ω2
0c

+ 1

)(
− ω2

ω2
LC

+ 1

)
− 2k2

ec = 0 (20)

Recall that the local LC resonant frequency (ω2
LC) is usually much smaller than the Bragg scattering

frequencies. From Equation (20) it can be observed that, fundamentally, the dispersion relation is
decided by both the circuit resonant frequency and the system level electro-mechanical coupling
coefficient. The solutions to the dispersion equation under the parallel-connection configuration, can
be easily obtained as

ω1,2 =

√
2

2

√
ω2

0c + ω2
LC ∓

√
(ω2

0 −ω2
LC)

2
+ 8k2

ecω2
0ω2

LC (21)

Consider that the frequency of LC resonance is a chosen value to fit specific design requirements.
The bandgap width of the piezoelectric metamaterial fundamentally hinges upon the term k2

ec in
Equation (21). Choosing piezoelectric transducers with a larger coupling constant k1, e.g., piezoelectric
single crystal (e.g., PMN-PT), may certainly help in the improvement of bandgap characteristics,
but this type of material costs much more than piezoelectric ceramic. Many studies employ a negative
capacitance element integrated to the piezoelectric transducer, to reduce the equivalent local stiffness
of a unit-cell [38], thereby tuning the location of bandgap or influencing its bandwidth. Introducing a
cavity in the substrate can mechanically reduce the stiffness of the unit-cell and broaden the bandgap
width of the metamaterial, as qualitatively indicated in Equation (21). It should be noted that in
practice the cavity geometry does not have to be rectangular in shape. In fact, owing to the rapid
advancement of additive manufacturing technology, in future one may create complex shapes of cavity
to fit the specific applications, and even perform topology/shape optimization.

3. Case Analyses and Discussions

In this section, systematic parametric analyses of the piezoelectric metamaterial are presented
using the semi-analytical equations derived and finite element simulations. All propagating wave
modes in lattice/periodic structures can be captured by restricting the dimensionless wavenumber
to the first Brillouin zone due to the periodicity. Thus, the dispersion curves are plotted based on
wavenumbers within this zone. COMSOL Multiphysics 5.3 is adopted, which is widely used in
multi-field coupled investigation and piezoelectric metamaterial analysis, to analyze the dispersion
relation and the forced frequency responses of the piezoelectric metamaterial.

The unit-cell is made of aluminum substrate (25.38× 25.38× 3.13 mm3) and two piezoelectric
ceramic transducers (21× 21× 0.55 mm3) bonded onto the center of the top and bottom surfaces of
the substrate. Inductance element is connected to the top and bottom surfaces of the piezoelectric
transducer, as the shunt circuit. The conventional unit-cell of piezoelectric metamaterial has a
solid substrate. In this research, a through-hole cavity is incorporated underneath the substrate
of the unit-cell (Figure 3a). The material parameters are chosen as: piezoelectric mass density
ρp = 7500 kg/m3, piezoelectric Young’s modulus Ep = 65 GPa, piezoelectric constant d31 = −320 pC/N,
dielectric constant β33 = 2.98 × 108 Vm/C, host medium mass density ρb = 2730 kg/m3, and host
medium Young’s modulus Eb = 69 GPa. Without loss of generality, the inductance load for unit-cells
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is given as L = 0.13 H to generate a bandgap around 3250 Hz. In practice, the value of inductance load
can be arbitrarily modified for the creation of bandgap at other frequencies.

3.1. Dispersion Analysis of Unit-Cell with Cavity

The dispersion relation is studied first, with emphasis on cavity effect. The cavity influences the
unit-cell level stiffness and electro-mechanical coupling coefficient. Without loss of generality, a cavity
with constant height of 1 mm and length of 25.38 mm is introduced into the center of the substrate.
The width is considered as a variable. The theoretical stiffness ratio (the ratio of the stiffness of unit-cell
with cavity to that of unit-cell without cavity) and the electro-mechanical coupling coefficient ratio
(the ratio of the electro-mechanical coupling coefficient of unit-cell with cavity to that of unit-cell
without cavity) with respect to the cavity width, are presented in Figure 4. It can be readily observed
that increasing the width of the cavity can effectively reduce the stiffness of the unit-cell, which then
yields a significant increase of the system level electro-mechanical coupling. As indicated in Section 2.3,
one key parameter for piezoelectric metamaterial is the system-level electro-mechanical coupling
coefficient, and the increase of this coupling would yield the improvement of bandgap behavior. It is
still worth mentioning that the stiffness reduction implies a trade-off, with respect to load carrying
capability of the substrate. Therefore, proper selection of the dimension of the cavity is required in
practical applications.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 17 
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The dispersion curves of the unit-cells, with and without cavity, are then plotted for comparison.
One representative example is shown in Figure 5, where a cavity of 25.38× 12× 1 mm3 is incorporated.
These curves are plotted within the first Brillouin zone (0− π), since all propagating wave modes
in periodic structures can be captured by restricting the dimensionless wavenumber to this zone,
due to the periodicity. Finite element analysis is performed for validation. It can be observed that the
integration of the LC shunt circuit in the original, conventional unit-cell, creates a bandgap with a
range between 3229 Hz and 3274 Hz. This yields the bandgap width of 45 Hz. In comparison, the one
with cavity integration has a bandgap width of 67 Hz (from 3202 to 3269 Hz). The theoretical bandgap
widths are 48 Hz and 61 Hz, respectively, for the conventional piezoelectric metamaterial beam and
the metamaterial beam with cavity. The percentages of deviation are 6.7% and 9.8%, respectively.
The deviation stems from the fact that the finite element simulation is performed in the usual
three-dimensional space, and yields more detailed displacement distribution. Fundamentally, as wave



Appl. Sci. 2018, 8, 1606 10 of 16

propagates through the piezoelectric metamaterial, each unit-cell experiences a local deformation,
which then yields energy conversion from the mechanical domain to the electrical domain through the
direct piezoelectric effect. Meanwhile, the charge flow in the LC shunt induces the reverse piezoelectric
effect, which converts electrical energy back to mechanical energy, i.e., creating a reactive force to the
unit-cell to affect the wave propagation characteristics. The two-way energy conversion efficiency
is determined by the system-level electro-mechanical coefficient, which is exactly analogous to the
mass ratio [18] in conventional metamaterial employing local mechanical resonator in the unit-cell.
The reduction of the local stiffness of the unit-cell through cavity introduction, can effectively increase
the electro-mechanical coupling coefficient and broaden the bandgap width.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 17 
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3.2. Effect of Cavity on Bandgap Characteristics

In this section, the parametric influence of the size of the cavity to bandgap width is investigated.
Here cavities are incorporated with constant heights of 1 mm and 2 mm, respectively, and with constant
length of 25.38 mm. The boundaries and the width of the bandgap under cavities with various widths,
are then plotted in Figures 6 and 7. These results are obtained through finite element analysis.
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Figure 6 shows the frequency boundaries and the width of the bandgap. All the cavities have
constant height of 1 mm and constant length of 25.38 mm. It can be observed that in these results
all bandgaps are created in the vicinity of 3200 Hz, although the stiffness of the unit-cell has been
significantly reduced. This is because the location of the bandgap is primarily determined by the
frequency of the LC resonance. With the increase of the width of the cavity, the location of the
bandgap shifts to a lower frequency range. This can be attributed to the fact that local stiffness of the
unit-cell also affects the local resonant bandgap, as indicated in Equation (21). The relation between
the bandgap width and the width of the cavity, is illustrated in Figure 6b. It can be observed that,
by increasing the width of the cavity, the bandgap width of the piezoelectric metamaterial can be
continuously increased. The reason is that, increasing the size of cavity increases the system-level
electro-mechanical coupling coefficient. It is worth noting that the piezoelectric metamaterial with
a cavity width of 24 mm, has bandgap expanded from 45 Hz to 126.7 Hz. Moreover, the proposed
mechanism for broadening bandgap width of piezoelectric metamaterial does not preclude the
utilization of piezoelectric transducers with larger coupling constant or negative capacitance circuitry
integration. The bandgap width of the piezoelectric metamaterial can be further expanded by methods
proposed previously.

Similarly, Figure 7 illustrates the frequency boundaries and the bandgap width of the unit-cell,
where the cavity introduced has height of 2 mm. The results generally resemble those shown in
Figure 6, i.e., the introduction of cavity underneath the substrate, can effectively increase the bandgap
width. However, it is worth mentioning that in this case, the bandgap width decreases dramatically
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when the width of the cavity is increased to 22.8 mm. The shrinking of bandgap width is attributed
to the fact that the mode of the unit-cell becomes uneven, i.e., the assumptions of displacements in
Equation (10a,b) no longer hold. The non-sinusoidal mode of the unit-cell reduces the system level
electro-mechanical coupling coefficient, and therefore reduces bandgap width.

3.3. Transmission Analysis

In this section, transmissions of the piezoelectric metamaterial beam through finite element
analysis are presented. Here a piezoelectric metamaterial beam consisting of 12 unit-cells arranged in
series is considered (Figure 3b). For simplicity and without loss of generality, the excitation is applied
at the left end of the metamaterial beam. The displacement distributions and the forced responses
at the right free-end are computed. The dispersion relations are obtained through the displacement
distributions of the metamaterial beam by using Fournier transform [25,39],

W(kx) =
1
2l

∫
l
w(x)e−ikx xdx (22)

where kx is the wavenumber and w(x) is the distribution of displacement in the longitude direction of
the beam.

Plotted in Figure 8, are the transmission diagrams and the dispersion curves of the conventional
metamaterial beam and the one with 25.38× 12× 1 mm3 cavity incorporated. It can be observed that
the bandgaps yielded strong wave attenuation effects in both cases. The piezoelectric metamaterial
beam with cavity showed a broader frequency range of wave attenuation. Moreover, the relationship
of the bandgap range and the wave attenuation range can be readily observed. Different from that
shown by [33], where the frequency range of wave attenuation fully overlapped with the frequency
range of bandgap, in this research, significant wave attenuation could be observed outside the bandgap
range. For example, wave attenuation occurred between 3195 Hz and 3202 Hz, for the metamaterial
beam with cavity. This phenomenon is attributed to the strong resonating (i.e., multiple peaks) near
the bandgap, and the corresponding damping from the resonance motion of local resonator.
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Further case studies are carried out to illustrate the influence of the dimension of the cavity
to transmissions. Three cavities with the same length (25.38 mm) and height (1 mm), but different
widths, 6 mm, 12 mm, and 18 mm, were analyzed. Figure 9 plots correspondingly, three transmission
diagrams. It can be readily observed that increasing the width of the cavity can effectively increase the
bandgap width. With the cavities, the bandgap widths were 51 Hz, 67 Hz, and 89 Hz, respectively.
The transmission diagrams shown in Figure 9, further confirm that incorporating cavity can improve
the bandgap behavior.
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Finally, it is worth noticing that the introduction of cavity does not preclude the optimal
arrangement of circuitry elements. For example, tunable negative capacitance elements have been
employed in piezoelectric metamaterial synthesis, where the negative capacitance is realized through a
negative impedance converter (NIC) [38]. A negative capacitance element can cancel out the inherence
impedance of the piezoelectric transducer. Equivalently speaking, a negative capacitance element
can reduce the system-level stiffness of the unit-cell. This integration can certainly be implanted
in combination with the mechanical cavity concept studied in this research. In the past, tunable
inductances based on op-amp circuit design have also been employed in vibration control and sensor
development [28], as well as in metamaterial synthesis [23]. Integrating tunable inductance with the
piezoelectric metamaterial studied in this research, will result in adaptiveness.

4. Conclusions

In this research, acoustic metamaterial consisting of piezoelectric transducers integrated to
host substrate with inductive circuits was studied. A lumped-parameter, semi-analytical model
of piezoelectric metamaterial was formulated based on continuum mechanics characterization.
The equivalent unit-cell mass, stiffness, and electro-mechanical coupling parameter were derived,
which were wavenumber-dependent. The role of the system-level electro-mechanical coupling was
identified and analyzed in detail. While the frequency range of the bandgap is determined by
the LC circuit resonant frequency, the bandwidth of the bandgap is primarily determined by the
electro-mechanical coupling. Then, a method for bandwidth broadening through incorporating
cavity in the substrate of the unit-cell was presented. Fundamentally, the cavity introduced could
increase the system-level electro-mechanical coupling, thereby benefiting the bandgap behavior. It
was demonstrated that the bandgap width of the piezoelectric metamaterial could be expanded from
45 Hz to 126.7 Hz. The analytical formulation and cavity synthesis can be used to guide the design
optimization of the piezoelectric metamaterial.
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Appendix Derivations of Lumped Parameters in Unit-Cell Equations of Motion

Equation (10a,b) can be re-written as

w(x, t) = eikx x · qe−iωt, D(x, t) = eikx x · De−iωt (A1)

The lumped mechanical and electrical displacements of the unit-cell are denoted as, respectively

q(t) = qe−iωt, (A2a)

D(t) = De−iωt (A2b)

Recall Equation (9a,b). Correspondingly, the partial differential equations that govern the unit-cell
dynamics can now be written as(

ρb Ab + 2ρp Ap

[
H(x +

lp
2 )− H(x− lp

2 )
])

eikx x · ..
q(t)

+(Eb Ib + Ep Ip)
d4eikx x

dx4 · q(t)− 2Fph31
d2eikx x

dx2

[
H(x +

lp
2 )− H(x− lp

2 )
]
· D(t) = Wc(x, t)

(A3a)

Fph31

[
H(x +

lp

2
)− H(x−

lp

2
)

]
d2eikx x

dx2 · q(t) + β33 Apeikx x · D(t) = Ws(x, t) (A3b)

The above two equations can be written in the forms of Equation (11a–c). Here we have two
piezoelectric transducers in one unit-cell, and therefore we have two transducer equations. The
coefficients in the lumped-parameter dynamic model are given as

m =
∫ lb/2

−lb/2

(
ρb Ab + 2ρp Ap

[
H(x +

lp

2
)− H(x−

lp

2
)

])
eikx xdx (A4a)

k =
∫ lb/2

−lb/2

(
Eb Ib + Ep Ip

)d4eikx x

dx4 dx (A4b)

k1 =
∫ lb/2

−lb/2

(
−2Fph31D′′

[
H(x +

lp

2
)− H(x−

lp

2
)

])
d2eikx x

dx2 dx (A4c)

C =
bplp

β33hp
(A4d)

After integrations, the coefficients shown in Equations are obtained Equation (12a–d).
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