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Abstract: A robust design of a 3D-printed 6–18 GHz double-ridged TEM horn antenna is proposed
in this paper. The designed TEM horn antenna has two parts: an adaptor and a horn aperture.
The adaptor is realized using a double-ridged waveguide to extend the operating bandwidth of
the dominant mode (TE10 mode). Meanwhile, the horn aperture section is implemented in an
exponentially tapered configuration to match the impedance of the double-ridged waveguide with
the intrinsic impedance. The performance of the initially designed antenna shows that the reflection
coefficient and gain levels are less than −13 dB and greater than 5.5 dBi within the 6–18 GHz
band, respectively. The initial design was well done, but the noise factors that may occur during
the manufacturing process were not taken into account. To design an antenna considering these
noise factors, the parameters of the initial design are optimized by a novel robust design method
also proposed in this paper. The robustness of the antenna optimized by the proposed method is
approximately 12.4% higher than that of the initial antenna. The validity of the proposed method was
tested by fabricating the antenna. A prototype of the optimized antenna with the proposed robust
design method is fabricated using a 3D printer with a stereolithographic apparatus attached, and
the surface of the frame is covered by a nano-silver plating. The measured results of the fabricated
antenna are in good agreement with the simulation results over the operating band. The measured
−10 dB reflection coefficient bandwidth of the antenna can cover 6–18 GHz. In addition, the measured
gain ranges from 4.42 to 10.75 dBi within the 6–18 GHz band.

Keywords: 3D-printed antenna; double-ridged waveguide; optimization algorithm; robust design;
TEM horn antenna

1. Introduction

Horn antennas are easy to fabricate and have good directional radiation performance.
For these reasons, they are widely used in applications such as standard measurement equipment,
radar, and communication systems [1]. The antennas are generally manufactured by milling or
electro-forming processes with metallic materials. They are relatively heavy, incur high production
costs, and take a long time to be fabricated [2].

3D printing technology has attracted much attention as a means by which to realize various
shapes [3–5]. The technology has advantages such as lightweight processes, a low cost, and a short
production time [6,7]. Three-dimensional printing technologies are mainly classified into four types:
the selective deposition of an extruded material (fused deposition modelling, FDM), the curing of resin
with ultraviolet rays (stereolithography apparatus, SLA), powder binding (selective laser sintering,
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SLS), and a mixture of stereolithography and inkjet printing (photopolymer jetting, PolyJet) [8,9].
The FDM method has low resolutions, while the SLA, SLS, and PolyJet methods offer high resolutions.
Therefore, the SLA, SLS, and PolyJet methods are typically utilized for centimetre- and millimetre-wave
applications. Nevertheless, they remain associated with a serious fabrication tolerance problem.

In order to overcome the tolerance problem, a robust design method is required. This can be
accomplished with an optimization algorithm which selects the combination of design parameters
which minimizes the influence of noise factors, such as manufacturing tolerances. Taguchi’s method
(TM) is a well-known technique offering robust designs. This method was developed on the basis of
the orthogonal array (OA) concept, which can effectively reduce the number of tests required in the
design process [10]. TM has been widely applied to many areas, such as metallurgical engineering,
material engineering, and mechanical engineering, among others [11–13]. In recent years, it has also
been used to design antennas. However, the solutions obtained by TM are highly likely to fall into the
local minima, as the search boundary condition in TM is very limited [14,15].

In this paper, robust design of 3D-printed double-ridged TEM horn antenna is proposed.
The purpose of the robust design is to minimize the distortion of the antenna performance as caused by
physical factors such as manufacturing errors which arise during the 3D printing process. The proposed
method is realized by combining a genetical swarm optimization (GSO) algorithm [16] and an OA
matrix. Unlike TM, a solution obtained by the proposed method is less likely to encounter the local
minima due to the random factor of the GSO. The design of the TEM horn antenna is illustrated in
Section 2. The procedure used to ensure a robust design method is described in detail in Section 3.
Simulated results of the robust design are presented in Section 4 and the measurement results of the
antenna with the robust design are discussed in Section 5.

2. TEM Horn Antenna Design

2.1. Adaptor Design

Figure 1 shows a 3D view of an adaptor which consists of a double-ridged waveguide (DRW),
a SMA connector (Gigalane, PAF-S06-000), and a cavity. The DRW has a longer cut-off wavelength and
lower characteristic impedance of the dominant mode (TE10 mode) relative to those of conventional
waveguides [17]. The SMA connector operated in the TEM mode is used to excite the DRW.
Therefore, a cavity model is required for the mode transition from the TEM to the TE10 mode.

DRW

SMA connector

y

z x

Figure 1. 3D view of an adaptor with a double-ridged waveguide (DRW).

Figure 2 depicts a cross-sectional view of the DRW, which is designed by the transverse
resonance method (TRM) considering the operating band of the TE10 mode and the characteristic
impedance of the SMA connector [18]. The dimensions of the DRW obtained from the TRM are as
follows: a = 11.6 mm, b = 7.78 mm, d = 0.78 mm, and s = 4.64 mm.

Figure 3 shows the simulated attenuation constant and characteristic impedance of the designed
DRW. All of the simulation results in this paper are obtained using ANSYS high-frequency structure
simulation (HFSS) software. As shown in Figure 3a, the attenuation constants of the TE10 and TE20
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modes begin to have zero values starting at 4.7 and 19.3 GHz, respectively. This result indicates that
the operating band of the dominant mode is 4.7–19.3 GHz. In Figure 3b, the characteristic impedance
of the dominant mode varies from 44.6 to 77.4-Ω within the 6–18 GHz band.

a

b
d
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y

s

Figure 2. Cross-sectional view of the DRW.

(a) (b)

Figure 3. Simulated results of the DRW: (a) attenuation constant and (b) characteristic impedance.

Figure 4 shows the yz-plane view and simulated S-parameters of the adaptor. In Figure 4a,
a rectangular cavity is attached to the DRW to realize the mode transformation between the SMA
connector and the DRW. The width and height of the cavity are equal to the dimensions a and b
of the DRW. The thickness t is fixed at 1.75 mm to consider the dimensions of the SMA connector.
The values of ls, lc, and lr are obtained through a parametric study. The simulated S-parameters of
the adaptor with dimensions of a = 11.6 mm, b = 7.78 mm, d = 0.78 mm, s = 4.64 mm, ls = 3.57 mm,
lc = 5.72 mm, and lr = 5 mm are described in Figure 4b. The simulation result shows that the reflection
and transmission coefficients are less than −10 dB and higher than −0.45 dB, respectively, within the
6–18 GHz band.
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Figure 4. (a) yz-plane view and (b) simulated S-parameters of the adaptor.
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2.2. Horn Aperture Design

Figure 5 shows cross-sectional views of the horn aperture which is realized with an exponentially
tapered structure along both the x- and y-axes. The tapered structure is advantageous for broadband
matching because its characteristic impedance varies smoothly. The width w(z) of the horn aperture
and the spacing d(z) between the upper and lower plates are correspondingly given by

w(z) = 2(expαz − 1) + s, (0 ≤ z ≤ lh) (1)

d(z) = 2(expβz − 1) + d, (0 ≤ z ≤ lh) (2)

where α and β are constants, and lh is the length of the horn aperture. The characteristic impedance of
the aperture is obtained by means of parallel plate waveguide theory [19]. The characteristic impedance
Z(z) of the horn aperture can be expressed as follows:

Z(z) =
d(z)
w(z)

120π, (0 ≤ z ≤ lh) (3)

In Equation (3), the fringing fields at the edges of the parallel plate waveguide are ignored for a
simple and rapid design of the horn aperture. Based on Equations (1)–(3), the horn aperture is designed.
The values of α and β are respectively set to 0.092 and 0.1 so that the characteristic impedance at the
open end matches the intrinsic impedance (377-Ω). lh is fixed at 25 mm, which is half of the wavelength
at 6 GHz.

lh

x
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y

z
d exp

βz

d z( )w z( )

(b)

expαz

Figure 5. Cross-sectional views of the horn aperture: (a) xz-plane and (b) yz-plane.

2.3. TEM Horn Antenna

Figure 6 shows a 3D view of the TEM horn antenna. The TEM horn antenna is implemented by
assembling the adaptor and the horn aperture. The simulated reflection coefficient and realized gain of
the horn antenna are described in Figure 7. The gain is observed in the +z-direction. The reflection
coefficient and gain levels of the antenna are less than −13 dB and greater than 5.47 dBi, respectively,
within the range of 6–18 GHz.

horn aperture

adaptor

SMA connector

Figure 6. 3D view of the TEM horn antenna.
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(a) (b)

Figure 7. Simulated results of the TEM horn antenna: (a) reflection coefficient and (b) realized gain.

3. Procedure of the Robust Design Method

In this paper, a novel robust design method is utilized to reduce the noise effects. The proposed
method is realized by combining a genetical swarm optimization (GSO) algorithm and an orthogonal
array (OA) matrix. The GSO algorithm, a hybrid optimization algorithm which combines a genetic
algorithm (GA) and particle swarm optimization (PSO), is employed to find a new combination of
robust parameters against the noise factors, while the OA is employed to evaluate the robustness of
the parameters.

Figure 8 shows a flowchart of the proposed robust design method. The detailed robust design
procedure is described below.

1. Define the control and noise factors. The control factors are the design parameters for the TEM
horn antenna and the noise factors are parameters that the designer cannot control. We assumed
that the manufacturing process has tolerances along the x, y, and z axes and that the characteristic
impedance of the SMA connector can vary. To realize the variation of the characteristic impedance
in the simulation, the permittivity of the Teflon used in the SMA connector is changed. In the
simulation, the tolerances are defined as nx, ny, and nz, and the permittivity is represented by ni.

2. Renew the dimensions of the control factors using the updating rule of the GSO. In each iteration,
the design parameters are randomly divided into two parts by the hybridization coefficient (HC),
and these are correspondingly updated by the GA and PSO [16]. For example, HC = 0 means
that the parameters are evolved by only PSO. On the other hand, for HC = 1, the parameters are
updated by only the GA. In this paper, HC is set to 0.8.

3. Evaluate the performance of the antenna with the dimensions of the parameters updated in step
2. The cost function for GSO must be defined to ensure that the performance of the optimized
antenna is better than that of the initial antenna. To achieve this, the reflection coefficient and
realized gain levels of the optimized antenna should be less than −13 dB and higher than the
realized gain of the initial antenna, respectively, as follows,

Cost =
1
n

n

∑
i=1
{Sopt( fi) + Gopt( fi)} (4)

Sopt( fi) =

{
1 if S11( fi) > −13 dB
0 otherwise

(5)

Gopt( fi) =

{
1 if gainopt( fi)− gainini( fi) < 0
0 otherwise

(6)



Appl. Sci. 2018, 8, 1582 6 of 10

where n is the number of sampling frequencies and fi is the i-th sampling frequency within the
6–18 GHz band. Additionally, S11( fi) denotes the reflection coefficient level obtained at each
sampling frequency. gainopt and gainini are the gain levels obtained from step 2 and the initial
antenna, respectively.

4. Steps 2 and 3 are repeated until the cost function is 0.
5. Build an OA matrix for noise factors and conduct the experiments in the OA matrix. In order to

realize the orthogonality between the parameters in all possible combinations and to reduce the
simulation time, an OA matrix with two strengths and three levels is employed. The OA matrix
is described in Table 1.

6. Evaluate the robustness of the antenna as optimized by GSO. The robustness for the k-th
experiment can be defined as the variation of the reflection coefficient,

Rk
e =

1
n

n

∑
i=1

(|Sopt( fi)− Sk
noi( fi)|), (1 ≤ k ≤ 9) (7)

where Sk
noi( fi) is the reflection coefficient level at the sampling frequency. Next, the robustness R

of the optimized antenna is expressed by averaging the robustness value for each experiment,
as follows,

R =
1
m

m

∑
k=1

Rk
e , (8)

where m is the number of experiments in the OA matrix.
7. Finally, steps 2 to 6 are repeated until the number of iteration reaches 100.

Table 1. OA Matrix for noise factors.

Experiment Noise Factors

nx ny nz ni

1 −0.2 −0.2 −0.2 1.9
2 −0.2 0 0 2.1
3 −0.2 0.2 0.2 2.3
4 0 −0.2 0 2.3
5 0 0 0.2 1.9
6 0 0.2 −0.2 2.1
7 0.2 −0.2 0.2 2.1
8 0.2 0 −0.2 2.3
9 0.2 0.2 0 1.9

Start

Define control and noise factors

cost = 0?
YESNO

End

Termination
criteria met?

NO

Evaluate the cost function

Conduct noise test using OA matrix

Evaluate the robustness

YES

Update the control factors
according to updating rule of GSO

Figure 8. Flowchart of the robust design method.
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4. Simulated Results of the Robust Design

Figure 9 shows the noise test results of the initial and optimized TEM horn antennas. As shown
in Figure 9a, the reflection coefficient of the antenna varies according to the noise factors in the OA
matrix experiments. In particular, the fluctuation of the reflection coefficient level around 17.5 GHz
exceeds the −10 dB criterion. The robustness of the initial antenna calculated according to Equation (8)
is 1.45. The noise test result of the robustly optimized antenna with robustness of 1.27 is presented
in Figure 9b. Unlike the noise test result of the initial antenna, all of the reflection coefficient levels
in the noise test result fall under the −10 dB criteria in the 6–18 GHz band. The robustness of
each experiment in the noise test ranges from 0.57 to 2.29. The minimum and maximum values are
observed in experiments 4 and 9, respectively. The parameters of the optimized antenna are as follows:
a = 12.54 mm, b = 7.22 mm, d = 0.83 mm, s = 5.03 mm, ls = 3.48 mm, lc = 6.08 mm, lr = 5.02 mm,
lh = 25 mm, α = 0.092, and β = 0.1.

(a) (b)

Figure 9. Noise test results of the (a) initial and (b) optimized TEM horn antennas.

5. Prototype and Measured Results

Figure 10 shows a photograph of the antenna fabricated with dimensions obtained by the robust
design procedure. The frame of the horn antenna is built by the Form2 (a 3D printer with SLA), and its
surface is plated by EM-271S silver paste with conductivity of 2.22 × 106 S/m. As this silver paste
uses a phenoxy resin as its binder, it has favourable adhesion to hard materials. The thickness of the
metal deposition is typically less than 10 µm. Finally, the plated frame is attached to a SMA connector.

The simulated and measured results of the prototype antenna are depicted in Figures 11 and 12.
The reflection coefficient is measured using an Agilent 8510C network analyser and the realized gain
and radiation patterns are measured in an anechoic chamber. Good agreement between the simulation
and measurement results is observed. As shown in Figure 11a, the measured −10 dB reflection
coefficient bandwidth of the antenna can cover 6–18 GHz. In Figure 11b, the simulated and measured
gains are obtained in the +z-direction. The measured gain varies from 4.42 to 10.75 dBi. The measured
gain is lower than the simulated gain owing to the rough surface of the frame and the low conductivity
of the nano silver plating [20]. The radiation patterns at 6, 12, and 18 GHz are observed on the xz-
and yz-planes and recorded with an angular resolution of 1◦ in the 360◦ spatial range, as shown in
Figure 12. The difference between the measurement and the simulation at the edge angle is due to
the different boundary conditions during the simulation and measurement processes. The boundary
condition in the simulation scenario is a numerically infinitely extended space, whereas it is given a
finite volume with weak scattering in the measurement setup.
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adaptor

horn aperture

SMA connector

Figure 10. Photograph of the fabricated antenna with dimensions obtained by the robust
design procedure.

(a) (b)

Figure 11. Simulated and measured results of the robustly optimized TEM horn antenna: (a) reflection
coefficient and (b) realized gain.

(a) (b)

(c)

Figure 12. Simulated and measured radiation patterns of the robustly optimized TEM horn antenna:
(a) at 6 GHz; (b) at 12 GHz; and (c) at 18 GHz.
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6. Conclusions

A 3D-printed double-ridged TEM horn antenna with an operating bandwidth of 6–18 GHz is
designed using a new robust design method in this paper. The method is realized using a GSO
algorithm and an OA matrix. The convergence speed of the GSO is faster than that of the GA or PSO,
and is less likely to fall to the local optimum. OA matrix with two strengths and three levels is used to
effectively reduce the simulation time. The GSO algorithm and OA matrix are employed to renew the
antenna parameters and to evaluate the robustness of the parameters, respectively. The cost function
and robustness are defined considering the reflection coefficient and gain of the horn antenna used
in this design. As a result of the robust design process, the robustness of the optimized antenna is
approximately 12.4% higher than that of the initial antenna. The frame of the robustly designed TEM
horn antenna is built using a 3D printer of the SLA type, and its surface is plated with nano silver.
Good agreement between the simulated and measured results with regard to the reflection coefficient
and radiation characteristic is achieved, proving the feasibility of the proposed robust design method.
Therefore, the proposed method with 3D printing technology is very useful and suitable for the robust
design of a lightweight horn antenna via a rapid fabrication process available at a low cost. In addition,
the proposed TEM horn antenna can be feasibly employed for radar and communication systems
which require wideband capabilities.
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