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Abstract: Facility layout problem (FLP) is one of the hottest research areas in industrial engineering. 

A good facility layout can achieve efficient production management, improve production efficiency, 

and create high economic values. Because FLP is an NP-hard problem, meaning it is impossible to 

find the optimal solution when problem becomes sufficiently large, various evolutionary algorithms 

(EAs) have been proposed to find a sub-optimal solution within a reasonable time interval. Recently, 

a genetic algorithm (GA) was proposed for unequal area FLP (UA-FLP), where the areas of facilities 

are not identical. More precisely, the GA is an island model based, which is called IMGA. Since EAs 

are still very time consuming, many efforts have been devoted to how to parallelize various EAs 

including IMGA. In recent work, Steffen and Dietmar proposed how to parallelize island models of 

EAs. However, their parallelization approaches are preliminary because they focused mainly on 

comparing the performances between different parallel architectures. In addition, they used one 

mathematical function to model the problem. To further investigate on how to parallelize the IMGA 

by GPU, in this paper we propose multiple parallel algorithms, for each individual step in the IMGA 

when solving the industrial engineering problem, UA-FLP, and conduct experiments to compare 

their performances. After integrating better algorithms for all steps into the IMGA, our GPU 

implementation outperforms the CPU counterpart and the best speedup can be as high as 84. 

Keywords: unequal area facility layout problem; parallel computing; island model; genetic 

algorithm; GPU 

 

1. Introduction 

In manufacturing industries, facility layout problems (FLP) are one of the most important issues 

among the various aspects of manufacturing system management. FLPs have a significant impact 

upon manufacturing costs, lead times, work processes and productivity [1]. The suitable placement 

of facilities contributes to reduction of the total operating costs by 20% to 50% [2]. Based on shapes 

and dimensions, FLPs can be divided into different categories. Among them, unequal area FLP (UA-

FLP) has been attracting attention of many researchers because it has been applied to many fields 

such as industrial facility design, warehouse organization, school facility layout, and VLSI element 

placement [3,4]. 
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In most studies, the main goal for UA-FLP is to obtain the minimal operating costs [5]. However, 

UA-FLP has been proven to be an NP-hard combinatorial optimization problem. That is, when the 

number of facilities is increased, the computational time is exponentially increased [6]. As a sequence, 

during the last decades more and more research has proposed various metaheuristic approaches to 

solve UA-FLP by finding the approximate optimal solution in finite time [7–12]. Among them, the 

most popular and widely used research is genetic algorithm (GA). 

GA, proposed by Holland [13] and DeJong [14], is based on Darwin’s principles of natural 

selection and divergence [15]. GA is a global search algorithm, which has typical applications in 

different fields to solve optimization problems [16–20]. For instance, recently GA has been proven for 

its effectiveness in enhancing the opportunity to achieve a global optimal solution without falling 

into the local optimal solution to UA-FLP [11,12]. However, approaches based on standard GAs 

usually have premature convergence, which means a population for an optimization problem 

converged too early to get optimal solution. Moreover, all the individuals in a population should be 

selected, evaluated, crossed, and mutated in each generation, which requires a long CPU execution 

time [21]. 

Many models of parallel GAs have been proposed to shorten the computation time in the 

literature. Two categories of parallel GAs are island model and global parallelization [22]. In recent 

work, Steffen Limmer et al. [22] compared four parallel architectures including multi-core CPUs, 

clusters, grids, and graphic process units (GPUs) for the execution of the two models of the genetic 

algorithms. In this study, we pay close attention to how to use GPU to parallelize island model of 

genetic algorithm (IMGA). 

Nowadays, modern GPUs have evolved into very powerful and flexible processors. Especially 

after CUDA (compute unified device architecture) platform were distributed, developing highly 

parallel GPU applications becomes much easier. GPUs are very well to address general problems that 

are suitable for data-parallel computations, including GA [23–25]. The IMGA, a parallel genetic 

algorithm model, can fully explore the computing power by either coarse or fine-grained parallelisms. 

It is worthwhile to study how to parallelize IMGA on GPUs to solve real-world optimization 

problems. Nevertheless, only few works have discussed this issue before. N. Melab and E. G. Talbi 

[26] proposed three different general schemes for building efficient island models for GA on GPU. 

Their experiments indicated that GPU computing can not only speed up the search process, but also 

exploit parallelism to improve the quality of the obtained solutions. The authors strongly believed 

that the schemes of the fully distributed island model on GPU could be easily extended to large scale 

optimization problems. Steffen and Dietmar [22] discussed the island model and global 

parallelization for evolutionary algorithm in detail. The methods of IMGA on GPU are based on the 

work reported in the work [26], and a common Weirerstrass function is used to compare the 

performances between GPU and CPU. However, their parallelization approaches are preliminary 

because they focused mainly on comparing the performances between different parallel architectures. 

In addition, they used one mathematical function to model the problem. 

In this paper, we further investigate how to parallelize the IMGA by GPU. We propose multiple 

parallel algorithms, for each individual step in the IMGA when solving UA-FLP, and conduct 

experiments to compare their performances. To the best of our knowledge, no previous work has 

considered using GPU parallelization to solve UA-FLP. Through comparing the different parallel 

schemes at each step in the IMGA, the better ones were integrated as an entire program of IMGA. 

According to our experimental results of IMGA, our GPU implementation outperforms the CPU 

counterpart and the best speedup can be as high as 84. 

The paper is organized as follows. Section 2 introduces the related work, including introduction 

to CUDA GPUs, IMGAs, and UA-FLPs. Section 3 presents our multiple parallel strategies for the 

main steps of IMGA on a GPU. Through theoretical analysis and experimental comparison of these 

parallel methods for each step, the better ones are integrated into our IMGA. Moreover, the overall 

performance of the algorithm on the GPU and CPU is compared through experiments. Finally, 

conclusions are given in Section 4. 

2. Related Work 
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In industry, data processing is one of the most important technologies—especially when the 

paradigm of “manufacturing as an ecosystem” has emerged. Modern information and 

communication technologies such as big data analytics and cloud computing [27,28] can provide 

useful insight to the industry to increase productivity, quality, and agility benefits, which have 

significance competitive value. For a long time, the industry has been looking for efficient algorithms 

to solve UA-FLPs, which are typical NP-hard problems. That is, their solution space is characterized 

by rapid expansion as the scale of the problem increases. The use of mathematical programming 

methods to solve large-scale and complex problems is difficult to achieve satisfactory results. People 

are more inclined to seek heuristic algorithms, for example GA, that find acceptable approximate 

solutions in a limited time. However, the standard GAs also require a long CPU execution time, so 

many parallel architectures are proposed. The parallel architectures, such as multi-core CPU, grid, 

clusters, and GPUs are widely used in many fields [27–29]. Steffen Limmer et al. [22] mainly compare 

these four architectures for IMGA to solve a mathematic function. In this work, we emphasize using 

GPU to solve IMGA for UA-FLP. In this section, the related work is surveyed, including CUDA GPUs, 

IMGAs, and UA-FLPs. 

2.1. CUDA GPU 

During the last few years, the capability of GPU is growing much faster than that of CPU’s 

because of greatly increasing hardware requirement for modern computer games. The GPU is also 

rapidly and widely used for various scientific computations in addition to graphic display [30], such 

as fluid dynamics [31], biophysics [32], molecular dynamics [33], and IoT sensing [34]. GPUs can 

provide huge performance improvement than a single CPU core for many applications. For instance, 

the work in the CFD field [31] has shown speed-up values of a single GPU against a single core CPU 

larger than 100. ‘General-purpose computing on graphics processing unit’ (GPGPU) was thus coined 

[35]. 

On a GPU-chip, there are multiple cores called streaming-multiprocessors (SMs), and each SM 

has several streaming processors (SPs). Each SP of an SM executes the same instruction on different 

data during each cycle. Since 2007, NIVDIA has distributed CUDA as a platform to develop on GPU. 

Along with the introduction of CUDA platform, a rapid increase of scientists paid more attention to 

GPU because CUDA makes programmers easier work. A CUDA program can be executed on the 

host (CPU) and on a device (GPU). Sequential codes run on the CPU, while the parallel codes are 

offloaded to the GPU, called a ‘kernel’. If a kernel is invoked, blocks with the grid are distributed to 

the SM. The kernel can launch up a large number of threads to exploit data parallelism. The warps 

containing 32 threads in each of the blocks exhibit single instruction multiple data (SIMD) execution. 

All threads within a warp must execute the same instructions at any given time. Data-dependent 

branch causes different threads in the same warp to follow different paths, known as branch 

divergence [36]. Branch divergence has a significant impact on the performance of GPU. CUDA GPU 

owns many memories—including global memory, shared memory, constant memory, local memory, 

and registers—to achieve high execution speed in their kernel. Different types of memory are 

differing in sizes, access scopes, access times, and whether it is read-only or cached. In brief, GPUs 

are now becoming the most suitable processor for implementing algorithms with simple and large 

amount of computations [30]. 

2.2. IMGA 

IMGA is one of the most promising variant among the parallelized models of GA. The model 

uses the advantage of parallel computing by dividing population of a large size into smaller partitions, 

distributing them into different islands to perform simultaneous random searches, and exchanging 

the individuals through a migration operator. The IMGA model is possible to explore different 

regions of the search space, so as to improve issues of premature convergence or convergence to local 

optimal solutions in the standard GA using a single large population. In the latest literature, an IMGA 

for UA-FLP was proposed by J. M. Palomo-Romero et al. [21]. This is the first time to propose a 

parallel GA based on the island model to solve UA-FLP using the flexible bay structure (FBS) 
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formulation. In their proposed approach, each island is assigned with a part of population for local 

evolution, and several chromosomes of high quality will migrate from one island to another after a 

few generations. The experiments were conducted on a total of 26 benchmarks of UA-FLP, and the 

results were compared with the best results found in the literature. The method can improve search 

quality, obtain better solutions, provide greater population diversity, and reduce the number of 

evaluations required to find good solutions. Moreover, the execution times of the algorithm were 

similar to, or lower than, the execution times of the previous approaches in all cases. Nevertheless, 

the IMGA method still requires long execution time, which is why the authors pointed an interesting 

future work in their paper, i.e., parallelizing IMGA. Parallelizing IMGA on GPU is helpful to reduce 

the execution time in searching for good solutions especially for large-scale problems and further 

solving the issues of local optimal solutions. In our study, we propose multiple parallel algorithms 

to implement each step of IMGA and compare the performance ratios between them. The better 

methods for all steps are integrated into our parallel optimized model for UA-FLP on GPU, which 

are described in the following section. 

2.3. UA-FLP 

The UA-FLP was originally formulated by Armour and Buffa [37]. It considered on the 

assumptions that there is a given rectangular region, and there are a set of facilities needed to be 

placed into the region. The fixed dimensions of the rectangular region are ( ) ( )W width H height , and 

each of the rectangular facilities occupies a specified area (
iB ). The constraints of the problem include 

the sum of the facility areas must be less than or equal to the fixed rectangular region (see Equation 

(1)) and the facilities cannot overlap. The objective function, or the fitness function in our study, is on 

basis of total material handling cost (MFC) between facilities [38], which is presented in Equation (2). 

1

p

i

i

B W H
=

   (1) 

inf

1 1,

min ( , ) ( , ) ( ) ( )
p p

k

feas all

i j i j

MFC f i j d i j D V V
= = 

= + −   , 1, 2,...,i j p= , (2) 

where: 

p =  the number of facilities; 

( , )f i j =  the total flow of moving materials between facility i  and j , where , 1, 2,...,i j p= ; 

( , )d i j =  the weighted rectilinear distance between facilities i  and j , where , 1, 2,...,i j p= ; 

infD  = the number of infeasible departments; 

feasV  = the best feasible objective function value yet found; 

allV  = the best overall objective function value yet found; 

k  = the parameter for adjusting the “severity”, which was set to 3k =  [39]. 

The calculation of distance between facilities can be Euclidean (Equation (3)) or rectilinear 

(Equation (4)), where the point defined by x  and y  is the center of the facility 

2 2( , ) ( ) ( )j i i jd i j x x y y= − + −   (3) 

( , ) | | | |i j i jd i j x x y y= − + −  (4) 

The FBS in our UA-FLP consists of two parts: the facility sequence codes and the bay division 

codes. The former encodes the order of p  facilities represented by integer numbers which will be 

placed into the fixed rectangular area. The order of the facilities, named ‘facility sequence’, is 

organized bay by bay from top to bottom and from left to right. The latter encodes the bay divisions 

which have ( 1p − ) binary elements in the area, each facility is associated with one element except 

the first one. A value of 1 indicates that the corresponding facility is the last facility in the present bay, 
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while 0 means the facility and its previous one are in the same bay. We take an example to detail the 

encoding method of FSB. 

Assume there are seven facilities in a UA-FLP. The facility layout problem is to minimize the 

overall cost by determining how many bays are required, which facilities are assigned to which bays, 

what kind of ordering is adopted for placing the facilities in each bay. For instance, one solution is 

illustrated in Figure 1. 

 

Figure 1. An example of unequal sized facility layout. 

There are four bays in this example: Bay 1, Bay 2, Bay 3, and Bay 4. Each bay contains one or 

more facilities. For instance, Bay 1 contains two facilities, F and C, while Bay 2 contains only one 

facility, A. To represent the layout shown in Figure 1 by using FSB encoding, two arrays are required, 

as shown in Figure 2. The first array, facility sequence, describes the ordering of the facilities from 

top to bottom and from left to right in the layout. The second array, bay divisions, indicates whether 

the corresponding facility is the last one in one bay or not. Since the top left facility is F, it is the first 

one placed into the two arrays, as shown the first step in Figure 2. Moreover, because it is not the last 

one in the first bay, the corresponding element is set to 0. That is, the first element in the array of bay 

divisions is set to 0. Next, the second facility, C, is inserted into the arrays because it is in Bay 1 and 

below Facility F, as shown in Step 2 in Figure 2. Since it is the last one in Bay 1, its value in the second 

element in the array of bay division is set to 1. At Step 3, we move to Facility A in Bay 2. Because 

Facility A is also the last one in Bay 2, the third element in Bay Divisions is set to 1. Totally, seven 

steps are needed for processing seven facilities. Note that the seventh element in the bay divisions 

array is omitted because Facility E is the last one in the facility sequence. 

 

Figure 2. Steps of FBS encoding for the facility layout shown in Figure 1. 

3. Our Parallel Strategies 

In this section, our parallel strategies for the main steps of IMGA are proposed in detail. Section 

3.1 illustrates the overall structure of our parallel IMGA on GPU, and introduces our experimental 

environment. Sections 3.2–3.5 explain the multiple parallel strategies for initialization, selection, 

mutation, and migration of IMGA on GPU, respectively, and compare the performance ratio between 

the multiple parallel versions. Section 3.6 is the comparison of the performance executed on GPU 

with that on CPU counterpart after integrating the better parallel strategies. 
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3.1. Parallel IMGA on GPU 

The sequential IMGA consists of the following processes [21]. (1) n individuals as the initial 

population is randomly generated and distributed into N islands randomly. (2) All newly-generated 

individuals should be evaluated fitness values by the objective function. The processes of next 

procedures from (3) to (7) are performed sequentially on each island, which repeat c times to produce 

the best individuals. (3) The best individuals are selected for recombination to the subpopulation with 

selection operators. (4) Two individuals are recombined randomly using crossover operators. (5) 

Mutation operators should be conducted for avoiding local solutions for maintaining genetic 

diversity. (6) The fitness values of modified individuals are updated. The population for the next 

generation is generated and takes place of the parents. (7) Individuals between the islands are 

migrated after g generations. 

Figure 3 illustrates the structure of our parallel IMGA on GPU. The main implementation 

structure is shown in Figure 3a. There are N islands organized as ring topology, which have n/N 

chromosomes on each of them. The entire algorithm is executed on GPU with one block per island. 

The total population of individuals is stored in global memory which is the largest in terms of size. 

For each block, a group of threads execute standard GA in parallel. Figure 3b gives an illustration of 

one particular island on GPU. Threads on each block are responsible for executing the procedures of 

IMGA including initialization, evaluation, selection, crossover, mutation, replacement, and migration 

operators. Regarding the migration, communications are carried out through the global memory 

which stores global population, resulting in each island being able to communicate with each other 

according to our ring topology. 

 

 
(a) (b) 

Figure 3. The structure of our parallel IMGA on GPU. (a) Description of the main implementation 

structure. (b) Implementation of one particular island on GPU. 

In our CUDA GPU programming, one-dimensional array of blocks and threads is used in the 

application of UA-FLP. The program starts on the host, i.e., a CPU core. Parallel computations are 

conducted on the device—i.e., a GPU—where the kernel functions are used to do the parallel 

executions. The main kernel functions in our program are generation of facility sequence, generation 

of facility bay divisions, fitness calculation, selection, crossover, mutation, and migration. In the 

following subsections, we select the main operations to illustrate our GPU solutions to parallelize 

IMGA for UA-FLP. In the previous work [22], for each step of IMGA, only one method is used to 

implement the parallelization. In our implementation, multiple parallelized schemes are proposed to 

improve the main operations. After comparing these schemes for each step, the methods with better 
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performances are determined. In the following subsections, we explain our multiple implementations 

for the main steps in detail. 

We adopt NVIDIA GeForce GTX 980 [40] to evaluate our GPU version of IMGA. The workstation 

mainly consists of Intel Xeon CPU E5-2609 v3 with 16GB memory and GXT980 with 4GB memory. 

Detailed configurations are shown in Table 1. Our GPU and CPU versions are written in C, and the 

operating system installed is Linux and its version is Ubuntu 14.04 64-bit. We use CUDA version 7.0 

to implement the GPU algorithms. In the experiments, for comparison with the performance of the 

different versions, we adopt performance ratio between the multiple methods for measurement 

Table 1. Configuration of workstation 

Intel Xeon CPU E5-2609 v3 GTX 980 

Number of Cores 6 Number of GPUs 1 

Number of Threads 6 Thread Processors 2048 

Clock Speed 1.9 GHZ Clock Speed 1127 MHZ 

Memory Size 16 GB Memory Size 4 GB 

Memory Type DDR4 Memory Type GDDR5 

Our proposed algorithms are tested using 26 well-known problem sets taken from the literature 

[21] as shown in Table 2. For testing larger scale facilities, we have added 8 problem data sets. Table 

3 shows the information about our added problem data sets. In Tables 2 and 3, number of facilities, 

facility size ( width length ), shape constraint (  is the maximum aspect radio constraint, and 
minl  

is the minimum side length constraint, and distance measure (Euclidean or rectilinear) are illustrated 

in detail. Note that the number in the suffix of each data set name conventionally indicates how many 

the facilities the data set contains. For instance, VC10E-a has 10 facilities and F40 has 40 facilities. 

Some parameters are needed for our IMGA such as total population size (n), number of islands 

(N), cycle generation (c), migration rate (m), migration frequency (g), crossover probability (pc), and 

mutation probability (pm). We also tested empirically to determine the better fit parameters when 

developing our programs. In the following experiments, the settings of important parameters are 

listed in Table 4, and we have executed five times for each data set to calculate its average execution 

time and solution quality. 

In the following subsections, all the tests are based on 15 islands and 500 individuals per island, 

and we choose the typical examples of different number of facilities in the benchmark to conduct the 

experiments. The kernel configuration is shown in Table 5, which indicates the number of blocks (B) 

and the number of threads per block (T) used for each kernel function. 
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Table 2. The 26 well-known problem data sets 

No. Problem Data Set 
Number of 

Facilities 

Facility Size Common Shape 

Constraint 

Distance 

Measure Width Length 

1 O7 7 8.54 13.00 α = 4 Rectilinear 

2 O8 8 11.31 13.00 α = 4 Rectilinear 

3 O9 9 12.00 13.00 α = 4 Rectilinear 

4 VC10E-a 10 25.00 51.00 α = 5 Euclidean 

5 VC10E-s 10 25.00 51.00 lmin = 5 Euclidean 

6 VC10R-a 10 25.00 51.00 α = 5 Rectilinear 

7 VC10R-s 10 25.00 51.00 lmin = 5 Rectilinear 

8 Ba12 12 6.00 10.00 lmin = 1 Rectilinear 

9 Ba12TS 12 6.00 10.00 lmin = 1 Rectilinear 

10 MB12 12 6.00 8.00 α = 4 Rectilinear 

11 Ba14 14 7.00 9.00 lmin = 1 Rectilinear 

12 Ba14TS 14 7.00 9.00 lmin = 1 Rectilinear 

13 AB20-ar1000 20 2.00 3.00 α = 1000 Rectilinear 

14 AB20-ar50 20 2.00  3.00 α = 50 Rectilinear 

15 AB20-ar25 20 2.00 3.00 α = 25 Rectilinear 

16 AB20-ar15 20 2.00 3.00 α = 15 Rectilinear 

17 AB20-ar10 20 2.00 3.00 α = 10 Rectilinear 

18 AB20-ar7 20 2.00 3.00 α = 7 Rectilinear 

19 AB20-ar5 20 2.00 3.00 α = 5 Rectilinear 

20 AB20-ar4 20 2.00 3.00 α = 4 Rectilinear 

21 AB20-ar3 20 2.00 3.00 α = 3 Rectilinear 

22 AB20-ar2 20 2.00 3.00 α = 2 Rectilinear 

23 AB20-ar175 20 2.00 3.00 α = 1.75 Rectilinear 

24 AB20-ar170667 20 2.00 3.00 α = 1.70667 Rectilinear 

25 SC30 30 12.00 15.00 α = 5 Rectilinear 

26 SC35 35 15.00 16.00 α = 4 Rectilinear 

Table 3. Our added data of test problem sets. 

No. Problem Data Set 
Number of 

Facilities 

Facility Size Common Shape 

Constraint 

Distance 

Measure Width Length 

1 F40 40 35.00 35.00 α = 1000 Rectilinear 

2 F45 45 35.00 35.00 α = 1000 Rectilinear 

3 F50 50 35.00 35.00 α = 1000 Rectilinear 

4 F55 55 45.00 45.00 α = 1000 Rectilinear 

5 F60 60 45.00 45.00 α = 1000 Rectilinear 

6 F65 65 45.00 45.00 α = 1000 Rectilinear 

7 F70 70 45.00 45.00 α = 1000 Rectilinear 

8 F75 75 45.00 45.00 α = 1000 Rectilinear 
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Table 4. Settings of the parameters in our program 

Parameter Value 

Total population size per island (n/N) 500 

Number of islands (N) 15 

Cycle generations (c) 70 

Migration rate (m) 5 

Migration frequency (g) 15 

Crossover probability (pc) 0.7 

Mutation probability (pm) 0.01 

Table 5. Configuration of each kernel function 

Kernel Function Number of Blocks (B) 
Number of Threads per 

Block (T) 

Parallel facility sequences generation 15 500 

Parallel bay divisions generation 15 500 

Parallel roulette wheel selection  15 500 

Parallel mutation operator 15 500 

Parallel migration operator 15 5*β 1 
1 The β is equal to 1 when one thread is used to migrate one chromosome; and the β is equal to the 

number of genes per chromosome when one thread is used to migrate one gene. 

3.2. Parallel Initialization on GPU 

In data initialization, random numbers are used to generate the initial content of each individual. 

In our case of UA-FLP, because the FBS is used to encode our facility layout, initialization of facilities 

consists of two parts: generations of facility sequence and bay divisions, which will be detailed below. 

3.2.1. Facility Sequence Generation 

To generate facility sequences randomly, the conventional method (INI_FS1) is usually adopted, 

i.e., if there are p facilities, p random numbers are generated and any two numbers cannot be identical. 

An example to illustrate INI_FS1 is shown in Figure 4. Assume there are seven facilities, and they are 

represented by letters, A to G, respectively. Actually, each letter is associated with a code, e.g., 1 to 7 

for A to G. Initially, we need a facility sequence to generate different facility sequences from it, which 

is called the seed facility sequence. The seed facility sequence is set according to alphabetical order, 

as shown on the left side of Figure 4. To generate a new individual of the facility sequence, Step 1 is 

to produce one random integer number, 5 in this example. Then at Step 2, the second random integer 

number, 3, is produced. In order to avoid generating two identical facilities, we have to compare the 

newly generated facility with all previous ones at every step. Therefore, at Step 2, the second number, 

3, is compared with the first number, 5, and we conclude that 3 can be kept. Next, at Step 3 the number 

5 is produced, however, it is identical to the first number in the sequence. Therefore, the newly 

generated facility with number 5 should be abandoned and regeneration of the third number is 

required. At Step 4, the code number 4 is randomly produced, which can be accepted through 

comparing it with the preceding numbers. Repetition of random number generation and duplication 

avoidance like above steps, finally a new facility sequence is generated, as shown on the right-hand 

side of Figure 4. In this method, a large number of comparisons are required, making the complexity 

of the algorithm equal to O(p2). Therefore, our improved method (INI_FS2) is proposed below to 

eliminate comparisons and also to avoid regeneration of random numbers for the same array element.  
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Figure 4. An example of the INI_FS1 method. 

The main idea of INI_FS2 method is to get a new facility sequence by performing a swap 

operation several times on the seed facility sequence to fully randomizing the facility positions. If 

there are p facilities, p swaps are performed. How the p swaps are performed is based on an array, 

called ‘swap position’, which contains p random numbers and the value of each random number is 

between 0 and (p-1). It is not required that any two of the p random numbers are not identical, which 

is crucial to eliminate comparisons of duplicates. The random numbers stored in the array of swap 

position will be extracted from the head to the end, one by one, to perform a swap on the seed facility 

sequence. At Step i, we exchange two positions in the seed facility sequence, one is the position (p-1-

i), another is the position specified by the random number stored in the (i-1)-th element in the array 

of swap position. An example is shown in Figure 5 to illustrate the method of INI_FS2. Firstly, we 

generate seven random numbers without checking duplicate and store them in the array of swap 

position, as shown on the left-hand side of Figure 5. At Step 1, because the first random number in 

the array of swap position is 5, we exchange the two elements on Positions 6 and 5 in the array of 

facilities. At Step 2, because the second random number in swap position is 3, Positions 3 and 5 in the 

facilities array are exchanged. Similarly, Positions 2 and 5 are swapped at Step 3. After seven steps, 

we get a new facility sequence, as shown on the right hand side of Figure 5. The complexity of the 

INI_FS2 method is O(p) since no comparisons are required. 

 

Figure 5. An example of the INI_FS2 method. 

The kernel Algorithm 1 shows the pseudocode for INI_FS2 method to parallelize the generation 

of facility sequences. We adopt a coarse-grained parallelization method. That is, every thread will 

produce a new facility sequence based on the seed facility sequence. It is inefficient to adopt fine 

grained parallelization method, as explained below. If multiple threads generate random number 

simultaneously to produce a facility sequence, they need to check whether any two random numbers 

are identical because any facility sequence is actually a permutation of facility IDs in UA-FLP. It 
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incurs high computational cost when multiple parallel threads need to perform comparison, 

communication, and even synchronization to eliminate duplicates. 

In the Kernel Algorithm 1, firstly, each thread generates random numbers and stores them in the 

array of ridx based on its thread id and block id. Next, each thread reads one random number from 

array ridx and uses it to exchange two positions on the corresponding facility sequence in array 

facsarr. 

Algorithm 1: Parallel Facility Sequences Generation 

Data: 

blockID: Block id 

   threadID: Thread id 

length: The number of facilities 

ridx: Array of Swap Position  

facsarr: Array of the seed facility sequence 

Input: 

    facsarr; 

Result: 

    New facility sequences generated randomly 

Kernel function: 

__global__ void genF (Array facsarr, Array ridx) { 

  1:  Generate ridx[blockID][threadID] with random numbers; 

       2:  foreach i ∈{0,…,length-1}  do 

       3:    pos ← ridx[blockID][threadID][i]; 

       4:    Swap(facsarr[blockID][threadID][length - i - 1], facsarr[blockID][threadID][pos]); 

       5:  end 

} 

The performance ratio between INI_FS2 and INI_FS1 for facility sequence generation is shown 

in Figure 6. According to the results, the INI_FS2 is better than the INI_FS1 especially when the 

number of facilities is increased. 

 

Figure 6. Performance ratio between INI_FS2 and INI_FS1 for facility sequence generation. 
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3.2.2. Bay Divisions Generation 

To generate bay divisions, the conventional method and the improved method are both 

proposed in this subsection. The conventional method (INI_BD1) is firstly to generate a random 

integer randI for each facility on bay divisions, and then use %2randI  to get an integer of value 

equal to 0 or 1. Consequently, (p-1) random integers are required for p facilities. In INI_BD1, p 

facilities require (p-1) modulo operations for the representation of bay divisions. If there are n 

individuals, we need to perform the modulo operation ( *( 1)n p − ) times in total, thus resulting in a 

high time complexity even in parallel computing. In order to reduce such calculations in parallel, we 

propose the other method (INI_BD2) to improve the performance of generating bay divisions. The 

new method uses bitwise operators instead of modulo operators. Assume the value of an integer 

generated randomly is  ( 1)x x  , we calculate   1x AND  to generate a value of either 0 or 1 for the 

first facility in the bay divisions. Then a one-bit right arithmetic shift is adopted to change the value 

of x , and the new x  is used in next iteration. Repeat the above procedure for ( 1p − ) times, the 

whole bay divisions are generated. INI_BD2 algorithm is of O(1) time complexity, which is much 

smaller than O(p) time complexity required by INI_BD1. Moreover, INI_BD2 uses arithmetic shift 

operations to replace modulo operators in INI_BD1.  

2log ( )

0

1
  1 2  mod  2  mod  2

2 2

x

i

i i
i

x
x AND

  

=

     
=      

     
  (5) 

 *2b

newx x=  (6) 

Kernel Algorithm 2 is the pseudocode of the improved method INI_BD2 for facility bay divisions. 

Each thread is responsible for producing one bay divisions. Firstly, we generate a random integer, 

and then bitwise operators, instead of modulo operators, are used to obtain a value of either 0 or 1 

for every facility except the last one (Lines 2–5). 

Algorithm 2: Parallel Bay Divisions Generation 

Data: 

    decimal: Variable for a random integer value 

baydarr: Boolean array containing flexible bay divisions for each individual 

Operator: 

    ‘>>’: Bitwise operation SHR (shift right) 

    ‘&’: Bitwise operation AND 

Input: 

    baydarr 

Result: 

    All of facility divisions generated randomly 

Kernel function: 

__global__ void genB (Array baydarr) { 

1:  decimal <- Random() 

2:  foreach i ∈{0,…,length-1}  do 

3:      baydarr[blockID][threadID][i] <- (decimal & 1) 

4:      decimal <- (decimal >> 1) 

5:  end 

} 

Figure 7 is the performance ratio between INI_BD2 and INI_BD1 for generation of bay divisions. 

The INI_BD2 uses bitwise operators instead of a lot of mod operators of INI_BD1, yet GPU is not 

good at such mod calculations due to hardware limitations. So the performance ratio of INI_BD2 is 

much better than INI_BD1, and with the increase in the number of facilities, the more obvious the 

performance improvement. 
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Figure 7. Performance ratio between INI_BD2 and INI_BD1 for generation of bay divisions. 

3.3. Parallel Selection on GPU 

Selection of GA can be performed in many ways, of which the tournament selection and roulette 

wheel selection are most famous. Limmer and Fey suggested that selection and recombination 

operators should be grouped together to investigate their relationship [22]. They adopted tournament 

selection because one-point crossover for the recombination was used in their work [22]. The one-

point crossover produces two offspring from two parent individuals. In the UA-FLP, facility 

sequences and bay divisions are both required to perform selection and recombination, respectively. 

According to [21], two different crossover methods are applied: partially mapped crossover (PMX) is 

used to recombine facility sequences, and n-point crossover method is for recombination of bay 

divisions. The above feature is quite different from that requiring only one crossover strategy. 

Therefore, we developed two versions of selection strategies—the tournament selection, and the 

roulette wheel selection—to investigate which is better for UA-FLP. 

The tournament selection involves running several ‘tournaments’ among a few individuals who 

are chosen at random from the population, and the winner of each tournament is selected. In our 

program, each time several pairs of individuals are randomly chosen from the population for a 

competition. After a series of selections, the individual with the best fitness from these pairs is 

selected. For parallel tournament selection, our method (SEL_TN) let one thread execute a series of 

selections to determine one best individual. The time complexity of parallel tournament selection is 

equal to O(nlogn). 

Roulette wheel selection [22,27], also known as fitness proportionate selection, is for selecting 

potentially useful solutions by firstly calculating the fitness level for each chromosome and then using 

fitness levels to associate each individual chromosome with a probability for selection. If 
if  is the 

fitness value of individual i  and n  is the number of individuals in the population, the probability 

of the individual being selected is 

1

i
i n

j

j

f
prob

f
=

=


. The probabilities of all individuals are 

accumulated one by one, where the initial and resultant accumulated values are 0 and 1, respectively. 

During the accumulation, each individual is associated with two numbers: starting and ending 

numbers. An individual is selected only when a random number, ranging from 0 to 1, is generated 

and its value is between the associated starting and ending numbers. 

The way for parallelizing roulette wheel selection (SEL_RL) is that one thread is responsible for 

picking up one better individual in an island. Furthermore, in order to take full advantage of threads 
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in every block, as shown in Figure 8, important data are stored in shared memory to increase access 

speed. Shared memory, accessible by the threads in a same block, is high-speed memory. Kernel 

Algorithm 3 shows the pseudocode to the SEL_RL, i.e., the roulette wheel selection. In the algorithm, 

shared memory is used to store the total cost of the island, probabilities for individuals, and the sum 

proportion for each island. Threads in one block carry out selections of individuals for next 

generation, respectively. With the fast-shared memory to communicate with each other, the system 

performance is improved. The time complexity of parallel roulette wheel selection is equal to O(n). 

 

Figure 8. Parallel roulette wheel selection of SEL_RL. 

Algorithm 3: Parallel Roulette Wheel Selection 

Data: 
carr:   Array recording the cost of each facsarr and baydarr pair 
survive: Array recording the picked facsarr and baydarr pair id     
fact:    Variable for total cost of the island 
pmatrix: Array recording proportion that each facsarr and baydarr holds 
total:   Variable for the sum of each island’s pmatrix 
base:  Variable for the sum number to calculate elements in pmatrix 

Input: 
carr; survive; 

Result: 
    Individuals picked from current population 
Kernel function: 

__global__ void wheel-selection (Array carr, Array survive){ 
1:  total <- 0 
2:  fact <- 0 
3:  if threadID == 0 do 
4:      foreach i ∈{0,…, pop − 1}  do 
5:          fact <- fact + carr[blockID][i] 
6:      end 
7:  end 
8:  pmatrix[blockID][threadID] <- (1/carr[blockID][threadID]) * fact 
9:  if threadID == 0 do 

10:      foreach i ∈{0,…, pop − 1}  do 
11:         total <- total + pmatrix[blockID][i] 
12:      end 
13:  end 
14:  pick <- Random() mod total 
15:  base <- 0 
16:  foreach i ∈{0,…, pop − 1}  do 
17:      base <- base + pmatrix[i] 
18:      if base > pick do 
19:          survive[blockID][threadID] = i 
20:      end 
21:  end 
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} 

Figure 9 illustrates the performance ratio between the roulette wheel selection SEL_RL and the 

tournament selection SEL_TN. The performance of SEL_RL has great performance improvement 

when it combines with the PMX crossover. In other words, roulette wheel selection is more suitable 

for UA-FLP due to the crossover strategies adopted, which is different from that in the reference [22]. 

 

Figure 9. Performance ratio between SEL_RL and SEL_TN for selection operator. 

3.4. Parallel Mutation on GPU 

Gaussian mutation is applied and it consists mainly of the generation of random numbers in the 

work [22]. In our GPU solution, Gaussian mutation is also used in both mutations of facility sequence 

and bay divisions according to the mutation probability. To parallelize the mutation operator, 

according to the previous work, each thread will generate a random number to determine whether 

the mutation operator is performed. For the individuals who are mutated, the corresponding threads 

need to do the mutation operator for their own facility sequence and flexible bay divisions in parallel. 

Two positions are generated randomly to swap each other for a facility sequence in mutation. In this 

process, two identical positions are likely to be produced, causing a failed mutation. To avoid this 

problem, two methods can be adopted. One method (MUT_M1) is regeneration when inspecting the 

repetition, and the other (MUT_M2) is producing a position for mutation randomly and exchanging 

the position with its adjacent location. Though the time complexities of MUT_M2 and MUT_M1 are 

both constant time, MUT_M2 need not check and avoid duplication. Kernel Algorithm 4 shows the 

pseudocode of the mutation operator for MUT_M2. 

Algorithm 4: Parallel Mutation Operator 

Data: 
    bound: Variable for determining if the thread should execute mutation 

mrate: Constant for mutation probability 
Input: 
    facsarr; baydarr 
Result: 
    Individuals after mutation  
Kernel function: 
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__global__ void mutation(Array facsarr, Array baydarr) { 
1:  bound <- Random() mod 100 
2:  if bound <= mrate * 100 do 
3:  pos <- Random() mod (length - 1) 
4:  Swap(facsarr[blockID][threadID][pos + 1], facsarr[blockID][threadID][pos]) 
5:  Swap (baydarr[blockID][threadID][pos + 1], baydarr[blockID][threadID][pos]) 
6:   end 
} 

Figure 10 shows the performance ratio between MUT_M2 and MUT_M1 for mutation. The 

performance of MUT_M2 is better than MUT_M1 to most of the benchmarks. However, the 

performance difference is not significant, although theoretically MUT_M2 is more efficient than 

MUT_M1 because MUT_M2 needs not to check and avoid duplication. The reason is that the 

mutation probability is not high and it has a small chance to generate two identical locations even 

when a mutation is required to be performed. 

 

Figure 10. Performance ratio between MUT_M2 and MUT_M1 for mutation. 

3.5. Parallel Migration on GPU 

The migration operator, the featuring operator in IMGA, exchanges individuals among islands, 

which provides greater population diversity. With a ring topology, individuals from an island can 

migrate to their neighboring island during one migration interval. The previous work [22] proposed 

that one thread is responsible for migrating an individual (MIG_I). Figure 11 illustrates how their 

main concept is implemented on GPU, assuming every island needs to migrate two individuals. Each 

island will be processed by one thread block. Firstly, two individuals, represented with two 

chromosomes, are selected randomly for each island. Secondly, an island will use two threads to read 

two chromosomes in its neighboring island from global memory and then write the two 

chromosomes into its shared memory. Thirdly, synchronization between thread blocks is needed to 

ensure that the second step is completed by all blocks before any thread block proceeds to next step. 

Finally, each island uses the two migrated chromosomes in its shared memory to replace its two 

original chromosomes in global memory, which are executed by two threads with copy operations. 
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Figure 11. Migration between islands with one thread processing one chromosome (MIG_I). 

However, because one chromosome consists of many genes, to increase the parallelism, we 

propose an enhanced method that uses one thread to deal with one gene, instead of one chromosome, 

to improve the migrated performance (MIG_G). In the case of UA-FLP, p (p ≥ 7) facilities—encoded 

with a gene for each facility—are combined into an individual that represents one facility sequence. 

Assume that two random individuals are selected for migration, there will be 2p threads responsible 

for the migration. If the number of facilities is large and the migration rate is high, then our method 

can use more threads to process migration concurrently, which can save more time than the previous 

method. Figure 12 shows the procedures of how to apply one thread to process one gene in the 

migration step. The pseudocode of MIG_G is shown in Kernel Algorithm 5. 

 

Figure 12. Migration between islands with one thread processing one gene (MIG_G). 

Algorithm 5: Parallel Migration Operator 

Data: 
   blockID: Block id 
  threadID.x: Thread id 
  threadID.y: Thread id 
  migiidx: Index of target island for individual migration    
  midxarr: Integer array containing index number for each migrated individual 
  facsarr: Integer array containing facility sequence for each individual 
  baydarr: Boolean array containing flexible bay divisions for each individual 
  facsmarr: Integer array containing facility sequence for each migrated individual 

baydmarr: Boolean array containing flexible bay divisions for each migrated 
individual 

Input: 
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    midxarr, facsarr, baydarr, facsmarr, baydmarr 
Result: 
    Individuals after mutation  
Kernel function: 
__global__ void migration (Array midxarr, Array facsarr, Array baydarr, Array 
facsmarr, Array baymarr){ 
1.    if (threadID.x == 0) do 
2.     midxarr[blockID][threadID.y] <- Random() mod (LENGTH_OF_ISLAND) 
3.    end 
4.    __syncthreads() 
5.    migiidx = (blockID + 1) mod NUMBER_OF_ISLAND 
6.   facsmarr[blockID][threadID.y][threadID.x] <-  

facsarr[migiidx][ midxarr[migiidx][threadID.y] ][threadID.x] 
7.    baydmarr[blockID][threadID.y][threadID.x] <-  

baydarr[migiidx][ midxarr[migiidx][threadID.y] ][threadID.x] 
8.    __syncblocks() 
9.    facsarr[blockID][ midxarr[blockID][threadID.y] ][threadID.x] <-  

facsmarr[blockID][threadID.y][threadID.x] 
10.   baydarr[blockID][ midxarr[blockID][threadID.y] ][threadID.x] <-  

baydmarr[blockID][threadID.y][threadID.x] 
} 

According to the experimental result between our proposed method MIG_G and the previous 

method MIG_I, as shown in Figure 13, the performance ratio of MIG_G is up to more than 1.6 for 

exploring more parallelisms. If the migration rate is higher, the efficiency of MIG_G is also better. 

 

Figure 13. Performance ratio between MIG_G and MIG_I for migration. 

The reason why using each thread to process a gene is better than using the thread to process a 

chromosome is because we not only take full advantage of the fine-grained parallelism, but also 

utilize memory coalescing to access global memory in our improved migration algorithm. Accessing 

data in global memory is critical to the performance of a CUDA application since read and write 

operations are slow in global memory that is comprised of dynamic random-access memories 

(DRAMs). A parallel process of modern DRAMs is that for each time when a location is accessed, 

many consecutive locations including the requested location are accessed. Therefore, only in this way 

of parallel accessing can DRAMs work close to the advertised peak global memory bandwidth if an 
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application uses data from consecutive locations. Figure 14 shows the memory coalescing of our 

MIG_G. When all threads in a warp execute a same instruction to read the migrated genes, the 

hardware detects whether the threads access consecutive memory locations in global memory. 

Because the genes of a chromosome are stored in an array with consecutive locations in global 

memory, the hardware coalesces all memory accesses into one consolidated access to these 

consecutive DRAM locations. While in the preliminary algorithm MIG_I, one thread migrates one 

chromosome. Although each chromosome is adjacent to each other, a stride exists between them as 

there are many genes in each chromosome. In a CUDA GPU, the threads in a same warp will access 

genes at the same place in their responsible chromosomes. For instance, if one thread access to the 

first gene, the other threads in the same warp will also access to their first gene in their responsible 

chromosomes simultaneously. However, the first genes are not consecutive. When all the threads in 

a warp execute a read operation to the chromosomes in global memory, usually more than one 

memory access transaction is required, resulting in a performance worse than that with memory 

coalescing, like our proposed algorithm. The complexity of MIG_I is O(p) as each thread must move 

the genes sequentially, while the complexity of MIG_G is O(1) because one thread moves one gene. 

 

Figure 14. Memory coalescing.  represents a data chunk. 

To investigate how the number of threads per block and the number of blocks influence the 

performance of our migration algorithm, we have conducted an experiment and the results are 

shown in Figure 15. In our method, each island is processed by one thread block and one gene is 

moved by one thread. In this experiment, we assume five chromosomes are migrated per island. 

Consequently, the number of blocks is equal to the number of islands, and the number of threads per 

block is equal to the product of the number of chromosomes and the number of genes per 

chromosome. Moreover, because the number of genes per chromosome is equal to the number of 

facilities, we choose the benchmarks based on the numbers of genes per chromosome required in the 

experiment. The migration workloads are kept the same for all cases. The execution times are 

normalized to the execution time of the case with 15 blocks and 300 threads. When the number of 

threads is increased, the execution time is decreased except the case with 90 blocks. If there are 90 

blocks, the number of threads per block is down to 50, indicating that only two warps of threads can 

be used to exploit warp-level parallelism. Nevertheless, the execution time differences between any 

two of them are insignificant. 

3.6. Parallel UA-FLP Integrated with Better Strategies 

According to the comparison of two alternative parallelization strategies for each main step, the 

better strategies are chosen and integrated into the complete algorithm of IMGA for solving UA-FLP 

on GPU, which is our improved GPU version. For comparison, another GPU version is also 

implemented: called the previous version, which consists of conventional and previously proposed 

parallelization methods. Figure 16 shows the execution times of our GPU version, the previous GPU 

version, and the CPU version for the larger data sets. GPU versions outperform the CPU version 

significantly all the time. Our GPU version always requires the shortest execution time for any data 

set. 
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Figure 15. Comparison of normalized execution time for various combinations of number of blocks 

and number of threads per block. The number of blocks is equal to the number of islands. The number 

of threads per block is equal to the product of the number of chromosomes and the number of genes 

per chromosome. In this comparison, five chromosomes are migrated per island. 

We compare the performance improvements executed on the CPU and GPU for all 34 data sets, 

as shown in Figure 17, which indicates the performance ratios of our improved GPU version over the 

CPU version and the performance ratios of the previous GPU version over the CPU version. Note 

that the data sets are listed in ascending order based on the number of facilities. The previous GPU 

version outperforms the CPU one for all the data sets. The best performance ratio is up to 20. On the 

other hand, our GPU version provides much better performance for all cases, with the performance 

ratio over the CPU version up to 84. Comparing the performance ratios provided by two versions of 

GPU, our GPU version is much better, meaning the better parallelization methods we suggest for 

IMGA steps really contribute to performance improvement. Moreover, when the number of facilities 

is increased, the performance of our GPU version is also highly improved. 

 

Figure 16. Execution times of the different methods. 
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Figure 17. Comparisons of performance ratio between two GPU versions and CPU version, 

respectively. The previous GPU version is implemented with previous parallel methods while our 

GPU version is implemented with our proposed methods. 

4. Conclusions 

UA-FLPs are widely used in different fields, including industrial facility design, warehouse 

organization, school facility layout, and VLSI element placement. However, UA-FLP is an NP-hard 

problem. With the increase in the problem size, the amount of calculation will become larger and 

larger, and the execution time is getting longer and longer even though metaheuristic approaches 

such as GA are applied to solve UA-FLP. In the traditional CPU workstations, when the number of 

the facilities reaches a certain level, it is difficult to calculate the appropriate solution within a 

reasonable period of time. IMGA, one of the most promising variants among the parallelized models 

of GA, can explore different regions of the search space. IMGA can improve the solution for most of 

the problem data set for the UA-FLP [21]. However, the IMGA method for UA-FLP still requires long 

execution time, so that the authors pointed an interesting future work: parallelizing IMGA. 

Using GPU to solve large-scale and complex computing has been widely investigated. Modern 

GPU, as specialized computer processors, can manipulate large amounts of data efficiently by highly 

parallel many-core system. Parallel IMGA on GPU is focused in the recent work [22], while their 

parallelization approaches are preliminary because the authors mainly emphasize comparing 

performances between different parallel architectures. In addition, they used only one mathematical 

function to model and implement the IMGA. 

In this paper, we further investigated on parallelizing IMGA by GPU. We proposed multiple 

parallel algorithms for the main steps in the IMGA when solving the UA-FLP, including initialization, 

selection, mutation, and migration operators. In data initialization, there are two parts: generations 

of facility sequence and bay divisions. To generate the facility sequence, we proposed an improved 

method to eliminate a large number of comparisons in conventional method. Our method can also 

avoid regeneration of random numbers for the same array element. For the above reasons, our 

approach can reduce the time complexity from the previous O(p2) to O(p). To generate bay divisions, 

our improved method used bitwise operators, instead of a lot of module operators in conventional 

methods, resulting in the time complexity is greatly reduced from O(p) to O(1). According to the 

previous work [22], when choosing a selection operator, we should take into account the relationship 

between it and the recombination operator. Therefore, we implemented two selection strategies—

tournament selection and roulette wheel selection—to investigate which is better for UA-FLP. 

Through experimental results, roulette wheel selection is more suitable for UA-FLP due to the 

crossover strategies adopted, which is quite different from that in the reference [22] because two 

different crossover strategies are used for FBS encoding in UA-FLP. To parallelize the mutation 

operator, our method needs not to check for duplications, which improved the mutation performance. 

For migration parallelization, we proposed an enhanced method that uses one thread to deal with 
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one gene, instead of one chromosome, to improve the migrated performance. Our improved 

migration algorithm is better than the conventional one because we take full advantage of the fine-

grained parallelism and utilize memory coalescing to access global memory. 

Experiments were conducted to compare performances between the different parallel 

algorithms for each step. Based on theoretical derivation and experimental results, we integrated the 

better parallel method in each step into the parallel IMGA for UA-FLP on GPU. The experiments 

were conducted on a total of 26 well-known UA-FLPs data sets and 8 additional benchmarks for 

large-scale facilities. According to the experimental results, if conventional parallelization methods 

for main steps of IMGA are applied to GPU implementation, the performance ratio over the CPU 

version is more than 20 at best. However, if our suggested parallel methods are used to implement 

IMGA on GPU, the best performance ratio over the CPU version can be as high as 84. In other words, 

our GPU version provides much higher performance than conventional GPU version.  

In our future work, more effective methods can be proposed to optimize parallel IMGA, such as 

how to manage memories, improve fitness evaluations, etc. 

Author Contributions: Conceptualization, X.S., L.-F.L., P.C. and C.-C.W.; Data curation, X.S. and P.C.; Formal 

analysis, X.S., P.C., and C.-C.W.; Funding acquisition, X.S., L.-F.L., and C.-C.W.; Investigation, X.S., L.-F.L., P.C., 

and C.-C.W.; Methodology, X.S., P.C., and C.-C.W.; Project administration, L.-F.L. and C.-C.W.; Resources, X.S.; 

Software, X.S., P.C., and C.-C.W.; Supervision, C.-C.W.; Validation, X.S. and C.-C.W.; Writing—original draft, 

X.S., L.-F.L., L.-R.C., and C.-C.W.; Writing—review & editing, X.S., L.-F.L., L.-R.C., and C.-C.W. 

Funding: This research is supported by Ministry of Science and Technology, Taiwan (grant no. MOST 106-2221-

E-018-010, MOST 106-2221-E-018-009), and Beijing Municipal Commission of Education (grant no. 

KM201811417010). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Drira, A.; Pierreval, H.; Hajri-Gabouj, S. Facility layout problems: A survey. Annu. Rev. Control 2007, 31, 

255–267. 

2. Tompkins, J.A.; White, J.A.; Bozer, Y.A.; Tanchoco, J.M.A. Facilities Planning; John Wiley & Sons: New York, 

NY, USA, 2010. 

3. Meller, R.D.; Gau, K.Y. The facility layout problem: Recent and emerging trends and perspectives. J. Manuf. 

Syst. 1996, 15, 351–366. 

4. Scholz, D.; Petrick, A.; Domschke, W. STaTS: A slicing tree and tabu search based heuristic for the unequal 

area facility layout problem. Eur. J. Oper. Res. 2009, 197, 166–178. 

5. Kusiak, A.; Heragu, S.S. The facility layout problem. Eur. J. Oper. Res. 1987, 29, 229–251. 

6. Garey, M.R. Computers and Intractability: A Guide to the Theory of NP-Completeness; WH Free Co.: San 

Francisco, CA, USA, 1979; pp. 90–91. 

7. Wang, M.J.; Hu, M.H.; Ku, M.Y. A solution to the unequal area facilities layout problem by genetic 

algorithm. Comput. Ind. 2005, 56, 207–220. 

8. Wong, K.Y. Solving facility layout problems using Flexible Bay Structure representation and Ant System 

algorithm. Expert Syst. Appl. 2010, 37, 5523–5527. 

9. Kulturel-Konak, S.; Konak, A. Unequal area flexible bay facility layout using ant colony optimisation. Int. 

J. Prod. Res. 2010, 49, 1877–1902. 

10. Xiao, Y.J.; Zheng, Y.; Zhang, L.M.; Kuo, Y.H. A combined zone-LP and simulated annealing algorithm for 

unequal-area facility layout problem. Adv. Prod. Eng. Manag. 2016, 11, 259. 

11. Aiello, G.; La Scalia, G.; Enea, M. A non dominated ranking Multi Objective Genetic Algorithm and electre 

method for unequal area facility layout problems. Expert Syst. Appl. 2013, 40, 4812–4819, 

doi:10.1016/j.eswa.2013.02.026. 

12. Aiello, G.; Scalia, G.L.; Enea, M. A multi objective genetic algorithm for the facility layout problem based 

upon slicing structure encoding. Expert Syst. Appl. 2012, 39, 10352–10358. 

13. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, 

Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975. 



Appl. Sci. 2018, 8, 1604 23 of 24 

14. Kenneth, A.D.J. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. Dissertation, 

University of Michigan, Ann Arbor, MI, USA, 1975. 

15. Darwin, C. The Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the 

Struggle for Life; With a Foreward by George Gaylord Simpson; Collier Books: New York, NY, USA,1962. 

16. Tan-Hsu, T.; Bor-An, C.; Yung-Fa, H. Performance of Resource Allocation in Device-to-Device 

Communication Systems Based on Evolutionally Optimization Algorithms. Appl. Sci. 2018, 8, 1271, 

doi:10.3390/app8081271. 

17. Perez-Ramirez, C.A.; Jaen-Cuellar, A.Y.; Valtierra-Rodriguez, M.; Dominguez-Gonzalez, A.; Osornio-Rios, 

R.A.; Romero-Troncoso, R.D.J.; Amezquita-Sanchez, J.P. A two-step strategy for system identification of 

civil structures for Structural Health Monitoring using wavelet transform and genetic algorithms. Appl. Sci. 

2017, 7, 111. 

18. Kuo, C.C.; Liu, C.H.; Chang, H.C.; Lin, K.J. Implementation of a motor diagnosis system for rotor failure 

using genetic algorithm and fuzzy classification. Appl. Sci. 2016, 7, 31. 

19. Montazeri, A.; West, C.; Monk, S.D.; Taylor, C.J. Dynamic modelling and parameter estimation of a 

hydraulic robot manipulator using a multi-objective genetic algorithm. Int. J. Control 2017, 90, 661–683. 

20. Shin, H.; Joo, C.; Koo, J. Optimal rehabilitation model for water pipeline systems with genetic algorithm. 

Procedia Eng. 2016,154, 384–390. 

21. Palomo-Romero, J.M.; Salas-Morera, L.; García-Hernández, L. An island model genetic algorithm for 

unequal area facility layout problems. Expert Syst. Appl. 2017, 68, 151–162. 

22. Limmer, S.; Fey, D. Comparison of common parallel architectures for the execution of the island model and 

the global parallelization of evolutionary algorithms. Concurr. Comput. Pract. Exp. 2016, 29, e3797. 

23. Pospichal, P.; Jaros, J.; Schwarz, J. Parallel Genetic Algorithm on the CUDA Architecture. Applications of 

Evolutionary Computation. In Proceedings of the Evoapplicatons 2010: Evocomplex, Evogames, Evoiasp, 

Evointelligence, Evonum, and Evostoc, Istanbul, Turkey, 7–9 April 2010; pp. 442–451. 

24. Moumen, Y.; Abdoun, O.; Daanoun. A.; Parallel approach for genetic algorithm to solve the Asymmetric 

Traveling Salesman Problems. In Proceedings of the 2nd International Conference on Computing and 

Wireless Communication Systems, Larache, Morocco, 14-16 November 2017; ACM: New York, USA, 2017. 

25. Abdelkafi, O.; Idoumghar, L.; Lepagnot, J.; Paillaud, J.L.; Deroche, I.; Baumes, L.; Collet, P. Using a novel 

parallel genetic hybrid algorithm to generate and determine new zeolite frameworks. Comput. Chem. Eng. 

2017, 98, 50–60. 

26. Melab, N.; Talbi, E.G. GPU-based island model for evolutionary algorithms. In Proceedings of the 12th 

annual conference on Genetic and evolutionary computation, Porland, OR, USA, 7–11 July 2010; ACM: 

New York, NY, USA, 2010. 

27. Shojafar, M.; Cordeschi, N.; Baccarelli, E. Energy-efficient adaptive resource management for real-time 

vehicular cloud services. IEEE Trans. Cloud Comput. 2016, 99, 1–14, doi:10.1109/TCC.2016.2551747. 

28. Shojafar, M.; Canali, C.; Lancellotti, R.; Abawajy, J. Adaptive computing-plus-communication optimization 

framework for multimedia processing in cloud systems. IEEE Trans. Cloud Comput. 2016, 99, 1–14, 

doi:10.1109/TCC.2016.2617367. 

29. Javanmardi, S.; Shojafar, M.; Shariatmadari, S.; Abawajy, J.H.; Singhal, M. PGSW-OS: A novel approach for 

resource management in a semantic web operating system based on a P2P grid architecture. J. Supercomput. 

2014, 69, 955–975. 

30. Li, C.C.; Lin, C.H.; Liu, J.C. Parallel genetic algorithms on the graphics processing units using island model 

and simulated annealing. Adv. Mech. Eng. 2017, 9, doi:10.1177/1687814017707413. 

31. Bonelli, F.; Tuttafesta, M.; Colonna, G.; Cutrone, L.; Pascazio, G. An MPI-CUDA approach for hypersonic 

flows with detailed state-to-state air kinetics using a GPU cluster. Comput. Phys. Commun. 2017, 219, 178–

195. 

32. Chen, J.H.; Chen, R.C.; Liu, J.L. A GPU Poisson–Fermi solver for ion channel simulations. Comput. Phys. 

Commun. 2018, 229, 99–105. 

33. Madhikar, P.; Åström, J.; Westerholm, J.; Karttunen, M. CellSim3D: GPU accelerated software for 

simulations of cellular growth and division in three dimensions. Comput. Phys. Commun. 2018, 232, 206–

213. 

34. Kim, S.; Cho, J.; Park, D. Moving-target position estimation using GPU-based particle filter for iot sensing 

applications. Appl. Sci. 2017, 7, 1152. 



Appl. Sci. 2018, 8, 1604 24 of 24 

35. Han, T.D.; Abdelrahman, T.S. hiCUDA: High-level GPGPU programming. IEEE Trans. Parallel Distrib. Syst. 

2010, 22, 78–90. 

36. Han, T.D.; Abdelrahman, T.S. Reducing branch divergence in GPU programs. In Proceedings of the Fourth 

Workshop on General Purpose Processing on Graphics Processing Units, Newport Beach, CA, USA, 5 

March 2011; ACM: New York, NY, USA, 2011. 

37. Armour, G.C.; Buffa, E.S. A heuristic algorithm and simulation approach to relative location of facilities. 

Manag. Sci. 1963, 9, 294–309. 

38. Aiello, G.; Enea, M. Fuzzy approach to the robust facility layout in uncertain production environments. Int. 

J. Prod. Res. 2001, 39, 4089–4101. 

39. Tate, D.M.; Smith, A.E. Unequal-area facility layout by genetic search. IIE Trans. 1995, 27, 465–472. 

40. NVIDIA (2014) Whitepaper NVIDIA GeForce GTX 980. Available online: 

http://international.download.nvidia.com/geforce-

com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF (accessed on 11 August 2018). 

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


