
applied
sciences

Article

A Design of a Lightweight In-Vehicle Edge Gateway
for the Self-Diagnosis of an Autonomous Vehicle

YiNa Jeong 1, SuRak Son 1, EunHee Jeong 2 and ByungKwan Lee 1,*
1 Department of Computer Engineering, Catholic Kwandong University, Gangneung 25601, Korea;

lupinus07@nate.com (Y.J.); sonsur@naver.com (S.S.)
2 Department of Regional Economics, Kangwon National University, Samcheok 25913, Korea;

jeongeh@kangwon.ac.kr
* Correspondence: bklee@cku.ac.kr; Tel.: +82-033-649-7160

Received: 8 August 2018; Accepted: 6 September 2018; Published: 9 September 2018
����������
�������

Abstract: This paper proposes a Lightweight In-Vehicle Edge Gateway (LI-VEG) for the self-diagnosis
of an autonomous vehicle, which supports a rapid and accurate communication between in-vehicle
sensors and a self-diagnosis module and between in-vehicle protocols. A paper on the self-diagnosis
module has been published previously, thus this paper only covers the LI-VEG, not the self-diagnosis.
The LI-VEG consists of an In-Vehicle Sending and Receiving Layer (InV-SRL), an InV-Management
Layer (InV-ML) and an InV-Data Translator Layer (InV-DTL). First, the InV-SRL receives the messages
from FlexRay, Control Area Network (CAN), Media Oriented Systems Transport (MOST), and
Ethernet and transfers the received messages to the InV-ML. Second, the InV-ML manages the message
transmission and reception of FlexRay, CAN, MOST, and Ethernet and an Address Mapping Table.
Third, the InV-DTL decomposes the message of FlexRay, CAN, MOST, and Ethernet and recomposes
the decomposed messages to the frame suitable for a destination protocol. The performance analysis
of the LI-VEG shows that the transmission delay time about message translation and transmission
is reduced by an average of 10.83% and the transmission delay time caused by traffic overhead
is improved by an average of 0.95%. Therefore, the LI-VEG has higher compatibility and is more
cost effective because it applies a software gateway to the OBD, compared to a hardware gateway.
In addition, it can reduce the transmission error and overhead caused by message decomposition
because of a lightweight message header.

Keywords: Address Mapping Table; In-Vehicle Edge Gateway; self-diagnosis

1. Introduction

In the future, more than 200 billion devices will be connected to the cloud and each other in what
is commonly called the Internet of Things (IoT) [1]. Therefore, An IoT gateway that is a physical device
or software program as the connection point between the cloud and controllers, sensors and intelligent
devices plays important role. IoT gateway provides a place to preprocess the data located at the edge
before sending it on to the cloud and supports communication between heterogeneous devices.

The gateways of connected cars, which are currently being developed, are similar to IoT gateways.
As shown in Figure 1, the connected car’s ECUs and Gateway need to handle many requirements,
such as enhancing engine control and transmission control performance; securing stability through
ABS, LDW, and FCW; and increasing convenience through camera and body control. To address these
needs, the number of ECUs used in vehicles has increased dramatically and ECUs are connected to
various protocols depending on their characteristics [2].

Appl. Sci. 2018, 8, 1594; doi:10.3390/app8091594 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/8/9/1594?type=check_update&version=1
http://dx.doi.org/10.3390/app8091594
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 1594 2 of 19

Appl. Sci. 2018, 8, x FOR PEER REVIEW 2 of 19

Figure 1. Vehicle gateways that need to handle in-vehicle sensor data.

To process such a large amount of data, various communication protocols such as FlexRay,

MOST, CAN and Ethernet are used inside the vehicle. CAN, a low-speed (1 Mbps) communication

protocol used in conventional in-vehicle communications, is used to process relatively less

important vehicle control sensor data. FlexRay, a high-speed (10 Mbps) communication protocol, is

mainly used to process control data of major parts of a vehicle. MOST and Ethernet have speeds up

to 150 Mbps. MOST is a ring type network that processes multimedia data such as voice and video

inside the vehicle, and Ethernet can be used as a backbone of in-vehicle network or as a V2X

communication protocol.

To support these protocols, there have been various studies on the gateway inside the vehicle.

However, gateways with minimum transmission delay only support some protocols such as CAN

to FlexRay and MOST to CAN, and gateways that support communication for all protocols had

increased transmission delay.

To support the four major protocols (i.e., CAN, FlexRay, MOST, and Ethernet) used for

in-vehicle communications and to minimize the transmission delay of gateways, this paper

proposes a Lightweight In-Vehicle Edge Gateway (LI-VEG) for the self-diagnosis of an autonomous

vehicle. The LI-VEG receives the messages from the source sensor or actuator, translates the

received messages into the format of a destination protocol, and transfers the translated messages

to the destination ECU, sensor, or actuator, and the messages received from a source to the

self-diagnosis module. Because the LI-VEG supports four major protocols, contrary to the existing

vehicle gateway, it has good scalability and compatibility. In addition, The LI-VEG is indispensable

to self-diagnosis module of an autonomous vehicle due to its rapidity and accuracy. A paper on the

self-diagnosis module has already been published [3], thus this paper only covers the LI-VEG, not

the self-diagnosis.

The remainder of the paper is organized as follows. In Section 2, related works are introduced.

In Section 3, the configuration and operation of LI-VEG are described. In Section 4, the performance

evaluation focuses in particular on the transmission delay and error rate for message transmission.

Finally, Section 5 presents the conclusions of the paper.

2. Related Works

2.1. On-Board Diagnostics

Onboard-diagnostic (OBD) is an automotive term for self-diagnosis and reporting of vehicles.

OBD system is developed to detect engine operation conditions for air-pollution monitoring [4].

The basic meaning of OBD is as above and it is used in various ways. OBD related research is as

follows.

Configuration of on-board diagnostics system and diagnostic communication module ELM327

are introduced. According to elements of ELM327 and Keyword 2000 protocols, an OBDII

diagnostic procedure is developed based on LabVIEW program [5].

Ochs. T. et al. [6] developed exhaust gas sensors for particulate matter (EGS-PM) based on

multilayer ceramic sensor technology. Sensors must be able to detect soot emissions directly after

the DPF, be able to withstand harsh exhaust gas environments, and meet future OBD legislation

that includes stricter requirements for monitoring the function of the filter.

Figure 1. Vehicle gateways that need to handle in-vehicle sensor data.

To process such a large amount of data, various communication protocols such as FlexRay, MOST,
CAN and Ethernet are used inside the vehicle. CAN, a low-speed (1 Mbps) communication protocol
used in conventional in-vehicle communications, is used to process relatively less important vehicle
control sensor data. FlexRay, a high-speed (10 Mbps) communication protocol, is mainly used to
process control data of major parts of a vehicle. MOST and Ethernet have speeds up to 150 Mbps.
MOST is a ring type network that processes multimedia data such as voice and video inside the vehicle,
and Ethernet can be used as a backbone of in-vehicle network or as a V2X communication protocol.

To support these protocols, there have been various studies on the gateway inside the vehicle.
However, gateways with minimum transmission delay only support some protocols such as CAN to
FlexRay and MOST to CAN, and gateways that support communication for all protocols had increased
transmission delay.

To support the four major protocols (i.e., CAN, FlexRay, MOST, and Ethernet) used for in-vehicle
communications and to minimize the transmission delay of gateways, this paper proposes a
Lightweight In-Vehicle Edge Gateway (LI-VEG) for the self-diagnosis of an autonomous vehicle.
The LI-VEG receives the messages from the source sensor or actuator, translates the received messages
into the format of a destination protocol, and transfers the translated messages to the destination
ECU, sensor, or actuator, and the messages received from a source to the self-diagnosis module.
Because the LI-VEG supports four major protocols, contrary to the existing vehicle gateway, it has
good scalability and compatibility. In addition, The LI-VEG is indispensable to self-diagnosis module
of an autonomous vehicle due to its rapidity and accuracy. A paper on the self-diagnosis module has
already been published [3], thus this paper only covers the LI-VEG, not the self-diagnosis.

The remainder of the paper is organized as follows. In Section 2, related works are introduced.
In Section 3, the configuration and operation of LI-VEG are described. In Section 4, the performance
evaluation focuses in particular on the transmission delay and error rate for message transmission.
Finally, Section 5 presents the conclusions of the paper.

2. Related Works

2.1. On-Board Diagnostics

Onboard-diagnostic (OBD) is an automotive term for self-diagnosis and reporting of vehicles.
OBD system is developed to detect engine operation conditions for air-pollution monitoring [4]. The
basic meaning of OBD is as above and it is used in various ways. OBD related research is as follows.

Configuration of on-board diagnostics system and diagnostic communication module ELM327
are introduced. According to elements of ELM327 and Keyword 2000 protocols, an OBDII diagnostic
procedure is developed based on LabVIEW program [5].

Ochs. T. et al. [6] developed exhaust gas sensors for particulate matter (EGS-PM) based on
multilayer ceramic sensor technology. Sensors must be able to detect soot emissions directly after
the DPF, be able to withstand harsh exhaust gas environments, and meet future OBD legislation that
includes stricter requirements for monitoring the function of the filter.

Kamimoto. T. et al. [7] reviewed currently soot sensors developed for on-board diagnostics to
monitor a diesel particulate filter and detect the failure. Original equipment manufacturers have

Appl. Sci. 2018, 8, 1594 3 of 19

selected a resistive soot sensor for the on-board diagnostics application because of its commercial
feasibility in terms of functionality and cost. The sensor accumulates soot particles in exhaust gas on
the sensing element.

As powertrains become more electric, the number of on-board diagnostics relevant to Electronic
Control Units (ECUs) continues to grow. Vector provides a summary of the on-board diagnostics
functions integrated in the AUTOSAR basic software (BSW) and which use cases they support [8].

Mobile communication offers one-way data collection for remote surveillance when data
transmission is continuously linked with server through mobile communication. Data acquisition is
handled by on-board unit via EV CAN network. However, on-line data size, e.g., state of health, is so
huge that it is not easily transmitted when hundreds of vehicles are simultaneously connected for data
logging into server. Taking SOH as example, it is a challenge to effectively provide the continuity of
curve variation for remote health estimation. Hence, estimation theory is applied and embedded into
hardware implementation before data reporting [9].

Every vehicle will be equipped with a central unit which will acquire speed data (and compute
the average speed) from the on-board sensors of a car using an OBD device, and process and deliver
the data to the server using the ZigBee protocol, with a ZigBee transmitter employed in every vehicle
and the receivers mounted on light poles. These receivers then route the received traffic information to
a localized server shared by several junctions or clusters [10].

OBD a critical tool used for emission control in today’s automobiles. OBD generates fault codes
when any system/component non-compliance is detected. Commercially available tools fetch fault
codes from OBD and are providing only limited information/access of basic data to engineers. These
tools are black box type of tools which provide very limited flexibility. In addition, the data storage
capacity of these diagnostic tools is very limited. Next, we review the related study of OBD-II, which
is the next version of OBD [11].

The extraction of all the available data in EV CAN network has been done systematically through
OBD-II port and by using low-level software libraries and programming a development board based
on ARM STM32F103RBT6 micro-controller [12].

An OBD II reader is designed to measure speed and mass air flow, from which the distance and
fuel consumption are also computed. These data are then transmitted via WiFi to a remote server. The
system also implements global positioning system tracking to determine the location of the vehicle. A
database management system is implemented at the remote server for the storage and management of
transmitted data and a graphical user interface is developed for analyzing the transmitted data [13].

One of the key issues enabling future solutions is achieving an effective integration between
mobile apps and vehicles. Such integration can be efficiently achieved on all existing vehicles by relying
on the OBD-II interface. This allows obtaining critical information such as speed, fuel consumption,
gas emissions and system failures [14].

Tsai, Y.C. et al. [15] proposed an on-board safe driving assist system using vehicle dynamics and
real-time traffic information. It immediately detects harsh driving behavior and alerts the driver. The
in-vehicle dynamics are collected from OBD-II, an accelerometer and a gyroscope. The real-time traffic
information is collected from a camera with image processing.

The proposed estimator exploits low-cost inertial measurement unit (IMU) and OBD-II of the
vehicle to achieve navigation data without any aid of GPS. The presented estimator is based on
extended Kalman filter and linear Kalman filter for vehicle attitude and 3-D velocity estimations,
respectively. For accurate estimations in GPS-free situations, the extended and linear Kalman filters
receive the inertial data and the vehicle speed from the IMU and the OBD-II, respectively. The proposed
estimator tracks the vehicle trajectory velocity in GPS-free environments [16].

The remote diagnostic system in a vehicle includes a LoRa module, an Arduino (Uno), and
an OBD-II bridge. The OBD-II bridge can read some vehicle information to detect whether any is
abnormal (e.g., coolant temperature is too high) and then transmits the abnormal vehicle information
from OBD-II to Arduino by UART. When abnormal vehicle information is detected, the abnormal

Appl. Sci. 2018, 8, 1594 4 of 19

events will immediately be sent to LoRa gateway via Arduino and LoRa module. Furthermore,
LoRa gateway transmits abnormal vehicle information to cloud platform for recording the abnormal
events via Ethernet. Moreover, the recorded abnormal events can be provided to vehicle maintenance
plant [17].

2.2. Vehicle Protocol

The CAN (bus arbitration mechanism) [18] protocol is used as standard in most vehicles today.
However, it cannot handle many data. Both MOST and FlexRay communication mechanisms have
been designed in consideration of the communication speed of these CAN buses and the limitation of
data communication load [19]. The following is a related study of the vehicle protocol.

Yang J.S. et al. [20] introduced a FlexRay-CAN gateway that uses node mapping. It is possible to
solve the problem of the gateway of the vehicle such as the ID change of the message mapping-based
gateway or the software complexity.

Mejdi H. et al. [21] adopted a new way to achieve the design and the implementation of the
FlexRay Controller which consists of the translation of the (Specification and Description Language)
SDL diagrams into State Flow diagrams. With these diagrams, we generate the VHDL code of the
controller which will be implemented in an FPGA to create the hardware chip for FlexRay.

The transmission reliability and the slot utilization are defined for FlexRay network, and their
quantitative calculating formulas are deduced. To ensure reliable network transmission and maximize
bandwidth utilization of network, frame packing of FlexRay is formulated as generalized integer linear
programming, and an optimized model is presented [22].

Chen Y.Y. et al. [23] proposed an effective two-level redundancy approach for safety-critical
FlexRay network systems. The proposed approach demonstrates how to employ the backup nodes,
mirrored tasks and task migration to sustain the operation of system when ECUs fail. We then
perform the redundancy analysis and develop the analytical reliability models for the assessment of
fault-tolerant FlexRay network systems in early design phase.

Gu Z et al. [24] considered the problem of mapping an application task graph onto a FlexRay-based
distributed hardware platform, to meet security and deadline requirements while minimizing the
number of hardware coprocessors needed in the system. We present a Mixed Integer Linear
Programming (MILP) formulation, a divide-and-conquer heuristic algorithm, and a Simulated
Annealing algorithm.

Jang S.J. et al. [25] proposed a FlexRay-based software reprogramming optimization, and we
analyze the performance of FlexRay and CAN FD software reprogramming. To achieve this, we
perform a theoretical analysis on the software reprogramming times of the protocol, and we compare
the performance of the software reprogramming optimized FlexRay and CAN FD.

Abdellaoui Z. et al. [26] focused on the development of FlexRay drivers and Simulink Block
set implementations to validate performance and design, and to provide innovative capabilities for
today and tomorrow to distributed systems in automotive applications. The proposed block set is
dedicated for the SAE (Society of Automotive Engineers) application. The SAE benchmark model is
normally connected by the CAN bus, but we extend it to the FlexRay bus. In [27], they also proposed a
vehicle Simulink block set model. The proposed block set corresponds to the Society of Automotive
Engineers SAE benchmark model which is normally connected by the CAN bus, but we extend it to
the FlexRay bus.

Zeng W. et al. [28] outlined improvements to FlexRay and Ethernet in automotive communications
networks. Protocols need to improve the protocol to meet the needs of tomorrow’s automotive networks,
but Ethernet can speed development and expand faster.

Amel B.N. et al. [29] showed how to use DDS over an Ethernet network and proposed a SAE
benchmark as a test application. The main goal is to calculate the worst-case response time (WCRT)
based on the scheduling model and the use it as a metric to evaluate the DDS real-time QoS (Quality
of Service). The results obtained using Ethernet are compared with those found using FlexRay.

Appl. Sci. 2018, 8, 1594 5 of 19

Mundhenk P. et al. [30] proposed a virtual communication layer for time-triggered networks,
enabling a policy-based message scheduling as well as preemption which in turn simplifies real-time
verification. The introduced layer is particularly advantageous in the automotive domain since
it reduces the complexity of scheduling time-triggered communication systems and simplifies
incremental changes of existing schedules.

Yan W. et al. [31] proposed a new FlexRay bus data acquisition and calibration system based on a
high-speed and flexible USB interface. The system overcomes the shortcomings of traditional FlexRay
bus test equipment, such as complex software and hardware.

Dong Z.H. et al. [32] proposed a FlexRay-MOST gateway architecture. The proposed gateway
system is designed with Verilog HDL and implemented using SoC kits.

Lee S. et al. [33] explained the difference between the in-vehicle network CAN and MOST. CAN
is a widely used in-vehicle network for control data and MOST is a network for multimedia data.
However, CAN and MOST do not integrate and operate independently.

Seo H.S. et al. [34] proposed a universal plug and play (UPnP) controller area network (CAN)
gateway system using UPnP middleware for interoperability between external smart devices and
an in-vehicle network. The proposed gateway consists of an UPnP communication device, a CAN
communication device, and a device translator layer.

An automatic CAN gateway test system has been proposed to solve the difficulties and complexity
problems of manual vehicle gateway testing. The test system integrates IPC, CAN tools and network
control module. It supports 2–4 channel gateways as well as complex gateways with signal routing,
network status management and other complicated functions [35].

Mangan S. et al. [36] presented a novel “sensorless” longitudinal road-gradient estimation method,
which was developed in two steps starting from a benchmark system design. The gradient benchmark
system consists of an inclinometer sensor and an acceleration-based error correction algorithm, which
can be used to verify the accuracy of the road gradient obtained using a sensorless estimation method.
The sensorless road-gradient estimation algorithm uses the vehicle data currently available on the
vehicle CAN bus.

Gugapriya G. et al. [37] aimed at a new anti-theft vehicle lock system. Here, with high speed
reliable CAN, a sensor-based mechanism is interfaced with Engine Control Module (ECM) using
ARM7 TDMI microcontroller. To prevent vehicle from theft fuel flow sensor observes ignition of engine
and attached GSM sends an alert message to owner.

Guo H. et al. [38] presented info-security scheme, real-time hardware/software solutions and
their application scenarios. The core is the Integrated Info-Security Circuit Board to communicate with
ECUs and sensors inside a vehicle through CAN Bus, LIN Bus, FlexRay and MOST Bus with wire
interfaces, and to communicate with other vehicles, road-side infrastructure and mobile phones with
wireless interfaces.

3. A Design of a Lightweight In-Vehicle Edge Gateway (LI-VEG) for the Self-Diagnosis of
an Autonomous Vehicle

3.1. Overview

This paper proposes a Lightweight In-Vehicle Edge Gateway (LI-VEG) for the self-diagnosis of
an autonomous vehicle, which supports the communication among FlexRay, CAN, Ethernet, and
MOST protocols.

The LI-VEG enables mutual communication by translating the messages of the FlexRay, MOST,
and CAN inside a vehicle into the message type of a destination protocol and translates the structure of
an in-vehicle communication protocol into an Ethernet structure to support the mutual communication
with the RSU outside a vehicle, and the connection with an Ethernet backbone. Because the paper on
the self-diagnosis module has already been published [38], this paper only covers LI-VEG, not the
self-diagnosis. Figure 2 shows the structure of OBD-II including the LI-VEG which is a part for the
self-diagnosis of an autonomous vehicle.

Appl. Sci. 2018, 8, 1594 6 of 19
Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 19

Figure 2. The structure of the LI-VEG.

The LI-VEG working in OBD consists of three layers: InV-SRL, InV-ML and InV-DTL. First, the

InV-SRL receives the messages from FlexRay, CAN, MOST, and Ethernet and then transfers the

received messages into the Gateway. Second, the InV-ML manages the message transmission and

reception of FlexRay, CAN, MOST, and Ethernet and the Address Mapping Table. Third, the

InV-DTL decomposes the messages of FlaxRay, CAN, MOST, and Ethernet and recomposes them to

the frame suitable for a destination.

3.2. A Design of a Sending and Receiving Layer (InV-SRL)

The InV-SRL acts as an interface to transmit and receive the messages between the InV-ML and

hardware devices (transceiver and controller). A transceiver is a hardware device that transmits

and receives the messages of each protocol. A controller used for message processing is embedded

in the MCU. The controller stores the bus serial bits of messages in the MCU. Messages received

through the transceiver and the controller are transmitted to the InV-ML via the InV-SRL.

If the InV-SRL receives a message, the received message is transferred to the InV-ML. The

transferred message is stored in an Input Message Queue. If the InV-SRL needs to transmit the

message to hardware devices, it receives the message stored in an Output Message Queue of the

InV-ML and transmits it to hardware devices. Figure 3 shows the block diagram of the transceiver

and the controller.

Figure 3. The block diagram of the hardware devices.

Figure 2. The structure of the LI-VEG.

The LI-VEG working in OBD consists of three layers: InV-SRL, InV-ML and InV-DTL. First,
the InV-SRL receives the messages from FlexRay, CAN, MOST, and Ethernet and then transfers the
received messages into the Gateway. Second, the InV-ML manages the message transmission and
reception of FlexRay, CAN, MOST, and Ethernet and the Address Mapping Table. Third, the InV-DTL
decomposes the messages of FlaxRay, CAN, MOST, and Ethernet and recomposes them to the frame
suitable for a destination.

3.2. A Design of a Sending and Receiving Layer (InV-SRL)

The InV-SRL acts as an interface to transmit and receive the messages between the InV-ML and
hardware devices (transceiver and controller). A transceiver is a hardware device that transmits and
receives the messages of each protocol. A controller used for message processing is embedded in the
MCU. The controller stores the bus serial bits of messages in the MCU. Messages received through the
transceiver and the controller are transmitted to the InV-ML via the InV-SRL.

If the InV-SRL receives a message, the received message is transferred to the InV-ML. The
transferred message is stored in an Input Message Queue. If the InV-SRL needs to transmit the message
to hardware devices, it receives the message stored in an Output Message Queue of the InV-ML and
transmits it to hardware devices. Figure 3 shows the block diagram of the transceiver and the controller.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 19

Figure 2. The structure of the LI-VEG.

The LI-VEG working in OBD consists of three layers: InV-SRL, InV-ML and InV-DTL. First, the

InV-SRL receives the messages from FlexRay, CAN, MOST, and Ethernet and then transfers the

received messages into the Gateway. Second, the InV-ML manages the message transmission and

reception of FlexRay, CAN, MOST, and Ethernet and the Address Mapping Table. Third, the

InV-DTL decomposes the messages of FlaxRay, CAN, MOST, and Ethernet and recomposes them to

the frame suitable for a destination.

3.2. A Design of a Sending and Receiving Layer (InV-SRL)

The InV-SRL acts as an interface to transmit and receive the messages between the InV-ML and

hardware devices (transceiver and controller). A transceiver is a hardware device that transmits

and receives the messages of each protocol. A controller used for message processing is embedded

in the MCU. The controller stores the bus serial bits of messages in the MCU. Messages received

through the transceiver and the controller are transmitted to the InV-ML via the InV-SRL.

If the InV-SRL receives a message, the received message is transferred to the InV-ML. The

transferred message is stored in an Input Message Queue. If the InV-SRL needs to transmit the

message to hardware devices, it receives the message stored in an Output Message Queue of the

InV-ML and transmits it to hardware devices. Figure 3 shows the block diagram of the transceiver

and the controller.

Figure 3. The block diagram of the hardware devices.

Figure 3. The block diagram of the hardware devices.

3.3. A Design of an InV-Management Layer (InV-ML)

The InV-ML has two functions. First, the InV-ML receives messages from the InV-SRL and extracts
only the necessary data, such as source, destination address, etc., from the received messages to makes
the received messages lightweight. Only the extracted data are stored in an Address Mapping Table.
It must rapidly be mapped to actual data in the Input Message Queue.

Appl. Sci. 2018, 8, 1594 7 of 19

Second, if the extracted data are stored in the Address Mapping Table for mapping, the message
is stored in the Input Message Queue according to the priority of a message. The Input Message Queue
consists of a Priority Multi-Queue and an Event Queue. There are two types of data transferred from
sensors: the real time sensing messages processed in the Priority Multi-Queue and the event sensing
messages processed in the Event Queue. The event sensing messages is transmitted more rapidly than
the real time sensing messages.

The Priority Multi-Queue is used to decide a priority between protocols and between inner
messages of a protocol. The priority of protocol prevents the collision between protocols. The priority
of messages provides emergent messages with higher priority and general messages with higher
priority in proportion to the time when a message stays in the Input Message Queue.

The Event Queue is used to process Event sensing messages and the messages of the Event Queue
have higher priority than those of the Protocol Priority Multi-Queue. The Output messages of InV-ML
are processed in the Output Message Queue. The Output Message Queue is similar to an Input Message
Queue in terms of function. Figure 4 shows that the LI-VEG stores the received messages in an Input
Massage Queue and only the necessary data from the message in an Address Mapping Table.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 7 of 19

3.3. A Design of an InV-Management Layer (InV-ML)

The InV-ML has two functions. First, the InV-ML receives messages from the InV-SRL and

extracts only the necessary data, such as source, destination address, etc., from the received

messages to makes the received messages lightweight. Only the extracted data are stored in an

Address Mapping Table. It must rapidly be mapped to actual data in the Input Message Queue.

Second, if the extracted data are stored in the Address Mapping Table for mapping, the

message is stored in the Input Message Queue according to the priority of a message. The Input

Message Queue consists of a Priority Multi-Queue and an Event Queue. There are two types of data

transferred from sensors: the real time sensing messages processed in the Priority Multi-Queue and

the event sensing messages processed in the Event Queue. The event sensing messages is

transmitted more rapidly than the real time sensing messages.

The Priority Multi-Queue is used to decide a priority between protocols and between inner

messages of a protocol. The priority of protocol prevents the collision between protocols. The

priority of messages provides emergent messages with higher priority and general messages with

higher priority in proportion to the time when a message stays in the Input Message Queue.

The Event Queue is used to process Event sensing messages and the messages of the Event

Queue have higher priority than those of the Protocol Priority Multi-Queue. The Output messages

of InV-ML are processed in the Output Message Queue. The Output Message Queue is similar to an

Input Message Queue in terms of function. Figure 4 shows that the LI-VEG stores the received

messages in an Input Massage Queue and only the necessary data from the message in an Address

Mapping Table.

Figure 4. The flowchart to process the received message.

Figure 5 shows the process that a message which must be translated in the LI-VEG is made

lightweight and is stored in the Input Message Queue. The operational process is as follows.

1. The LI-VEG receives the messages from the ECUs, Actuators, and media of a vehicle and stores

them in the Input Message Queue.

2. The LI-VEG extracts only the data necessary for message translation such as source and

destination address, and ID from a header for being lightweight. Because there is a cycle field

describing a data transmission cycle in the case of FlexRay, the Cycle field must be extracted.

3. Lightweight data are stored in an Address Mapping Table for the rapid message translation.

Figure 4. The flowchart to process the received message.

Figure 5 shows the process that a message which must be translated in the LI-VEG is made
lightweight and is stored in the Input Message Queue. The operational process is as follows.

1. The LI-VEG receives the messages from the ECUs, Actuators, and media of a vehicle and stores
them in the Input Message Queue.

2. The LI-VEG extracts only the data necessary for message translation such as source and
destination address, and ID from a header for being lightweight. Because there is a cycle field
describing a data transmission cycle in the case of FlexRay, the Cycle field must be extracted.

3. Lightweight data are stored in an Address Mapping Table for the rapid message translation.
4. The message in the Input Message Queue is translated in InV-TL and the extracted header

information of the Address Mapping Table helps to translate it rapidly. The translated message is
stored in the Output Message Queue.

5. The message in the Output Message Queue is transmitted to a destination protocol bus.

Appl. Sci. 2018, 8, 1594 8 of 19

Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 19

4. The message in the Input Message Queue is translated in InV-TL and the extracted header

information of the Address Mapping Table helps to translate it rapidly. The translated message

is stored in the Output Message Queue.

5. The message in the Output Message Queue is transmitted to a destination protocol bus.

Figure 5. The movement of messages in InV-ML.

The Field Name of Table 1 consists of Cycle, ID, Priority, Source Protocol, Source Bus Number,

Source Address, Destination Protocol, Destination Bus Number, and Destination Address.

Table 1. The example of an Address Mapping Table.

Field Name Ex1 (FlexRay) Ex2 (CAN) Ex3 (MOST) Ex4 (Ethernet)

Cycle 4 0 1 2

ID 12 15 57 22

Priority 0 3 2 4

Source Protocol 10 00 01 11

Source Bus Number 1 2 2 0

Source Address 1002 0452 8847 4571

Destination Protocol 00 01 10 00

Destination Bus Number 2 2 1 1

Destination Address 0512 9960 1140 0324

The header information of a FlexRay message is extracted and each value of the extracted

header information is stored in the Ex1 column of Table 1.

The Cycle field value in the header information of a FlexRay message is stored in the Cycle

field in the EX1 of Table 1 and the ID value in the header information of a FlexRay message is

stored in the ID field in the EX1 of Table 1. The ID field value in the header information of a CAN

message is stored in the ID field in the EX2 of Table 1. Because the header information of the CAN

message has no a Cycle field, it remains blank.

Priority field value is stored in the Priority field in the EX1 of Table 1. Because the FlexRay uses

a timer, not priority, the priority field value is not needed. In the case InV-ML receives a FlexRay

message, 0 value is stored in the Priority field. The Priority value of the CAN message frame is

stored in the Priority field in the EX2 of Table 1.

Figure 5. The movement of messages in InV-ML.

The Field Name of Table 1 consists of Cycle, ID, Priority, Source Protocol, Source Bus Number,
Source Address, Destination Protocol, Destination Bus Number, and Destination Address.

Table 1. The example of an Address Mapping Table.

Field Name Ex1 (FlexRay) Ex2 (CAN) Ex3 (MOST) Ex4 (Ethernet)

Cycle 4 0 1 2
ID 12 15 57 22

Priority 0 3 2 4
Source Protocol 10 00 01 11

Source Bus Number 1 2 2 0
Source Address 1002 0452 8847 4571

Destination Protocol 00 01 10 00
Destination Bus Number 2 2 1 1

Destination Address 0512 9960 1140 0324

The header information of a FlexRay message is extracted and each value of the extracted header
information is stored in the Ex1 column of Table 1.

The Cycle field value in the header information of a FlexRay message is stored in the Cycle field
in the EX1 of Table 1 and the ID value in the header information of a FlexRay message is stored in the
ID field in the EX1 of Table 1. The ID field value in the header information of a CAN message is stored
in the ID field in the EX2 of Table 1. Because the header information of the CAN message has no a
Cycle field, it remains blank.

Priority field value is stored in the Priority field in the EX1 of Table 1. Because the FlexRay uses
a timer, not priority, the priority field value is not needed. In the case InV-ML receives a FlexRay
message, 0 value is stored in the Priority field. The Priority value of the CAN message frame is stored
in the Priority field in the EX2 of Table 1.

The Source Protocol field is 2 bits and has a source protocol number in it. If the Source Protocol
field value is 00, it means a CAN protocol. If it is 01, it means a MOST protocol. If it is 10, it means a
FlexRay protocol. If it is 11, it means an Ethernet protocol.

The source protocol bus number which sent a message is stored in the Source Bus Number field.
Because the Source Protocol field value is 10 and Source Bus Number field value is 1 in the EX1 of

Appl. Sci. 2018, 8, 1594 9 of 19

Table 1, it means that a message was received from the Bus 1 using a FlexRay protocol. Because the
Source Protocol field value is 00 and the Source Bus Number field value is 2 in the EX2 of Table 1, it
means that a message was received from the Bus 2 using a CAN protocol.

The source address of the received message is stored in the Source Address field.
The Destination Protocol field is 2 bits large and has a destination protocol number in it. The

destination protocol bus number is stored in the Destination Bus Number field.
The destination address of the received message is stored in a Destination Address field. If the

header information is stored in the Address Mapping Table, the InV-ML transfers the stored header
information and the original message of the Input Message Queue to the InV-DTL according to priority.

The stepwise process is shown in Figure 6.

1. Before the Input Message Queue transfers messages to the InV-DTL, it searches for the tuple of
the Address Mapping Table with the same the sending message ID as Address Mapping Table ID.

2. The message which must be translated and the tuple of the Address Mapping Table are transferred
to the InV-DTL.

3. The InV-DTL translates messages, compares the destination and source address of the translated
message to those of the Address Mapping Table. If they are all the same, the InV-DTL transfers
the message to the InV-ML.

4. The InV-ML sets the paths of the translated messages, and delivers the messages to the Output
Message Queue and transfers the message of the Output Message Queue to the SRL according
the paths.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 19

The Source Protocol field is 2 bits and has a source protocol number in it. If the Source Protocol

field value is 00, it means a CAN protocol. If it is 01, it means a MOST protocol. If it is 10, it means a

FlexRay protocol. If it is 11, it means an Ethernet protocol.

The source protocol bus number which sent a message is stored in the Source Bus Number

field. Because the Source Protocol field value is 10 and Source Bus Number field value is 1 in the

EX1 of Table 1, it means that a message was received from the Bus 1 using a FlexRay protocol.

Because the Source Protocol field value is 00 and the Source Bus Number field value is 2 in the EX2

of Table 1, it means that a message was received from the Bus 2 using a CAN protocol.

The source address of the received message is stored in the Source Address field.

The Destination Protocol field is 2 bits large and has a destination protocol number in it. The

destination protocol bus number is stored in the Destination Bus Number field.

The destination address of the received message is stored in a Destination Address field. If the

header information is stored in the Address Mapping Table, the InV-ML transfers the stored header

information and the original message of the Input Message Queue to the InV-DTL according to

priority.

The stepwise process is shown in Figure 6.

1. Before the Input Message Queue transfers messages to the InV-DTL, it searches for the tuple of

the Address Mapping Table with the same the sending message ID as Address Mapping Table

ID.

2. The message which must be translated and the tuple of the Address Mapping Table are

transferred to the InV-DTL.

3. The InV-DTL translates messages, compares the destination and source address of the

translated message to those of the Address Mapping Table. If they are all the same, the

InV-DTL transfers the message to the InV-ML.

4. The InV-ML sets the paths of the translated messages, and delivers the messages to the Output

Message Queue and transfers the message of the Output Message Queue to the SRL according

the paths.

Figure 6. Message Delivery Scenario.

Figure 6. Message Delivery Scenario.

3.4. A Design of the InV-DTL

The InV-DTL translates the messages received from the Input Massage Queue by using the
Translation Table and transfers the translated messages to the Output Massage Queue of the InV-ML.

The InV-DTL works as follows.

1. The InV-DTL receives the original message of the Input Massage Queue and the header
information of the Address Mapping Table and generates the values of the Translation Table field
by using the header information.

Appl. Sci. 2018, 8, 1594 10 of 19

2. The InV-DTL decomposes the header and trailer from the message.
3. The InV-DTL translates the decomposed messages based on the Translation Table.
4. The InV-DTL gives them sequential numbers from the Translation Table if the translated messages

are divided.
5. The translated messages are transferred to the Output Massage Queue of InV-ML.
6. Every protocol is different in the attributes of the Translation Table fields. The Translation

Tables such as “FlexRay to CAN” Table, “CAN to FlexRay” Table, “MOST to CAN” Table, and
“Ethernet to MOST” Table are generated and the Translation Table field values are generated
again whenever messages are translated.

Figure 7 shows the “MOST to CAN” Translation Table translating MOST messages into CAN
messages. The “MOST to CAN” Translation Table consists of the number of divided messages, Current
Message Number, Source Address, Source Protocol Bus Number, Destination Address, Destination
Protocol Bus Number, the CAN priority, and the CAN IDs. The CAN ID is used to enter the CAN
Bus by Event. Tel ID and Tel Len field are translated into Service type ID of the CAN message by the
CAN ID value of the Translation Table. The message numbers are given to every divided message
sequentially. Destination Address of the MOST message is translated the Destination node ID of the
CAN message by Destination Address and Destination Protocol Bus Number in the Translation Table.
The Source Address of the MOST is translated to the Source node ID of the CAN message by Source
Address and Source Protocol Bus Number in the Translation Table. The Request not response field
value of the CAN message is always fixed as 1, and the Service not message field of the CAN message
is always fixed as 0. The CAN Priority field value of the Translation Table is generated by using the
Address Mapping Table. It is used to map the Priority field value of CAN message. The fields such as
Fblock, Inst, Fkt ID and OP Type are functional blocks of the MOST message. They are not used in the
CAN. The Synchronous data and the Asynchronous data are translated to the Data field value of the
CAN message.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 19

3.4. A Design of the InV-DTL

The InV-DTL translates the messages received from the Input Massage Queue by using the

Translation Table and transfers the translated messages to the Output Massage Queue of the

InV-ML.

The InV-DTL works as follows.

1. The InV-DTL receives the original message of the Input Massage Queue and the header

information of the Address Mapping Table and generates the values of the Translation Table

field by using the header information.

2. The InV-DTL decomposes the header and trailer from the message.

3. The InV-DTL translates the decomposed messages based on the Translation Table.

4. The InV-DTL gives them sequential numbers from the Translation Table if the translated

messages are divided.

5. The translated messages are transferred to the Output Massage Queue of InV-ML.

6. Every protocol is different in the attributes of the Translation Table fields. The Translation

Tables such as “FlexRay to CAN” Table, “CAN to FlexRay” Table, “MOST to CAN” Table, and

“Ethernet to MOST” Table are generated and the Translation Table field values are generated

again whenever messages are translated.

Figure 7 shows the “MOST to CAN” Translation Table translating MOST messages into CAN

messages. The “MOST to CAN” Translation Table consists of the number of divided messages,

Current Message Number, Source Address, Source Protocol Bus Number, Destination Address,

Destination Protocol Bus Number, the CAN priority, and the CAN IDs. The CAN ID is used to

enter the CAN Bus by Event. Tel ID and Tel Len field are translated into Service type ID of the CAN

message by the CAN ID value of the Translation Table. The message numbers are given to every

divided message sequentially. Destination Address of the MOST message is translated the

Destination node ID of the CAN message by Destination Address and Destination Protocol Bus

Number in the Translation Table. The Source Address of the MOST is translated to the Source node

ID of the CAN message by Source Address and Source Protocol Bus Number in the Translation

Table. The Request not response field value of the CAN message is always fixed as 1, and the

Service not message field of the CAN message is always fixed as 0. The CAN Priority field value of

the Translation Table is generated by using the Address Mapping Table. It is used to map the

Priority field value of CAN message. The fields such as Fblock, Inst, Fkt ID and OP Type are

functional blocks of the MOST message. They are not used in the CAN. The Synchronous data and

the Asynchronous data are translated to the Data field value of the CAN message.

Figure 7. The Translation of MOST into CAN message by the Translation Table. Figure 7. The Translation of MOST into CAN message by the Translation Table.

Figure 8 shows the “CAN to FlexRay” Translation Table translating CAN messages into FlexRay
messages. Because the FlexRay is a protocol based on Timing, a Cycle field is used and a Priority and
an ID field are not used when messages are translated. The translated messages enter a destination
FlexRay Bus by using a Cycle value. Service type ID of the CAN message is translated into Frame ID
of FlexRay message by FlexRay ID of the Translation Table. Message Cycle of the Translation Table is

Appl. Sci. 2018, 8, 1594 11 of 19

generated based on the Address Mapping Table, and is used to decide Cycle count of FlexRay message.
Because the State bit, the Payload Length, the Header CRC and the CRC are not included in the CAN
message, they are generated by InV-DTL.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 19

Figure 8 shows the “CAN to FlexRay” Translation Table translating CAN messages into

FlexRay messages. Because the FlexRay is a protocol based on Timing, a Cycle field is used and a

Priority and an ID field are not used when messages are translated. The translated messages enter a

destination FlexRay Bus by using a Cycle value. Service type ID of the CAN message is translated

into Frame ID of FlexRay message by FlexRay ID of the Translation Table. Message Cycle of the

Translation Table is generated based on the Address Mapping Table, and is used to decide Cycle

count of FlexRay message. Because the State bit, the Payload Length, the Header CRC and the CRC

are not included in the CAN message, they are generated by InV-DTL.

Figure 8. The Translation of a CAN into a FlexRay message by Translation Table.

Figure 9 shows the “MOST to Ethernet” Translation Table translating the MOST messages into

the Ethernet messages. Because the Ethernet is used as a Backbone with high capacity, an attribute

on Bus number is not generated in the Translation Table. Therefore, the Translation speed is the

highest when the MOST messages are translated into the Ethernet messages. Destination Address

value of the MOST message is translated Destination Address value of the Ethernet message by the

Translation Table. Source Address of the MOST message is translated Source Address of the

Ethernet message by the Translation Table. The Tel Len value is translated to the Length value of

the Ethernet message by the Translation Table. The Synchronous data and the Asynchronous data

are translated to the Data field value of the Ethernet message. The Preamble, the SFD and the

Padding field values are generated by InV-DTL and FCS field must be made by CRC method.

Figure 9. The Transformation of MOST into Ethernet message by Mapping.

If the message translation is completed, the translated message is stored in the Output Message

Queue of the InV-ML. If the message arrived at the Output Message Queue normally, it is

transferred to the destination protocol bus to which the message belongs according to priority or

cycle. Because the FlexRay protocol uses a Bus based on Timing, it transfers the translated messages

to a destination protocol bus by using Cycle field of a header. The transmission of messages is done

in the InV-SRL.

Figure 8. The Translation of a CAN into a FlexRay message by Translation Table.

Figure 9 shows the “MOST to Ethernet” Translation Table translating the MOST messages into
the Ethernet messages. Because the Ethernet is used as a Backbone with high capacity, an attribute on
Bus number is not generated in the Translation Table. Therefore, the Translation speed is the highest
when the MOST messages are translated into the Ethernet messages. Destination Address value of the
MOST message is translated Destination Address value of the Ethernet message by the Translation
Table. Source Address of the MOST message is translated Source Address of the Ethernet message by
the Translation Table. The Tel Len value is translated to the Length value of the Ethernet message by
the Translation Table. The Synchronous data and the Asynchronous data are translated to the Data
field value of the Ethernet message. The Preamble, the SFD and the Padding field values are generated
by InV-DTL and FCS field must be made by CRC method.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 19

Figure 8 shows the “CAN to FlexRay” Translation Table translating CAN messages into

FlexRay messages. Because the FlexRay is a protocol based on Timing, a Cycle field is used and a

Priority and an ID field are not used when messages are translated. The translated messages enter a

destination FlexRay Bus by using a Cycle value. Service type ID of the CAN message is translated

into Frame ID of FlexRay message by FlexRay ID of the Translation Table. Message Cycle of the

Translation Table is generated based on the Address Mapping Table, and is used to decide Cycle

count of FlexRay message. Because the State bit, the Payload Length, the Header CRC and the CRC

are not included in the CAN message, they are generated by InV-DTL.

Figure 8. The Translation of a CAN into a FlexRay message by Translation Table.

Figure 9 shows the “MOST to Ethernet” Translation Table translating the MOST messages into

the Ethernet messages. Because the Ethernet is used as a Backbone with high capacity, an attribute

on Bus number is not generated in the Translation Table. Therefore, the Translation speed is the

highest when the MOST messages are translated into the Ethernet messages. Destination Address

value of the MOST message is translated Destination Address value of the Ethernet message by the

Translation Table. Source Address of the MOST message is translated Source Address of the

Ethernet message by the Translation Table. The Tel Len value is translated to the Length value of

the Ethernet message by the Translation Table. The Synchronous data and the Asynchronous data

are translated to the Data field value of the Ethernet message. The Preamble, the SFD and the

Padding field values are generated by InV-DTL and FCS field must be made by CRC method.

Figure 9. The Transformation of MOST into Ethernet message by Mapping.

If the message translation is completed, the translated message is stored in the Output Message

Queue of the InV-ML. If the message arrived at the Output Message Queue normally, it is

transferred to the destination protocol bus to which the message belongs according to priority or

cycle. Because the FlexRay protocol uses a Bus based on Timing, it transfers the translated messages

to a destination protocol bus by using Cycle field of a header. The transmission of messages is done

in the InV-SRL.

Figure 9. The Transformation of MOST into Ethernet message by Mapping.

If the message translation is completed, the translated message is stored in the Output Message
Queue of the InV-ML. If the message arrived at the Output Message Queue normally, it is transferred
to the destination protocol bus to which the message belongs according to priority or cycle. Because
the FlexRay protocol uses a Bus based on Timing, it transfers the translated messages to a destination
protocol bus by using Cycle field of a header. The transmission of messages is done in the InV-SRL.

This method enables the smooth communication of MOST, FlexRay and CAN, and, if MOST,
FlexRay and CAN messages are translated in Ethernet messages, the Ethernet messages are translated
in WAVE signals to be able to communicate with RSU using an in-vehicle WAVE-to-Ethernet module.

Appl. Sci. 2018, 8, 1594 12 of 19

4. The Performance Analysis

The model shown in Figure 10 uses one gateway connected to two CAN buses, two FlexRay
buses, two MOST buses and one Ethernet backbone to verify the LI-VEG performance proposed in
this paper and each bus has four nodes.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 19

This method enables the smooth communication of MOST, FlexRay and CAN, and, if MOST,

FlexRay and CAN messages are translated in Ethernet messages, the Ethernet messages are

translated in WAVE signals to be able to communicate with RSU using an in-vehicle

WAVE-to-Ethernet module.

4. The Performance Analysis

The model shown in Figure 10 uses one gateway connected to two CAN buses, two FlexRay

buses, two MOST buses and one Ethernet backbone to verify the LI-VEG performance proposed in

this paper and each bus has four nodes.

Figure 10. The simulation Model.

The Main Processor of the LI-VEG uses ARM Cortex-A7 (900 Mhz) and is simulated in the

RAM with these two experiments in PC.

In the first simulation environment, the transmission delay caused by message translation was

measured while messages are transferred between four protocols (CAN, MOST, FlexRay and

Ethernet). The transmission delay was measured based on the eight Message transmissions from

CAN to FlexRay, the eight Message transmissions from CAN to Ethernet, and the eight Message

transmissions from CAN to MOST. The transmission cycle of each message uses 14 ms. The

transmission delay between the existing message mapping translation system not using a

lightweight header and the message translation system using a lightweight header was compared.

Table 2 shows the simulation environment of the first simulation.

Table 2. The Simulation Environment.

Source Protocol CAN CAN CAN

destination protocol FlexRay MOST Ethernet

the number of message transmissions 8 8 8

transmission cycle 14 ms 14 ms 14 ms

In the second simulation environment, the transmission delay caused by overhead was

measured. The overhead happens in each protocol bus because of the continuous signal from the

CAN. Transmission delay between the existing message translation system and the proposed

message translation system was compared according as network traffic increases. In the same way

as the first experiment, transmission delay was measured in the case the CAN messages are

translated to the other three protocols.

Figure 11a–c shows maximum transmission delay and its stabilization time when the CAN

messages are transferred to the other protocols. The transmission delay means the time that it takes

for a source message to be translated into a destination message in the LI-VEG. The stabilization

time means the time between when translation overhead occurs and when its overhead disappears.

Figure 11a shows the transmission delay and stabilization time when messages are transferred from

the CAN bus to the FlexRay bus. In the transmission, it takes maximum 278 μs transmission delay

for the existing method to store and translate a message and about 8 ms to stabilize the transmission

delay. It takes a maximum of 274 μs for the proposed method to store and transform a message and

about 6 ms to stabilize the transmission delay. Therefore, the maximum transmission delay is

improved by about 2% and its stabilization time about 25%.

Figure 10. The simulation Model.

The Main Processor of the LI-VEG uses ARM Cortex-A7 (900 Mhz) and is simulated in the RAM
with these two experiments in PC.

In the first simulation environment, the transmission delay caused by message translation was
measured while messages are transferred between four protocols (CAN, MOST, FlexRay and Ethernet).
The transmission delay was measured based on the eight Message transmissions from CAN to
FlexRay, the eight Message transmissions from CAN to Ethernet, and the eight Message transmissions
from CAN to MOST. The transmission cycle of each message uses 14 ms. The transmission delay
between the existing message mapping translation system not using a lightweight header and the
message translation system using a lightweight header was compared. Table 2 shows the simulation
environment of the first simulation.

Table 2. The Simulation Environment.

Source Protocol CAN CAN CAN

destination protocol FlexRay MOST Ethernet
the number of message transmissions 8 8 8

transmission cycle 14 ms 14 ms 14 ms

In the second simulation environment, the transmission delay caused by overhead was measured.
The overhead happens in each protocol bus because of the continuous signal from the CAN.
Transmission delay between the existing message translation system and the proposed message
translation system was compared according as network traffic increases. In the same way as the first
experiment, transmission delay was measured in the case the CAN messages are translated to the
other three protocols.

Figure 11a–c shows maximum transmission delay and its stabilization time when the CAN
messages are transferred to the other protocols. The transmission delay means the time that it takes
for a source message to be translated into a destination message in the LI-VEG. The stabilization
time means the time between when translation overhead occurs and when its overhead disappears.
Figure 11a shows the transmission delay and stabilization time when messages are transferred from
the CAN bus to the FlexRay bus. In the transmission, it takes maximum 278 µs transmission delay for
the existing method to store and translate a message and about 8 ms to stabilize the transmission delay.
It takes a maximum of 274 µs for the proposed method to store and transform a message and about
6 ms to stabilize the transmission delay. Therefore, the maximum transmission delay is improved by
about 2% and its stabilization time about 25%.

Appl. Sci. 2018, 8, 1594 13 of 19

Appl. Sci. 2018, 8, x FOR PEER REVIEW 13 of 19

Figure 11b shows the transmission delay and stabilization time when messages are transferred

from CAN bus to MOST bus. In the transmission, it takes maximum 3.03 ms transmission delay for

the existing method to store and transform a message and 11 ms to stabilize the transmission delay.

It takes a maximum of 2.84 ms for the proposed method to store and transform a message and 11

ms to stabilize the transmission delay. Therefore, the maximum transmission delay is improved by

about 7% and its stabilization time is the same.

(a)

(b)

(c)

Figure 11. The transmission delay and the Stabilization Time when The CAN messages are

translated. (a) From CAN to FlexRay, (b) From CAN to MOST, (c) From CAN to Ethernet.

Figure 11c shows the transmission delay and stabilization time when messages are transferred

from CAN bus to Ethernet bus. In the transmission, it takes maximum 1.47 ms transmission delay

for the existing method to store and translate a message and 9 ms to stabilize the transmission delay.

It takes a maximum of 1.29 ms for the proposed method to store and transform a message and 7 ms

to stabilize the transmission delay. Therefore, the maximum transmission delay is improved by

about 11% and its stabilization time about 20%.

Table 3 shows how much the proposed method is improved in comparison to the existing

method. Overall, the transmission delay time about message translation and transmission is

reduced by an average of 10.83%. That is, if the lightweight method is used, transmission delay is

reduced and data processing is improved.

Figure 11. The transmission delay and the Stabilization Time when The CAN messages are translated.
(a) From CAN to FlexRay, (b) From CAN to MOST, (c) From CAN to Ethernet.

Figure 11b shows the transmission delay and stabilization time when messages are transferred
from CAN bus to MOST bus. In the transmission, it takes maximum 3.03 ms transmission delay for
the existing method to store and transform a message and 11 ms to stabilize the transmission delay. It
takes a maximum of 2.84 ms for the proposed method to store and transform a message and 11 ms to
stabilize the transmission delay. Therefore, the maximum transmission delay is improved by about 7%
and its stabilization time is the same.

Figure 11c shows the transmission delay and stabilization time when messages are transferred
from CAN bus to Ethernet bus. In the transmission, it takes maximum 1.47 ms transmission delay
for the existing method to store and translate a message and 9 ms to stabilize the transmission delay.
It takes a maximum of 1.29 ms for the proposed method to store and transform a message and 7 ms to
stabilize the transmission delay. Therefore, the maximum transmission delay is improved by about
11% and its stabilization time about 20%.

Table 3 shows how much the proposed method is improved in comparison to the existing method.
Overall, the transmission delay time about message translation and transmission is reduced by an

Appl. Sci. 2018, 8, 1594 14 of 19

average of 10.83%. That is, if the lightweight method is used, transmission delay is reduced and data
processing is improved.

Table 3. The improvement rate of the proposed method.

Direction The Improvement Rate of Transmission Delay The Improvement Rate of Stabilization Time

From CAN to FlexRay 2% 25%
From CAN to MOST 7% 0%

From CAN to Etherney 11% 20%

Figure 12 shows the average transmission delay by overhead happening when continuous
messages are transferred from a CAN bus to a destination protocol.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 14 of 19

Table 3. The improvement rate of the proposed method.

Direction
The Improvement Rate of

Transmission Delay

The Improvement Rate of

Stabilization Time

From CAN to FlexRay 2% 25%

From CAN to MOST 7% 0%

From CAN to Etherney 11% 20%

Figure 12 shows the average transmission delay by overhead happening when continuous

messages are transferred from a CAN bus to a destination protocol.

(a) (b)

(c)

Figure 12. The transmission delay as traffic is increased. (a) CAN to FlexRay, (b) CAN to MOST, (c)

CAN to Ethernet.

When messages are transferred from the CAN to the FlexRay, Figure 12a shows an average

transmission delay according to network traffic increase. In the case the network traffic is 25%, the

transmission delay of the existing method was measured as about 275 μs and that of the proposed

method was measured as about 250 μs. In the case the network traffic is 85%, the transmission

delay of the existing method was measured as about 656 μs and that of the proposed method was

measured as about 670 μs. Therefore, when traffic increase is low, the proposed method is faster by

about 9% than the existing method. However, when traffic increase is high, there is no difference

between the methods.

When messages are transferred from the CAN to the MOST, Figure 12b shows an average

transmission delay according to network traffic increase. In thecase the network traffic is 25%, the

transmission delay of the existing method was measured as about 2 ms and that of the proposed

method was measured as about 2.5 ms. In the case the network traffic is 85%, the transmission

delay of the existing method was measured as about 7.9 ms and that of the proposed method was

measured as about 8.1 ms. Therefore, when traffic increase is low, the proposed method is faster by

about 20% than the existing method. However, when traffic increase is high, there is no difference

between the methods.

When messages are transferred from the CAN to the Ethernet, Figure 12c shows an average

transmission delay according to network traffic increase. In the case the network traffic is 25%, the

Figure 12. The transmission delay as traffic is increased. (a) CAN to FlexRay, (b) CAN to MOST,
(c) CAN to Ethernet.

When messages are transferred from the CAN to the FlexRay, Figure 12a shows an average
transmission delay according to network traffic increase. In the case the network traffic is 25%, the
transmission delay of the existing method was measured as about 275 µs and that of the proposed
method was measured as about 250 µs. In the case the network traffic is 85%, the transmission delay of
the existing method was measured as about 656 µs and that of the proposed method was measured
as about 670 µs. Therefore, when traffic increase is low, the proposed method is faster by about 9%
than the existing method. However, when traffic increase is high, there is no difference between
the methods.

When messages are transferred from the CAN to the MOST, Figure 12b shows an average
transmission delay according to network traffic increase. In thecase the network traffic is 25%, the
transmission delay of the existing method was measured as about 2 ms and that of the proposed
method was measured as about 2.5 ms. In the case the network traffic is 85%, the transmission delay of
the existing method was measured as about 7.9 ms and that of the proposed method was measured
as about 8.1 ms. Therefore, when traffic increase is low, the proposed method is faster by about 20%

Appl. Sci. 2018, 8, 1594 15 of 19

than the existing method. However, when traffic increase is high, there is no difference between
the methods.

When messages are transferred from the CAN to the Ethernet, Figure 12c shows an average
transmission delay according to network traffic increase. In the case the network traffic is 25%, the
transmission delay of the existing method was measured as about 0.9 ms and that of the proposed
method was measured as about 0.7 ms. In the case the network traffic is 85%, the transmission delay of
the existing method was measured as about 2.26 ms and that of the proposed method was measured
as about 2.24 ms. Therefore, when traffic increase is low, the proposed method is faster by about 20%
than the existing method. However, when traffic increase is high, there is almost no difference between
the methods.

In brief, the transmission delay of the proposed method is lower as traffic value gets smaller.
There is almost no difference between the two methods as traffic value gets larger, which it means that
the two methods have the same transmission delay characteristic.

When messages are sent and received between a CAN bus and a FlexRay bus, Figure 13a shows
the error rate according to the number of messages. The error rate was measured as follows.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 19

transmission delay of the existing method was measured as about 0.9 ms and that of the proposed

method was measured as about 0.7 ms. In the case the network traffic is 85%, the transmission

delay of the existing method was measured as about 2.26 ms and that of the proposed method was

measured as about 2.24 ms. Therefore, when traffic increase is low, the proposed method is faster

by about 20% than the existing method. However, when traffic increase is high, there is almost no

difference between the methods.

In brief, the transmission delay of the proposed method is lower as traffic value gets smaller.

There is almost no difference between the two methods as traffic value gets larger, which it means

that the two methods have the same transmission delay characteristic.

When messages are sent and received between a CAN bus and a FlexRay bus, Figure 13a

shows the error rate according to the number of messages. The error rate was measured as follows.

(a) (b)

(c)

Figure 13. The error rate according to message quantity. (a) The error rate between the CAN and the

FlexRay, (b) The error rate between the CAN and the MOST, (c) The error rate between the CAN

and the Ethernet.

First, the error rate was measured when the CAN messages are transferred to a FlexRay bus. In

the case 50 messages were transferred, the proposed method showed an error rate of 0% and the

existing method of 2%. In the case 100 messages were transferred, the proposed method showed an

error rate of 1% and the existing method of 2%. In the case 340 messages were transferred, the

proposed method showed an error rate of 0.88% and the existing method of 1.47%. Therefore, the

error rate of the proposed method is lower by about 1.3% compared to that of the existing method

as the number of messages gets larger. The average error rate of the proposed method is 0.91% and

that of the existing method is 1.55%.

Second, the error rate was measured when the FlexRay messages are translated into a CAN

bus. In the case 50 messages were transferred, the proposed method showed an error rate of 1% and

the existing method of 1.2%. In the case 100 messages were transferred, the proposed method

showed an error rate of 1.8% and the existing method of 1.9%. In the case 340 messages were

transferred, the proposed method showed an error rate of 1.5% and the existing method of 2.09%.

Therefore, the error rate of the proposed method is lower by about 0.5% compared to that of the

existing method as the number of messages gets larger. The average error rate of the proposed

Figure 13. The error rate according to message quantity. (a) The error rate between the CAN and the
FlexRay, (b) The error rate between the CAN and the MOST, (c) The error rate between the CAN and
the Ethernet.

First, the error rate was measured when the CAN messages are transferred to a FlexRay bus.
In the case 50 messages were transferred, the proposed method showed an error rate of 0% and the
existing method of 2%. In the case 100 messages were transferred, the proposed method showed
an error rate of 1% and the existing method of 2%. In the case 340 messages were transferred, the
proposed method showed an error rate of 0.88% and the existing method of 1.47%. Therefore, the error
rate of the proposed method is lower by about 1.3% compared to that of the existing method as the
number of messages gets larger. The average error rate of the proposed method is 0.91% and that of
the existing method is 1.55%.

Appl. Sci. 2018, 8, 1594 16 of 19

Second, the error rate was measured when the FlexRay messages are translated into a CAN bus.
In the case 50 messages were transferred, the proposed method showed an error rate of 1% and the
existing method of 1.2%. In the case 100 messages were transferred, the proposed method showed
an error rate of 1.8% and the existing method of 1.9%. In the case 340 messages were transferred, the
proposed method showed an error rate of 1.5% and the existing method of 2.09%. Therefore, the error
rate of the proposed method is lower by about 0.5% compared to that of the existing method as the
number of messages gets larger. The average error rate of the proposed method is 1.59% and that
of the existing method is 1.94%. Here, because one FlexRay message was divided into several CAN
messages, the average error rate of the second gets higher by about 0.5% compared to that of the first.

When messages are sent and received between a CAN bus and a MOST bus, Figure 13b shows
the error rate according to the number of messages. The error rate was measured as follows.

First, the error rate was measured when the CAN messages are transferred to a MOST bus. In
the case 50 messages were transferred, the proposed method showed an error rate of 0% and the
existing method 2%. In the case 100 messages were transferred, the proposed method showed an error
rate of 1% and the existing method of 1%. In the case 340 messages were transferred, the proposed
method showed an error rate of 0.59% and the existing method of 0.88%. Therefore, the error rate of
the proposed method is lower by about 0.3% compared to that of the existing method as the number of
messages gets larger. The average error rate of the proposed method is 0.45% and that of the existing
method is 1.16%.

Second, the error rate was measured when the MOST messages are transferred to a CAN bus.
In the case 50 messages were transferred, the proposed method showed an error rate of 3% and the
existing method of 3.2%. In the case 100 messages were transferred, the proposed method showed
an error rate of 2.7% and the existing method of 2.6%. In the case 340 messages were transferred, the
proposed method showed an error rate of 2.06% and the existing method of 2.15%. Therefore, the error
rate of the proposed method is lower by about 0.1% compared to that of the existing method as the
number of messages gets larger. The average error rate of the proposed method is 2.53% and that of
the existing method is 2.59%. Here, because one MOST message is divided into several CAN messages,
the average error rate of the second gets higher by about 2% compared to that of the first.

When messages are sent and received between a CAN bus and an Ethernet bus, Figure 13c shows
the error rate according to the number of messages. The error rate was measured as follows.

First, the error rate was measured when the CAN messages are transferred to an Ethernet
backbone. In the case 50 messages were transferred, the proposed method showed an error rate of
0% and the existing method of 0%. In the case 100 messages were transferred, the proposed method
showed an error rate of 0% and the existing method of 0.4%. In the case 340 messages were transferred,
the proposed method showed an error rate of 0.41% and the existing method of 0.74%. Therefore, the
error rate of the proposed method is lower by about 0.5% compared to that of the existing method as
the number of messages gets larger. The average error rate of the proposed method is 0.35% and that
of the existing method is 0.55%.

Second, the error rate is measured when the Ethernet messages are transferred to a CAN bus. In
the case 50 messages were transferred, the proposed method showed an error rate of 0.4% and the
existing method of 0.5%. In the case 100 messages were transferred, the proposed method showed
an error rate of 0.7% and the existing method of 0.6%. In the case 340 messages were transferred, the
proposed method showed an error rate of 1.03% and the existing method of 1.03%. Therefore, the
average error rate of the proposed method is 0.81% and that of the existing method is 0.84%. The
proposed method is lower than the existing method by about 0.03%. Here, the average error rate of the
second gets higher by about 0.5% compared to that of the first. Overall, this experiment says that the
error rate of the proposed method is lower compared to that of the existing method.

According to the three experiments above, the LI-VEG proposed in this paper has the following
advantages:

Appl. Sci. 2018, 8, 1594 17 of 19

• When messages are transferred to the other protocol, the LI-VEG has lower transmission delay
than the existing protocols.

• When network traffic becomes lower, the LI-VEG has a lower transmission delay than the existing
protocols. However, when network traffic becomes higher, the LI-VEG has almost the same
transmission delay as the existing protocols.

• When messages are transferred between protocols, the LI_VEG has a lower error rate than the
existing protocols.

5. Conclusions

This paper proposes the LI-VEG for smooth communication between in-vehicle protocols and
presents results from three experiments. The results are as follows. The LI-VEG reduces the
transmission delay time by an average of 10.83% and the error rate by 0.8% for message translation and
transmission, compared to the existing in-vehicle gateways. When network traffic becomes lower, the
LI-VEG reduces the transmission delay by about 16.3%. Therefore, the LI-VEG has a lower error rate
and a lower transmission delay than the existing method when a message is translated and transferred.

According to the experiment, the LI-VEG has the following characteristics. First, the header is
much lighter because only the necessary information for transformation is extracted from the header
information of a message. Second, because the Input Queue and Output Queue managing messages are
classified into a Priority Multi-Queue and an Event Queue, the LI-VEG translates emergent messages
more rapidly than the existing FIFO. Third, the LI-VEG supports communication among all primary
protocols used inside a current vehicle.

The LI-VEG must be tested on real vehicles. If the real experiment on the vehicle is almost the same
as the simulation result, the LI-VEG could be applied to the gateway of future autonomous vehicles.

Author Contributions: B.L. proposed the idea. Y.J., S.S. and E.J. made the paper based on the idea and carried
out the experiments in Korean Language. B.L. guided and supervised the research and translated the paper into
English. All authors read and approved the final manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. NRF-2018R1A2B6007710).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gateway Solutions Iot Brief. Available online: https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/gateway-solutions-iot-brief.pdf (accessed on 17 May 2018).

2. Leen, G.; Hefferman, D.; Dunne, A. Digital Networks in the automotive vehicle. IEEE Comput. Control Eng. J.
1999, 10, 257–266. [CrossRef]

3. Jeong, Y.; Sonm, S.; Jeong, E.; Lee, B. An Integrated Self-Diagnosis System for an Autonomous Vehicle Based
on an IoT Gateway and Deep Learning. Appl. Sci. 2018, 8, 1164. [CrossRef]

4. Lin, C.E.; Shiao, Y.-S.; Li, C.C.; Yang, S.H.; Lin, S.H.; Lin, C.Y. Real-Time Remote Onboard Diagnostics Using
Embedded GPRS Surveillance Technology. IEEE Trans Veh. Technol. 2007, 56, 1108–1118. [CrossRef]

5. Zou, X.D.; Wang, F.Y.; Qiu, R. The Development of the on Board Diagnostics System on the Keyword Protocol.
Appl. Mech. Mater. 2010, 43, 752–755.

6. Ochs, T.; Schittenhelm, H.; Genssle, A.; Kamp, B. Particulate Matter Sensor for On Board Diagnostics (OBD)
of Diesel Particulate Filters (DPF). SAE Int. J. Fuels Lubr. 2010, 3, 61–69. [CrossRef]

7. Kamimoto, T. A review of soot sensors considered for on-board diagnostics application. Int. J. Eng. Res. 2017,
18, 5–6. [CrossRef]

8. Necker, T.; Garnatz, O. On-board Diagnostics Meets AUTOSAR. ATZextra Worldw. 2013, 18, 37. [CrossRef]
9. Chen, C.L.; Hsu, C.W. Enhancement of Ev On-Board Diagnostics System into Preliminary Operation Using

Estimation Theory. Appl. Mech. Mater. 2013, 391, 592–595. [CrossRef]

https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/gateway-solutions-iot-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/gateway-solutions-iot-brief.pdf
http://dx.doi.org/10.1049/cce:19990604
http://dx.doi.org/10.3390/app8071164
http://dx.doi.org/10.1109/TVT.2007.895602
http://dx.doi.org/10.4271/2010-01-0307
http://dx.doi.org/10.1177/1468087416678499
http://dx.doi.org/10.1007/s40111-013-0012-4
http://dx.doi.org/10.4028/www.scientific.net/AMM.391.592

Appl. Sci. 2018, 8, 1594 18 of 19

10. Sujit, H.; Ramachandra, K.; Reddy, N.; Vivek, R.V.; Karanth, S.; Kamath, T. A novel dynamic traffic
management system using on board diagnostics and Zigbee protocol. In Proceedings of the 2016 International
Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 21–22 October 2016.

11. Kulkarni, P.; Rajani, P.K.; Varma, K. Development of On Board Diagnostics (OBD) testing tool to scan emission
control system. In Proceedings of the 2016 International Conference on Computing Communication Control
and automation (ICCUBEA), Pune, India, 12–13 August 2016.

12. Khorsravinia, K.; Hassan, M.K.; Abdul Rahman, R.Z.; Rahman Al-Haddad, S.A. Integrated OBD-II and
mobile application for electric vehicle (EV) monitoring system. In Proceedings of the 2017 IEEE 2nd
International Conference on Automatic Control and Intelligent Systems (I2CACIS), Kota Kinabalu, Malaysia,
21 October 2017.

13. Malekian, R.; Moloisane, N.R.; Nair, L.; Maharaj, B.T.; Chude-Okonkwo, U.A.K. Design and Implementation
of a Wireless OBD II Fleet Management System. IEEE Sens. J. 2016, 17, 1154–1164. [CrossRef]

14. Alvear, O.; Calafate, C.Y.; Cano, J.C.; Manzoni, P. Validation of a vehicle emulation platform supporting
OBD-II communications. In Proceedings of the 2015 12th Annual IEEE Consumer Communications and
Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015.

15. Tsai, Y.C.; Lee, W.H.; Chou, C.M. A safety driving assistance system by integrating in-vehicle dynamics and
real-time traffic information. In Proceedings of the 2017 IEEE 8th International Conference on Awareness
Science and Technology (iCAST), Taichung, Taiwan, 8–10 November 2017.

16. Choi, E.; Chang, S. A consumer tracking estimator for vehicles in GPS-free environments. IEEE Trans.
Consum. Electron. 2017, 63, 450–458. [CrossRef]

17. Chou, Y.S.; Mo, Y.C.; Su, J.P.; Chang, W.J.; Chen, L.B.; Tang, J.J.; Yu, C.Y. i-Car system: A LoRa-based
low power wide area networks vehicle diagnostic system for driving safety. In Proceedings of the 2017
International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017.

18. Wey, C.L.; Hsu, C.H.; Chang, K.C.; Jui, P.C. Enhancement of Controller Area Network (CAN) bus arbitration
mechanism. In Proceedings of the 2013 International Conference on Connected Vehicles and Expo (ICCVE),
Las Vegas, NV, USA, 2–6 December 2013.

19. Chen, J.; Cao, D.; Lv, X. Design of FlexRay-based communication on triplex redundancy flight control
computer. In Proceedings of the 2015 Chinese Automation Congress (CAC), Wuhan, China, 27–29 November
2015.

20. Yang, J.S.; Lee, S.; Lee, K.C.; Kim, M.H. Design of FlexRay-CAN gateway using node mapping method
for in-vehicle networking systems. In Proceedings of the 2011 11th International Conference on Control,
Automation and Systems, Gyeonggi-do, South Korea, 26–29 October 2011.

21. Mejdi, H.; Jedli, B.; Hasnaoui, S. Designing a FlexRay controller—From SDL to StateFlow and Simulink
blocks: Generation and verification. In Proceedings of the 2017 8th International Conference on Information
and Communication Systems (ICICS), Irbid, Jordan, 4–6 April 2017.

22. Wang, Y.; Liu, H.; Huang, B.; Sun, X. Frame Design for Vehicular FlexRay Network Based on Transmission
Reliability and Slot Utilization. In Proceedings of the 2016 9th International Symposium on Computational
Intelligence and Design (ISCID), Hangzhou, China, 10–11 December 2016; pp. 447–452.

23. Chen, Y.Y.; Leu, K.L. An Effective Two-Level Redundancy Approach for FlexRay Network Systems.
In Proceedings of the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshop (DSN-W), Toulouse, France, 28 June–1 July 2016; pp. 54–55.

24. Gu, Z.; Han, G.; Zeng, H.; Zhao, Q. Security-Aware Mapping and Scheduling with Hardware Co-Processors
for FlexRay-Based Distributed Embedded Systems. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 3044–3057.
[CrossRef]

25. Jang, S.J.; Jeon, J.W. Software reprogramming performance analysis of CAN FD and FlexRay protocols.
In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China,
8–10 August 2015.

26. Abdellaoui, Z.; Bouhouch, R.; Jaouaini, H.; Hasnaoui, S. FlexRay networks for SAE benchamrk application
using DDS middleware: Development of FlexRay driver and its Simulink Blockset implementation. In
Proceedings of the 2015 2nd World Symposium on Web Applications and Networking (WSWAN), Sousse,
Tunisia, 21–23 March 2015.

http://dx.doi.org/10.1109/JSEN.2016.2631542
http://dx.doi.org/10.1109/TCE.2017.015064
http://dx.doi.org/10.1109/TPDS.2016.2520949

Appl. Sci. 2018, 8, 1594 19 of 19

27. Abdellaoui, Z.; Mbarek, I.B.; Bouhouch, R.; Hasnaoui, S. DDS middleware on FlexRay network: Simulink
blockset implementation of wheel's sub-blocks and its adaptation to DDS concept. In Proceedings of the
2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP) Proceedings, Siena, Italy,
15–17 May 2015.

28. Zeng, W.; Khalid, M.; Chowdhury, S. A qualitative comparison of FlexRay and Ethernet in vehicle networks.
In Proceedings of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE),
Halifax, NS, Canada, 3–6 May 2015; pp. 571–576.

29. Amel, B.N.; Rim, B.; Houda, J.; Salem, H.; Khaled, J. Flexray versus Ethernet for vehicular networks.
In Proceedings of the 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, Italy,
17–19 December 2014.

30. Mundhenk, P.; Sagstetter, F.; Steinhorst, S.; Lukasiewycz, M.; Chakraborty, S. Policy-based message
scheduling using FlexRay. In Proceedings of the 2014 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), New Delhi, India, 12–17 October 2014.

31. Yan, W.; Lifang, W.; Chenglin, L.; Fang, L. In-vehicle FlexRay bus monitoring system. In Proceedings of
the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing,
China, 31 August–3 September 2014.

32. Dong, Z.H.; Piao, Z.Y.; Jang, I.G.; Chung, J.G.; Lee, C.D. Design of FlexRay-MOST gateway using static
segments and control messages. In Proceedings of the 2012 IEEE International Symposium on Circuits and
Systems, Seoul, South Korea, 20–23 May 2012.

33. Lee, S.; Cho, B.S.; Choi, Y.J.; Baek, K.R. Implementation of MOST/CAN network protocol. In Proceedings of the
2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011.

34. Seo, H.S.; Kim, B.C.; Park, P.S.; Lee, C.D.; Lee, S.S. Design and implementation of a UPnP-can gateway for
automotive environments. Int. J. Autom. Technol. 2013, 14, 91–99. [CrossRef]

35. Luo, F.; Yang, T.Y.; Liu, C. Development of Automatic CAN Gateway Test System. Appl. Mech. Mater. 2014,
734, 161–167.

36. Mangan, S.; Wang, J. Development of a Novel Sensorless Longitudinal Road Gradient Estimation Method
Based on Vehicle CAN Bus Data. Inst. Electr. Electron. Eng. 2007, 12, 375–386. [CrossRef]

37. Gugapriya, G.; Siyal, K. Anti-Theft Vehicle Locking System using CAN. Indian J. Sci. Technol. 2016, 9, 45.
38. Guo, H.; Ngoh, L.H.; Wu, Y.D.; Teo, J.C.M. Secure wireless vehicle monitoring and control. In Proceedings of

the 2009 IEEE Asia-Pacific Services Computing Conference (APSCC), Singapore, 7–11 December 2009.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12239-013-0011-5
http://dx.doi.org/10.1109/TMECH.2007.897286
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	On-Board Diagnostics
	Vehicle Protocol

	A Design of a Lightweight In-Vehicle Edge Gateway (LI-VEG) for the Self-Diagnosis of an Autonomous Vehicle
	Overview
	A Design of a Sending and Receiving Layer (InV-SRL)
	A Design of an InV-Management Layer (InV-ML)
	A Design of the InV-DTL

	The Performance Analysis
	Conclusions
	References

