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Abstract: The clinical decision support system provides an automatic diagnosis of human diseases 
using machine learning techniques to analyze features of patients and classify patients according to 
different diseases. An analysis of real-world electronic health record (EHR) data has revealed that a 
patient could be diagnosed as having more than one disease simultaneously. Therefore, to suggest 
a list of possible diseases, the task of classifying patients is transferred into a multi-label learning 
task. For most multi-label learning techniques, the class imbalance that exists in EHR data may bring 
about performance degradation. Cross-Coupling Aggregation (COCOA) is a typical multi-label 
learning approach that is aimed at leveraging label correlation and exploring class imbalance. For 
each label, COCOA aggregates the predictive result of a binary-class imbalance classifier 
corresponding to this label as well as the predictive results of some multi-class imbalance classifiers 
corresponding to the pairs of this label and other labels. However, class imbalance may still affect a 
multi-class imbalance learner when the number of a coupling label is too small. To improve the 
performance of COCOA, a regularized ensemble approach integrated into a multi-class 
classification process of COCOA named as COCOA-RE is presented in this paper. To provide 
disease diagnosis, COCOA-RE learns from the available laboratory test reports and essential 
information of patients and produces a multi-label predictive model. Experiments were performed 
to validate the effectiveness of the proposed multi-label learning approach, and the proposed 
approach was implemented in a developed system prototype. 

Keywords: clinical decision support system (CDSS); decision-making; electronic health records 
(EHRs); multi-label learning 

 

1. Introduction 

With the huge improvement in human lifestyle and the increasingly aging population, there is a 
growing push to develop health services at a rapid speed [1]. In China, the number of patients visiting 
medical health institutions reached 7.7 billion in 2015, which was 2.3% higher than the previous year 
[2]. Worldwide, particularly in poor countries, the shortage of medical experts is severe, forcing 
clinicians to serve a large number of patients during their working time [3]. Generally, clinicians 
distinguish patients and diagnose their diseases using their experience and knowledge; however, in 
doing so, it is possible for clinicians without adequate experience to commit mistakes. 

Information technology plays a vital role in changing human lifestyles. Rapid and drastic 
developments in the medical industry have been made utilizing information technology, and many 
medical systems have been produced to assist medical institutions to manage data and improve 
services. One survey report that medical informatics tools and machine learning techniques have 
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been successfully applied to provide recommendations for diagnosis and treatment. Therefore, 
automatic diagnosis is a key focus in the domain of medical informatics. 

It is common for a patient to suffer from more than one disease due to medical comorbidities. For 
instance, diabetes mellitus type 2 and hyperlipoidemia are likely to give rise to cardiovascular 
diseases [4,5]. In fact, it has been found that a majority of patients are diagnosed as suffering from 
more than one disease. Automatic diagnosis suggests some possible illnesses rather than just a single 
illness, and the disease diagnosis problem is accordingly transferred into a multi-label learning 
problem. Wang et al. [6] proposed a shared decision-making system for diabetes medication choice 
using a multi-label learning method to recommend multiple medications among eight classes of 
available antihyperglycemic medications. However, in this system, each label is considered 
independently, and label correlations are not considered. Cross-Coupling Aggregation (COCOA) [7] 
is a typical multi-label learning approach aimed at leveraging label correlation and exploring class 
imbalance. For each label, COCOA aggregates the predictive result of a binary-class learner for this 
label and predictive results of some multi-class learners for the pairs of this label and other labels. 
However, class imbalance may still affect a multi-class imbalance learner when the number of a 
coupling label is too small.  

To improve the performance of COCOA, a regularized ensemble approach integrated into multi-
class classification process of COCOA named as COCOA-RE is presented in this paper. Considering 
the problem of class imbalance, this method leverages a regularized ensemble method [8] to explore 
disease correlations and integrates the correlations among diseases in the multi-label learning 
process. To provide illness diagnosis, COCOA-RE learns from the available laboratory test reports 
and essential information of patients and produces a multi-label predictive model. As part of this 
study, experiments were performed to validate the effectiveness of the proposed multi-label learning 
approach, and the proposed approach was implemented in a developed system prototype. The 
proposed system—shown in Figure 1—can help clinicians review patient conditions more 
comprehensively and can provide more accurate suggestions of possible diseases to clinicians. 

The rest of this paper is organized as follows: Section 2 presents the existing work about multi-label 
learning approaches for class-imbalanced data sets. Section 3 describes the proposed multi-label 
learning approach. Section 4 discusses the experimental results. Finally, Section 5 concludes our work 
with a summary. 

 
Figure 1. Overview of the decision support system for medical diagnosis. 

2. Related Work 

Clinical decision support systems—of which diagnosis decision support system is a representative 
example—are developed to assist clinicians in making accurate clinical decision using informatics 
tools and machine leaning techniques [9]. Boosting approaches [10], support vector machines (SVMs) 
[11], deep learning [12] and rule-based methods [13] have been applied in clinical decision support 
systems for detecting specific diseases. However, multi-label learning approaches are rarely applied 
in clinical decision support systems. One example where this type of learning approach was used 
was in Wang et al. [6]. Using electronic health record data and applying the multi-label learning 
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approach, the authors of that paper developed a shared decision-making system for recommending 
diabetes medication. 

According to the order of label correlation considered by the multi-label learning methods, existing 
approaches are divided into three categories—first-order strategy, second-order strategy, and high-
order strategy. First-order strategy considers each label independently and does not take into account 
correlations among labels. Binary relevance (BR) [14]—a popular approach in most advanced multi-
label learning algorithms—constructs an independent binary classifier for each label to achieve multi-
label learning. It is easy to apply BR, but the performance of BR cannot be improved by considering 
correlations among labels. Multi-label learning K-nearest neighbor (ML-KNN) [15], which maximizes 
posterior probability to predict the labels of target examples, is a simple and effective approach for 
multi-label learning. Multi-Label Decision Tree (ML-DT) [16] adapts decision tree methods and 
produces the tree using information gained according to multi-label entropy in multi-label learning. 
Second-order strategy, e.g., Collective Multi-Label Classifier (CML) [17], Ranking Support Vector 
Machine (Rank-SVM) [18], and Calibrated Label Ranking(CLR) [19], considers correlations between 
a pair of labels in the learning process. For multi-label data with m labels, CLR makes m(m−1) binary 
classifiers, one of which is for a pair of labels. Rank-SVM produces a group of linear classifiers in the 
multi-label scenarios using the maximum margin principle to minimize the empirical ranking loss. 
To train multi-label data, CML applies maximum entropy principle to make the resulting distribution 
satisfy a constrain of correlations among labels. High-order strategy considers correlations among all 
class labels or subsets of class labels. RAndom k-labELsets (RAKEL) [20] transfers the multi-label 
learning task into an ensemble multi-class learning task in which each multi-class learner only 
handles a subset of randomly selected k labels. 

Some examples are normally associated with more than one label in many multi-label learning 
tasks. However, the number of negative examples is much larger than that of positive examples in 
some labels, which brings about the problem of class imbalance in multi-label learning. 

Class imbalance is a well-known threat in traditional classification methods [21–23]; however, it has 
not been extensively studied in the multi-label learning context. The existing methods towards class 
imbalance can be grouped into two categories. In the first case, multi-label learning methods transfer 
the class-imbalanced distribution into class-balanced distribution using data resampling, creating 
(over-sampling), or removing (under-sampling) data examples. For example, a multi-label synthetic 
minority over-sampling technique (MLSMOTE) [24] has been developed to produce synthetic 
examples associated to minority labels for imbalanced multi-label data. In this approach, the features 
of new examples are generated by interpolations of values belonging to the nearest neighbors. In the 
second case, a cost-sensitive multi-label learning is made up of two different classification 
approaches, such as binary-class imbalance classifier and multi-class imbalance classifier. To handle 
the problem about class imbalance and concept drift in multi-label stream classification, Xioufis et al. 
[25] used a multiple window method. By combing labels, Fang et al. [26] proposed a multi-label 
learning method called DEML (Dealing with labels imbalance by Entropy for Multi-Label 
classification). To leverage the exploration of class imbalance and the exploitation of label correlation, 
a multi-label learning approach called Cross-Coupling Aggregation (COCOA) [7] has also been 
proposed. Although the effectiveness of COCOA has been validated, the class imbalance may still 
affect a multi-class imbalance learner when the number of a coupling label is too small. 

To handle class-imbalanced training data, many multi-class approaches have been developed. In 
general, the existing approaches can be categorized as data-adaption approaches and algorithmic-
adaption approaches [27–29]. In data-adaption approaches, the minority class examples and majority 
class examples are balanced by sampling strategies, e.g., under-sampling or over-sampling. The over-
sampling process creates synthetic examples corresponding to minority examples, whereas the 
under-sampling process reduces the number of majority examples. To create synthetic examples, 
some techniques apply random pattern, while others follow density distribution [30]. Algorithmic-
adaption approaches involve approaches that adapt to imbalanced data. For example, cost-sensitive 
learning approaches spend higher cost in learning minority class [31]. Boosting methods integrate 
sampling and algorithmic-adaption approaches to deal with class-imbalanced data sets. AdaBoost 
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[32] was developed to sequentially learn multiple classifiers and integrate them to achieve better 
performance by minimizing an error function. AdaBoost can not only be used to one-class 
classification but also multi-class classification. AdaBoost is able to be directly applied to multiple 
binary classifications transformed by multi-class classification, e.g., AdaBoost.M2 [32] and 
AdaBoost.MH [33]. In these approaches, higher costs and extended training time are required to learn 
many weak classifiers, and the accuracy will be limited if the number of classes are large. 
AdaBoost.M1 directly generalizes AdaBoost into multi-class classification, but it requires the 
accuracy of each weak classifier larger than a strict error bound. Stage-wise Additive Modeling using 
Multi-class using Multi-class exponential (SAMME) loss function [34] has been used to extend 
AdaBoost methods to multi-class classification. SAMME eases the accuracy of each weak classifier in 
AdaBoost.M1 from 1/2 to 1/k so that the weak classifier whose performance is better than random 
guesses is accepted. However, these multi-class boosting approaches neglect the deterioration of 
classification accuracy in the training process. A regularized ensemble framework [8] was therefore 
introduced to learn multi-class imbalanced data sets. To adapt multi-class imbalanced data sets, a 
regularization term is applied to automatically adjust every classifier’s error bound according to its 
performance. Furthermore, the regularization term will penalize the classifier if it incorrectly 
classifies examples that had been classified correctly by the previous classifier. 

3. Proposed Methodology 

In multi-label learning, each example is described by a feature vector while being associated with 
multiple-class labels simultaneously. X d=   is the dimension of features and Y q=   is the 
dimension of labels. Given a multi-label data {( , ) |1 }i iD X Y i N= ≤ ≤ , where 1 2( , , )i dX x x x=   
denotes a d-dimensional feature vector of the example, i  and j

ix  are the values of iX  in feature 

jf , and 1 2( , , )i qY y y y=   denotes the label vector of the example i . 1j
iy =  when iX  has label jl ; 

otherwise, 0j
iy = . The task of multi-label learning is to learn a multi-label classifier Y: X 2h →  

from D , which maps the space of feature vectors to the space of label vectors. In addition, most of 
the existing multi-label learning methods do not fully consider the class imbalance among labels. For 
class label, the positive training examples are denoted by {( ,1) | ,1 }j i i iD x y Y i N+ = ∈ ≤ ≤  and the 

negative training examples are denoted by {( ,0) | ,1 }j i i iD x y Y i N− = ∈ ≤ ≤ . As a general rule, it is 

possible for the imbalance ratio Im max(| |,| |) min(| |,| |)j j j jR D D D D+ − + −=  to become high because 

| |jD
+  is less than | |jD

−  in most cases. Therefore, the corresponding imbalance ratio is used to 
measure the imbalance of multi-label data. Considering multi-label imbalanced data sets, COCOA is 
an effective multi-label learning approach to train an imbalanced clinical data set in the proposed 
technique. In this study, a regularized ensemble approach integrated into multi-class classification 
process of COCOA named as COCOA-RE was developed to improve the performance of COCOA. 

3.1. Data Standardization 

Prior to the multi-label learning process, it is necessary to standardize the value of whole features. 
Owing to the fact that all features may be presented by different data types and their values may 
belong to different ranges, the features with higher range values participate more heavily in the 
training process than the features with lower range values as it would contribute to bias. Therefore, 
it is necessary to perform data standardization. Min–Max scaling of all values in the range of [0, 1] is 
performed as: 

* max

max min

i
i

x x
x

x x
-

=
-  (1) 

where *x  is the standardized feature, maxx  is the maximum value of corresponding feature before 
the standardization, and minx  is the minimum value of corresponding feature before the 
standardization. 
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3.2. COCOA Method for Class-Imbalanced Data 

The task of multi-label learning is to learn a multi-label classifier Y: X 2h →  from the training 
set. In other words, this is for learning q  real-valued functions : X (1 )jf j q→ ≤ ≤ , and each 
function is combined with a threshold : Xjt →  . For each inputting example Xx∈ , ( )jf x  denotes 
a confidence of relating x  to class label jy , and the predictive class label set is established as 
follows: 

( ) { | ( ) ( ),1 }j
j jh x y f x t x j q= > ≤ ≤  (2) 

For the class label jy , jD  denotes the binary training set from original training set D : 

{( , ( , )) |1 }

+1,  if 
where  ( , )

 1,  otherwise

j i i j

j i
i j

D x Y y i N

y Y
Y y

φ

φ

= ≤ ≤

∈
=  −

 (3) 

Instead of learning a binary classifier from jD , i.e., ( )j jg B D← , which considers that labels are 
independent, COCOA tries to incorporate label correlations in the learning classification model. In 
COCOA, another class label ( )ky k j≠  is randomly selected to couple with jy . Given the label pair 
( , )j ky y , a multi-class training set is presented as follows: 

{( , ( , , )) |1 }

  0,  if  and 
1,  if  and 

where  ( , , )
2,  if  and 
3,  if  and 

jk i i j k

j i k i

j i k i
i j k

j i k i

j i k i

D x Y y y i N

y Y y Y
y Y y Y

Y y y
y Y y Y
y Y y Y

ϕ

ϕ

= ≤ ≤

∉ ∉
+ ∉ ∈= + ∈ ∉
+ ∈ ∈

 (4) 

Supposing that the minority class in binary training set jD / kD corresponds to the positive 
examples of label jy / ky , the first class and the fourth class in jkD  would consist of largest and 
smallest number of examples. While the original imbalance ratios in binary training sets are Im jR  
and Im kR , respectively, the imbalance ratio would roughly turn into Im Imj kR R⋅  in four-class 
training set jkD , which implies that the worst-case imbalance ratio in a four-class training set would 
be much larger than that in a binary training set. To deal with this problem, COCOA converts the 
four-class training set into tri-class training set as follows: 

{( , ( , , )) |1 }

       0,  if  and     
where  ( , , ) 1,  if  and 

 +2,  if                    

tri tri
jk i i j k

j i k i
tri

i j k j i k i

j i

D x Y y y i N

y Y y Y
Y y y y Y y Y

y Y

j

j

= £ £

ìï Ï Ïïïï= + Ï Îíïïï Îïî

 (5) 

In this case, for the new third class, its imbalance ratio of the first class and that of the second 

class would roughly turn into 
Im Im

1 Im
j k

k

R R
R

⋅

+
 and 

Im
1 Im

j

k

R
R+

, which are much smaller than the 

imbalance ratio Im Imj kR R⋅  of the worst case in a four-class training set. 

By applying a multi-class learner on tri
jkD , the multi-class classifier can be induced as 

( )tri
jk jkg M D¬ . ( 2 | )ikg x+  represents the predictive confidence that example x  ought to have 

positive assignment of label i , regardless of x  having positive or negative assignment of label k . 
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In COCOA, a subset of K  class labels \k jL Y yÍ  is selected randomly for each class label for 
pairwise coupling. The predictive confidences of a binary-class learner and K  multi-class learners 
aggregate to determine the real-value function ( )jf x : 

( ) ( 1 | ) ( 2 | )
k k

j j iky L
f x g x g x

Î
= + + +å  (6) 

COCOA chooses a constant function ( )j jt x a=  to set the thresholding function ( )jt ⋅ . Any example 
x  is predicted to have positive assignment of label j  if ( )j jf x a>  and vice versa. F-measure 
metric is employed to find out the appropriate thresholding constant ja  as follows: 

arg max ( , , )j a j ja F f a DÎ=   (7) 

where ( , , )j jF f a D  denotes the value of F-measure calculated by employing { , }jf a  on jD . 

3.3. Regularized Boosting Approach for Multi-Class Classification 

In each iteration of ensemble multi-class classification model, some examples are classified 
incorrectly by the current classifier after being classified correctly by the classifier in the previous 
iteration; in particular, the distribution of multiple classes is imbalanced. A regularization parameter 
was introduced by Yuan et al. [32] into the convex loss function to calculate the classifier weight. This 
parameter penalized the weight of the current classifier if the classifier misclassifies examples that 
were classified correctly by the previous classifier. The regularized multi-class classification method 
aims to keep the correct classifications of minority examples, control the decision boundary towards 
minority examples, and prevent the bias derived from the large amount of majority examples. 

After each learning iteration, the weight of current classifier is calculated as follows: 

11 1log( ) log( ( 1))
2 2

t
t t

t

e
C

e
a d

-
= + -  (8) 

where the regularization parameter td  is initialized as 1. According to the loss function, the weights 
of misclassified examples are adjusted to increase while the weights of those classified correctly are 
adjusted to decrease. The weights of examples are updated as follows: 

1

1

( ) , , ( )
( )  , , ( )

t

t

t i i i i
t

t i i i i

w i e x f x y
w

w i e x f x y

a

a

-
-

-

ìï " =ï=íï " ¹ïî
 (9) 

After updating the weights of examples, the weights would be normalized. 
Misclassified examples are categorized into two classes: (i) second-round-misclassified examples 

1{ ; ( )  and ( ) }c i t i i t i iX x f x y f x y-= ¹ = , which are classified incorrectly by current classifier but 
classified correctly by previous classifier; and (ii) two-rounds-misclassified examples 

1{ ; ( )  and ( ) }m i t i i t i iX x f x y f x y-= ¹ ¹ , which are classified incorrectly by both the current classifier 
and the previous classifier. The weighted error is calculated by misclassified examples as follows: 

1 1

1 1
2 21 1 1 1

2 2
1 1

( ) ( )

( 1)(1 ) ( 1)(1 )   ( )( ) ( )( )

c m

c m

t t t
i X i X

t t t t
t t

i X i Xt t

e w i w i

C e C e
w i w i

e e
d d

- -
Î Î

-
- - - -

- -
Î Î- -

= +

- - - -
= +

å å

å å
 (10

) 

The regularization term penalizes the current classifier that had misclassified the second-round-
misclassified examples by changing its weight. To derive the regularization term, it assumes that all 
examples misclassified by the current classifier are also misclassified by the previous classifier. Thus, 
the exponent in expression of calculating the error of second-round-misclassified examples transfers 
into positive. In the above assumption, the maximum possible error is computed as follows: 
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1
* 1 1 2

2
( ) 1

( 1)(1 )( )( )
c m

t t
t t

i X X t

C e
e w i

e
d - -

-
Î È -

- -
= å  (11

) 

Then, the expression of the actual weighted error is computed as follows: 

1
* 2

t t te e d=  
(12

) 

Accordingly, the explicit expression of regularization term can be derived as follows: 
2

1
2

2 1 1( ( )) (1 ) ( 1)
c m

t t
t

t t t
i X X

e e
w i e C

d
d

-

- - -
Î È

=
- -å

 (13
) 

Both weighted error and regularization term are used to compute the weight of current classifier 
as shown in Equation (5). The regularization term is adjusted in each iteration in terms of the 
performances of the current classifier and the previous classifier. Considering this scheme, the 
weighted error needs to follow the below equation: 

(1 ) ( 1)t te C ed- - >  (14
) 

Thus, the weighted error boundary of the current classifier t is as follows: 

1 1

1
1 ( 1)t

t

e
Cd- -<

+ -
 (15

) 

3.4. COCOA Integrated with a Regularized Boosting Approach for Multi-Class Classification 

Class imbalance still exists in tri
jkD  when the number of examples with label j  or the number 

of examples with label k  is too small. Therefore, it is necessary to apply a multi-class classifier that 
is able to handle multi-class imbalanced data sets in tri

jkD . In this study, a regularized boosting 
approach introduced in Section 3.3 was integrated into the process of multi-class classification in 
COCOA (named as COCOA-RE) to achieve better performance. 

Table 1 presents the COCOA-RE method. For each label, a binary-class classifier and K  
coupling multi-class classifiers were performed to train the multi-label data set. Instead of using a 
single multi-class classifier, a regularized boosting approach was applied to produce an ensemble 
classifier for the training data set of each coupling labels. The regularization parameter was initialized 
to be equal at 1, and the weight of each example was initialized with 1/M . Two indicator functions 
were used in the COCOA-RE approach, namely Function 1

01  and Function 1
1-1 . Function 1

01  was 
equal at 1 if true, 0 otherwise, and it was used in calculation of the weighted error. Function 1

1-1  was 
equal at 1 if true, −1 otherwise, and it was used to update the weight of examples. After training the 
multi-label data set, the predictive value for label jy  was integrated by the predictive confidences 
calculated by the binary-class classifier and multi-class classifiers. Eventually, the predictive models 
of all labels were performed to produce the predicted label set for the testing example. 

Table 1. The pseudo-code of (COCOA-RE). COCOA-RE: a regularized ensemble approach 
integrated into multi-class classification process of COCOA; COCOA: Cross-Coupling Aggregation. 

Algorithm: COCOA-RE 
Inputs: 
D : the multi-label training set 1 1 2 2{( , ), ( , ), , ( , )}n nT X Y X Y X Y=   
B : the binary-class classifier 
M : the multi-class classifier 
K : the number of coupling labels 
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x : the testing example ( )x XÎ  
Outputs： 
 Y : the suggested labels for x  
Training process: 
1: For 1j =  to q  do 
2:    Generate the binary training set jD  according to Equation (3) 
3:    ( )j jg B D ; 
4:    Select a subset \k jL Y yÍ  containing K  labels randomly 
5:    for k ky LÎ  do 
6:        Generate the tri-class training set tri

jkD  according to Equation (5) 
7:        Initialize example weight 0 ( ) 1w i M=  and 1 =1d  
8:        for 1t =  to T  do 
9:            Train a classifier 1

1 0arg min ( ) [ ( )]
t

t t i t i
i D

f w i y f x-
Î

 ¹å 1  

10:           if 1t>  then 
11:               Compute td  according to Equation (13) 
12:           end if 
13:           if 1 11 (1 ( 1) )t te Cd- -> + -  then 
14:               return 0ta   
15:           else 

16:               Compute weight ta  for classifier tf : 11 1log( ) log( ( 1))
2 2

t
t t

t

e
C

e
a d

-
 + -  

17: dCompute example weight: 
1

1( [ ( )])
1( ) ( ) t i t iy f x

t tw i w i e a - ¹
- 1  

18:               Normalize ( )tw i : 
1

( )( )
( )

t
t M

tj

w i
w i

w i
=


å

 

19:           end if 
20:       end for 

21:       
1

arg max ( )
T

ik t ty t

g f xa
=

 å  

22:    end for 
23:    Set the real-valued function ( )jf ⋅ : ( ) ( 1 | ) ( 2 | )

k k
j j jky L
f x g x g x

Î
 + + +å  

24:    Set the constant thresholding function ( )jt ⋅ is equal to ja  generated by Equation (7) 
25: end for 
26: Return ( )Y h x=  according to Equation (2) 

4. Experiments 

4.1. Data Set and Experiment Setup 

Patients with at least one of the following seven diseases—diabetes mellitus type 2, hyperlipemia, 
hyperuricemia, coronary illness, cerebral ischemic stroke, anemia, and chronic kidney disease—were 
viewed in a local hospital named Haikou People’s Hospital. Then, 655 patients satisfying the above 
diseases were selected as experimental examples. After selecting features from their essential 
information and laboratory results, five essential characteristics and 278 items of laboratory test 
results were combined to construct the features of experimental examples. The essential 
characteristics included age, temperature, height, weight, and gender (the detailed testing items are 
illustrated in the appendix). Binary value was used to represent the estimation of gender, i.e., male 
was 0 and female was 1. The values of age, temperature, height, and weight were kept as their actual 
numerical qualities. The corresponding values of testing items were divided into three groups: 
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normal (the corresponding value is in the normal range); low (the corresponding value is lower than 
the minimum value in the normal range); and high (the corresponding value is higher than the 
maximum value in the normal range). Furthermore, the values of testing items recorded by textual 
information were classified into these groups with the suggestion of a medical expert. The 
corresponding values of items were set as normal if the patient had not checked these items. The 
measurements of the final data and those of the final labels are outlined in Tables 2 and 3. (The 
detailed list of testing items is shown in Table A1). In the experimental examples, 42.6% were female 
and 57.4% were male. The mean age, temperature, height, and weight of experimental examples were 
62.72, 36.6, 168.35, and 65.47, respectively. The values of features were standardized using the data 
standardization method introduced in Section 3.1 before the training process. In addition, principal 
component analysis (PCA) was performed for dimensionality reduction in the feature preprocess. 

Table 2. The Statistics of Features. 

Input Features Category Number Mean 

Essential 

Information 

   

Age   62.72 

Temperature   36.6 

Height   168.35 

Weight   65.47 

Gender 
Male 395  

Female 260  

Lab test results    

Items  278  

Table 3. The Statistics of Labels 

Labels No. of Examples Imbalance 
Ratio 

Average 
Imbalance 
Ratio 

Diabetes mellitus type 2 266 1.46 

10.25 

Hyperlipemia 77 7.48 
Hyperuricemia 14 45.64 
Coronary illness 197 2.32 
Cerebral ischemic stroke 229 1.85 
Anemia 124 4.27 
Chronic kidney disease 67 8.74 

The results of the COCOA-RE approach were compared against two series of multi-label learning 
methods towards class-imbalanced data. The first that oversamples minority class when the multi-
label learning task is decomposed into multiple binary learning tasks. Considering COCOA 
ensembles different classifiers, an ensemble version of SMOTE (SMOTE-EN) was employed to make 
comparison. For SMOTE-EN, the base classifiers were decision tree and neural network. The 
ensemble size for SMOTE-EN was initialized as 10. The second method used different multi-class 
classifiers in the COCOA approach. For COCOA, the base classifiers were decision tree and neural 
network in binary classification. Both typical classifiers—such as decision tree and neural network—
and different ensemble approaches were employed to train the multi-class data sets. To avoid 
overfitting, early pruning was applied in the decision tree implementation. Popular ensemble 
approaches including AdaBoost.M1 and SAMME were applied in multi-class classification tasks of 
COCOA for comparison (name as COCOA-Ada and COCOA-SAMME). In constructing ensembles 
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of multi-class classification, decision tree was the base classifier. Before applying decision tree, early 
pruning was employed to avoid overfitting. The number of iterations in each ensemble was set as 60, 
i.e., 60 classifiers were created. Furthermore, the number of coupling labels was set as 6 ( 1q- ). Of 
the experimental examples, 70% were selected randomly and used as the training set; the remaining 
ones were used as the testing set. The random training/testing data selection were performed ten 
times to form ten training sets and their corresponding testing sets, and the average metrics were 
recorded. 

4.2. Evaluation Metrics 

To evaluate the classification performance, F-measure and area under the ROC curve (AUC) are 
generally used as evaluation metrics as they can provide more insights than conventional metrics 
[36,37]. The macro averaging metric values from all labels are reported to evaluate the multi-label 
classification performance. Higher macro average metric value indicates better performance.  

Precision and recall were considered simultaneously by F1-measure. For a label j , F1-measure is 
computed as follows: 

2 | ( ) |2F1( )
2 | | | ( ) |

j j

j j

Y h xTPj
TP FP FN Y h x

× ∩×= =
× + + +

 (16
) 

where jY  denotes the true example set of label j , and ( )jh x  denotes the predictive example set 
of label j . 

Consequently, Macro-F1, which measures the average F1-measure over all labels, is presented 
as follows: 

1
1( )

1
q

i
F j

Macro F
q

=− =   
(17

) 

The AUC value is equivalent to the probability that a randomly chosen positive example is 
ranked higher than a randomly chosen negative example. For a label, the AUC value is computed by 
the following: 

( 1)( )
2=

*
i positive class

M Mrank i
AUC

M N
∈ −

× +−
 

(18
) 

where M  is the number of positive examples in label j , and N  is the number of negative 
examples in label j . 

Therefore, Macro-AUC that measures the average AUC values over all labels is presented as 
follows: 

1
( )q

j
AUC j

Macro AUC
q

=− =


 
(19

) 

4.3. Experimental Results 

Tables 4 and 5 summarizes the detailed experimental results according to Macro-F and Macro-
AUC.  
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Table 4. The experimental results when the binary classifier is decision tree. 

Results 
The Binary Classifier Is Decision Tree 

SMOTE-EN 
COCOA-DT COCOA-Ada COCOA-

SAMME COCOA-RE 

Macro-F 0.384 0.410 0.437 0.457 0.465 
Macro-
AUC 

0.613 0.632 0.645 0.666 0.670 

Note: The bold values are best among the results. 

Table 5. The experimental results when the binary classifier is neural network. 

Results 
The Binary Classifier Is Neural Network 

SMOTE-EN 
COCOA-DT COCOA-Ada COCOA-

SAMME COCOA-RE 

Macro-F 0.392 0.412 0.441 0.464 0.477 
Macro-
AUC 

0.620 0.646 0.654 0.660 0.671 

Note: The bold values are best among the results. 

For Macro-F, the results in Tables 4 and 5 can be concluded as follows: (1) When decision tree 
was applied as the binary classifier, COCOA-RE significantly outperformed the comparable 
approach without COCOA (SMOTE-EN) by 21%. Compared to algorithms related to COCOA, 
COCOA-RE not only outperformed COCOA-DT that used a general (decision tree) classifier as the 
multi-class classifier by 13.4%, but it also outperformed the algorithms using an ensemble classifier 
as the multi-class classifier, such as COCOA-Ada and COCOA-SAMME. (2) When neural network 
was applied as the binary classifier, COCOA-RE significantly outperformed the comparable 
approach without COCOA (SMOTE-EN) by 21.6%. Compared to algorithms related to COCOA, 
COCOA-RE not only outperformed COCOA-DT that used a general classifier (neural network) as the 
multi-class classifier by 15.8%, but it also outperformed COCOA-Ada and COCOA-SAMME. These 
results illustrate that COCOA-RE is capable of achieving good balance between precision and recall 
in learning the class-imbalanced multi-label data set.  

For Macro-AUC, the results in Tables 4 and 5 can be concluded as follows: (1) When decision 
tree was applied as the binary classifier, COCOA-RE significantly outperformed the comparable 
approach without COCOA (SMOTE-EN) by 9.3%. Compared to algorithms related to COCOA, 
COCOA-RE not only outperformed COCOA-DT by 6%, but it also outperformed COCOA-Ada and 
COCOA-SAMME. (2) When the neural network was applied as the binary classifier, COCOA-RE 
significantly outperformed the comparable approach without COCOA (SMOTE-EN) by 8%. 
Compared to algorithms related to COCOA, COCOA-RE not only outperformed COCOA-DT that 
used a general classifier (neural network) as the multi-class classifier by 3.7%, but it also 
outperformed COCOA-Ada and COCOA-SAMME. These results demonstrate the real-value 
function in COCOA-RE is capable of achieving better performance than reasonable predictive 
confidence. 

To further investigate the performance of COCOA-RE in different imbalance ratios, the 
performance of each approach in each class label was collected based on F-measure. In the case that 
algorithm A was compared with algorithm B, qA  denoted the performance of algorithm A in class 
label q  and qB  denoted that of algorithm B in class label q . The corresponding percentage of 
performance gain was calculated as [( ) / ]*100%q q q qPG A B B= -  that reflected the relative 
performance between algorithm A and algorithm B in class label q . Figure 2 demonstrates the 
performance gain qPG  changes along the imbalance ratio of the class label q . As shown in Figure 
2, irrespective of whether the binary classifier was decision tree or neural network, each algorithm 
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based on COCOA achieved good performance against SMOTE-EN across all labels, with each qPG  
hardly coming below 0. Furthermore, the percentage of performance gain between COCOA-RE and 
SMOTE-EN achieved best results when the imbalance ratio was high ( Im =8.74R  and Im =45.64R ), 
In particular, it was larger than 100% in the case that ImR  was equal to 45.64, which illustrates that 
the advantage of COCOA-RE is more pronounced when the class imbalance problem is severe in the 
multi-label data set. 

(a) (b) 

Figure 2. Percentage of performance gain between each algorithm based Cross-Coupling Aggregation 
(COCOA) and SMOTE-EN ( qPG ) changes along imbalance ratio of the class label q : (a) the changes 

of performance gains based on F-measure when the binary classifier is decision tree; (b) the changes 
of performance gains based on F-measure when the binary classifier is neural network. SMOTE-EN: 
an ensemble version of synthetic minority over-sampling technique. 

4.4. The Impact of K 

To further investigate the performance of COCOA-RE in different numbers of coupling labels 
K , experiments were carried out in which K  was changed from 2 to 6. When Macro-F was chosen 
to evaluate the performance, the relative results against four comparable algorithms in which the 
binary classifier was decision tree is depicted in Figure 3a and that against four comparable 
algorithms in which the binary classifier was neural network is depicted in Figure 3b. When Macro-
AUC was chosen to evaluate the performance, the relative results against four comparable algorithms 
in which the binary classifier was decision tree is depicted in Figure 4a and that against four 
comparable algorithms in which the binary classifier was neural network is depicted in Figure 4b. As 
shown in Figures 3 and 4, COCOA-RE maintained the best performance against the comparable 
algorithms across different K  whether the evaluation metric was Macro-F or Macro-AUC. 
Furthermore, the COCOA-RE achieved the best Macro-F value and best Macro-AUC when the 
number of coupling labels K  was 6. These results indicate that the COCOA-RE that considers 
correlations between more coupling labels would achieve better performance. 
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(a) 

 
(b) 

Figure 3. Comparative Macro-F values with changing coupling labels: (a) the Macro-F values of 
different K  when the binary classifier is decision tree; (b) the Macro-F values of different K  when 
the binary classifier is neural network. 

 
(a) 

 
(b) 

Figure 4. Comparative Macro-AUC values with changing coupling labels: (a) the Macro-AUC values 
of different K  when the binary classifier is decision tree; (b) the Macro-AUC values of different K  
in the case when the binary classifier is neural network. AUC: area under the ROC curve. 

4.5. The Impact of Iterations in Ensemble Classification 

It is necessary to consider the number of iterations when employing ensemble learning 
approaches. COCOA-Ada integrated with the ensemble algorithm named Adaboost.M1 as the multi-
class classifier and COCOA-SAMME integrated with the ensemble algorithm named SAMME as the 
multi-class classifier were chosen to make comparisons with COCOA-RE. Using decision tree as the 
binary-class classifier, the Macro-F values and Macro-AUC values of comparable approaches in 
different iterations is shown in Figure 5a,b. Figure 6a,b present the Macro-F values and Macro-AUC 
values of comparable approaches in different iterations using neural network as the binary-class 
classifier. From these results, it can be seen that irrespective of the binary classifier chosen, COCOA-
RE outperformed comparable approaches. Moreover, the Macro-F value and Macro-AUC value in 
COCOA-RE increased with the growth of iterations, but the rate of the increase of Macro-F value and 
that of Macro-AUC began slowing down when the number of iterations was higher than 50. This 
indicates that the performance of COCOA-RE would be improved by increasing the number of 
iterations. However, increasing the iterations implies that more weak classifiers are required to be 
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trained, which would enhance the burden of computing cost. Thus, the number of iterations should 
not be set too large in order to avoid heavy computational cost. 

 
(a) 

 
(b) 

Figure 5. The results with changing iterations using decision tree as the binary-class classifier: (a) the 
Macro-F values of comparable approaches in different iterations; (b) the Macro-AUC values of 
comparable approaches in different iterations. 

(a) (b) 

Figure 6. The results with changing iterations using neural network as the binary-class classifier: (a) 
The Macro-F values of comparable approaches in different iterations; (b) the Macro-AUC values of 
comparable approaches in different iterations. 

4.6. System Implementation 

The proposed approach was implemented in our previously developed system prototype that 
can run on personal computers. A brief introduction of the developed system is given in this section. 
The main working interface for clinicians is described in Figure 7a, and the laboratory test report of 
the current patient is shown in Figure 7b. In the work interface, the pink region shows the patient’s 
basic information, purple region shows the patient’s physical signs, and the green region shows the 
patient’s medical record. In some cases, the clinician needs to review the laboratory test results before 
determining his or her diagnosis. The clinician can review the laboratory test report(s) (see Figure 7b) 
by clicking on the left green screen. In Figure 7, the blue region demonstrates the abnormal laboratory 
test results, and the whole laboratory test results will be shown if the green button is clicked. In terms 
of the predicted model train by COCOA-RE, the orange region lists one or more possible illness of 
the patient to the clinician. Once the clinician accepts the suggested illness, he or she can click on the 
“add the recommended disease to diagnosis” button (blue button) to append the recommended 
illness to the diagnosis automatically. After reviewing the laboratory test reports, the clinician can 
get back to the main work interface (Figure 7a) to continue writing the medical record for the patient 
by clicking the return button on the browser. 
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(a) 

 
(b) 

Figure 7. Two screenshots of the developed system using COCOA-RE approach: (a) the main work 
interface for clinicians; (b) the interface for viewing the laboratory test report. 

5. Conclusions 

After analyzing real-world electronic health record data, it has been revealed that a patient could 
be diagnosed with having more than one disease simultaneously. Therefore, to suggest a list of 
possible diseases, the task of classifying patients is transferred into a multi-label learning task. 
However, the class imbalance issue is a challenge for multi-label learning approaches. COCOA is a 
typical multi-label learning approach aimed at leveraging label correlation and exploring class 
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imbalance. To improve the performance of COCOA, a regularized ensemble approach integrated into 
multi-class classification process of COCOA named as COCOA-RE was presented in this paper. 
Considering the class imbalance problem, this method leverages a regularized ensemble method to 
explore disease correlations and integrates the correlations among diseases in the multi-label learning 
process. To provide disease diagnosis, COCOA-RE learns from the available laboratory test results 
and essential information of patients and produces a multi-label predictive model. Experimental 
results validated the effectiveness of the proposed multi-label learning approach, and the proposed 
approach was implemented in a developed prototype system that can assist clinicians to work more 
efficiently. 

The features extracted from laboratory test reports and essential information of patients were also 
considered in this paper. In our further works, features selected from more sources like textual and 
monitoring reports will be integrated to construct a more comprehensive profile of patients. To 
ensure the efficiency of the decision support system for medical diagnosis, an effective feature 
selection method should be used to reduce the increasing number of integrated features. In addition, 
multi-label approaches would process large-scale clinical data in a slow rapid, which is required to 
develop a more efficient multi-label learning method. 
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Appendix A 
Table A1. List of laboratory testing items. 

List Of Laboratory Testing Items 

Venous blood 96 Transferrin saturation factor 191 Blood glucose 

No. Testing items 97 Serum iron 192 Arterial blood hemoglobin 
1 Platelet counts (PCT) 98 Folic acid 193 Ionic Calcium 

2 Platelet-large cell 

ratio(P-LCR) 

99 The ratio of CD4 

lymphocytes and CD8 

lymphocyte 

194 Chloride ion 

3 Mean platelet volume 

(MPV) 

100 CD3 lymphocyte count 195 Sodium ion 

4 Platelet distribution 

width (PDW) 

101 CD8 lymphocyte count 196 Potassium ion 

5 Red blood cell volume 

distribution Width 

(RDW-SD) 

102 CD4 lymphocyte count 197 Oxygen saturation 

6 Coefficient of variation 

of red blood cell 

distribution width 

103 Heart-Type fatty acid 

binding protein 

198 Bicarbonate 

7 Basophil 104 Rheumatoid 199 Base excess 
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8 Eosinophils 105 Anti-Streptolysin O 200 Partial pressure of oxygen 

9 Neutrophils 106 Free thyroxine 201 Partial pressure of carbon 

dioxide 

10 Monocytes 107 Free triiodothyronine 202 PH value 

11 Lymphocytes 108 Antithyroglobulin 

antibodies 

Feces 

12 Basophil ratio 109 Antithyroid peroxidase 

autoantibody 

No. Testing items 

13 Eosinophils ratio 110 Thyrotropin 203 Feces with blood 

14 Neutrophils ratio 111 Total thyroxine 204 Feces occult blood 

15 Monocytes ratio 112 Total triiodothyronine 205 Red blood cell 

16 Lymphocytes ratio 113 Peptide 206 White blood cell 

17 Platelet 114 Insulin 207 Feces property 

18 Mean corpuscular 

hemoglobin 

concentration 

115 Blood sugar 208 Feces color 

19 Mean corpuscular 

hemoglobin 

116 B factor 209 Fungal hyphae 

20 Mean corpuscular 

volume 

117 Immunoglobulin G 210 Fungal spore 

21 Hematocrit 118 Immunoglobulin M 211 Macrophage 

22 Hemoglobin 119 Immunoglobulin A 212 Fat drop 

23 Red blood cell 120 Adrenocorticotrophic 213 Mucus 

24 White blood cell 121 Cortisol 214 Worm egg 

25 Calcium 122 Humanepididymisprotein4 Urine 

26 Chlorine 123 Carbohydrate antigen 15-3 No. Testing items 

27 Natrium 124 Carbohydrate antigen 125 215 Urinary albumin/creatinine 
ratio 

28 Potassium 125 Alpha-fetoprotein 216 Microalbumin 

29 Troponin I 126 Carcinoembryonic antigen 217 Microprotein 

30 Myoglobin 127 Carbohydrate antigen 199 218 Urine creatinine 

31 High sensitivity C-

reactive protein 

128 Hydroxy-vitamin D 219 Glycosylated hemoglobin 

32 Creatine kinase 

isoenzymes 

129 Thyrotropin receptor 

antibody 

220 Peptide 

33 Creatine kinase 130 HCV 221 Insulin 

34 Complement (C1q) 131 Enteric adenovirus 222 Blood sugar 

35 Retinol-binding 132 Astrovirus 223 β2 micro globulin 

36 Cystatin C 133 Norovirus 224 Serum β micro globulin 

37 Creatinine 134 Duovirus 225 Acetaminophen glucosidase 

38 Uric acid 135 Coxsackie virus A16-IgM 226 α1 micro globulin 

39 Urea 136 Enterovirus 71-IgM 227 Hyaline cast 
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40 Pro-brain nitric peptide 137 Toluidine Red test 228 White blood cell cast 

41 α-Fructosidase 138 Uric acid 229 Red blood cell cast 

42 Pre-albumin 139 Urea 230 Granular cast 

43 Total bile acid 140 Antithrombin 231 Waxy cast 

44 Indirect bilirubin 141 Thrombin time 232 Pseudo hypha 

45 Bilirubin direct 142 Partial-thromboplastin time 233 Bacteria 

46 Total bilirubin 143 Fibrinogen 234 Squamous cells 

47 Glutamyl transpeptidase 144 International normalized 

ratio 

235 Non-squamous epithelium 

48 Alkaline phosphatase 145 Prothrombin time ratio 236 Mucus 

49 Mitochondrial-aspartate 

aminotransferase 

146 Prothrombin time 237 Yeasts 

50 Aspartate 

aminotransferase 

147 D-dimer 238 White Blood Cell Count 

51 Glutamic-pyruvic 

transaminase 

148 Fibrinogen degradation 

product 

239 White blood cell 

52 Albumin and globulin 

ratio 

149 Aldosterone-to-renin ratio 240 Red blood cell 

53 Globulin 150 Renin 241 Vitamin C 

54 Albumin 151 Cortisol 242 Bilirubin 

55 Total albumin 152 Aldosterone 243 Urobilinogen 

56 Lactate dehydrogenase 153 Angiotensin Ⅱ 244 Ketone body 

57 Anion gap 154 Adrenocorticotrophic 

hormone 

245 Glucose 

58 Carbon dioxide 155 Reticulocyte absolute value 246 Defecate concealed blood 

59 Magnesium 156 Reticulocyte ratio 247 Protein 

60 Phosphorus 157 Middle fluorescence 

reticulocytes 

248 Granulocyte esterase 

61 Blood group 158 High fluorescence 

reticulocytes 

249 Nitrite 

62 Osmotic pressure 159 Immature reticulocytes 250 PH value 

63 Glucose 160 Low fluorescence 

reticulocytes 

251 Specific gravity 

64 Amylase 161 Optical platelet 252 Appearance 

65 Homocysteine 162 Erythrocyte sedimentation 

rate 

253 Transparency 

66 Salivary acid 163 Casson viscosity 254 Human chorionic 

gonadotropin 

67 Free fatty acid 164 Red blood cell rigidity index Cerebrospinal fluid 

68 Copper-protein 165 Red blood cell deformation 

index 

No. Testing items 
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69 Complement (C4) 166 Whole blood high shear 

viscosity 

255 Glucose 

70 Complement (C3) 167 Whole blood low shear 

viscosity 

256 Chlorine 

71 Lipoprotein 168 Red cell assembling index 257 β2-microglobulin 

72 Apolipoprotein B 169 K value in blood 

sedimentation equation 

258 Microalbumin 

73 Apolipoprotein A1 170 Whole blood low shear 

relative viscosity 

259 Micro protein 

74 Low density lipoprotein 

cholesterol 

171 Whole blood high shear 

relative viscosity 

260 Adenosine deaminase 

75 High density lipoprotein 

cholesterol 

172 Erythrocyte sedimentation 

rate (ESR) 

261 Mononuclear white blood 

cell 

76 Triglycerides 173 Plasma viscosity 262 Multinuclear white blood 

cell 

77 Total cholesterol 174 Whole blood viscosity1(1/S) 263 White blood cell count 

78 Procalcitonin 175 Whole blood 

viscosity50(1/S) 

264 Pus cell 

79 Hepatitis B core 

antibody 

176 Whole blood 

viscosity200(1/S) 

265 White Blood Cell 

80 Hepatitis B e antibody 177 Occult blood of gastric juice 266 Red Blood Cell 

81 Hepatitis B e antigen 178 Carbohydrate antigen 19-9 267 Pandy test 

82 Hepatitis B surface 

antibody 

179 Free-beta subunit human 

chorionic gonadotropin 

268 Turbidity 

83 Hepatitis B surface 

antigen 

180 Neuron-specific enolase 269 Color 

84 Syphilis antibodies 181 Keratin 19th segment Peritoneal dialysate 

85 C-reactive protein 182 Carbohydrate antigen 242 No. Testing items 

86 Lipase 183 The absolute value of 

atypical lymphocyte 

270 Karyocyte (single nucleus) 

87 Blood ammonia 184 The ratio of atypical 

lymphocyte 

271 Karyocyte (multiple 

nucleus) 

88 Cardiac troponin T Arterial blood 272 Karyocyte count 

89 Hydroxybutyric acid No. Testing items 273 White Blood Cell 

90 Amyloid β-protein 185 Anion gap 274 Red Blood Cell 

91 Unsaturated iron 

binding capacity 

186 Carboxyhemoglobin 275 Mucin qualitative analysis 

92 Transferrin 187 Hematocrit 276 Coagulability 

93 Ferritin 188 Lactic acid 277 Turbidity 

94 Vitamin B12 189 Reduced hemoglobin 278 Color 
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95 Total iron binding 

capacity 

190 Methemoglobin   
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