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Abstract: Recently, an increasing number of rare-earth-based equiatomic quaternary compounds
have been reported as promising novel spintronic materials. The rare-earth-based equiatomic
quaternary compounds can be magnetic semiconductors (MSs), spin-gapless semiconductors (SGSs),
and half-metals (HMs). Using first-principle calculations, we investigated the crystal structure, density
of states, band structure, and magnetic properties of a new rare-earth-based equiatomic quaternary
Heusler (EQH) compound, ScFeRhP. The results demonstrated that ScFeRhP is a HM at its equilibrium
lattice constant, with a total magnetic moment per unit cell of 1 µB. Furthermore, upon introduction
of a uniform strain, the physical state of this compound changes with the following transitions:
non-magnetic-semiconductor-(NMS)→MS→ SGS→ HM→metal. We believe that these results
will inspire further studies on other rare-earth-based EQH compounds for spintronic applications.
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1. Introduction

Since the first report on half-metal (HM) by Groot et al. [1], various Heusler compounds have
been verified by theoretical approaches and experiments to be HM materials. The HM Heusler alloys
attract significant interest owing to their novel physical properties [2–6].

Typically, Heusler-based HMs can be divided into three types: half-Heusler HMs [3], full-Heusler
HMs [4], and quaternary Heusler HMs [5]. The quaternary Heusler alloys (XMYZ) can be regarded as
a combination of two full-Heusler alloys: X2YZ and M2YZ (X, Y, M are individual 3d or 4d transition
elements, while Z is an atom of the main group). Many quaternary Heusler HMs have been investigated
by first-principle approaches. For example, Han et al. [6] have investigated a novel equiatomic
quaternary Heusler (EQH) alloy YRhTiGe, concluding that it is an HM with a ferromagnetic ground
state. Moreover, they studied its mechanical anisotropy, as well as dependence on the direction of shear
modulus and Young’s modulus in detail. New quaternary HMs, FeRuCrP and FeRhCrP [5], have been
studied by Ma et al. in 2017; strain has been introduced to investigate its effect on the HM states.

In recent years, Wang [7] has theoretically predicted a novel type of materials, referred to as
spin-gapless semiconductors (SGSs). The SGSs can be categorized as new members of the zero-gapless
material family. Following this study, many Heusler-based SGSs [8] were studied. Recently, Zhang et al.
studied the LuCoCrGe EQH compound [9], revealing that it is a highly dispersive gapless HM
under strain.

Figure 1 illustrates a HM, SGS, and magnetic semiconductor (MS). Figure 1a shows that one of the
channels (spin-down (minority) channel) is metallic, while the other one (spin-up (majority) channel)
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exhibits a semiconducting behavior. Figure 1b shows that there is a band gap for the spin-up channel
between the two bands (conduction and valence bands). The behavior is different for the spin-down
channel, exhibiting a zero-gap between these bands; this behavior corresponds to SGS. In Figure 1c,
two semiconductor-type band gaps are observed in both channels, corresponding to MS properties.
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Figure 1. Schematics of the densities of states of a (a) half-metal (HM), (b) spin-gapless semiconductor
(SGS), and (c) magnetic semiconductor (MS).

In this study, we employed first-principle calculations to investigate the crystal structure,
electronic structure, and magnetic properties of a new rare-earth-containing EQH compound ScFeRhP.
We demonstrate that this compound is HM at its equilibrium lattice constant. Rare physical transitions
with an SGS feature can be observed at different strain magnitudes.

2. Calculation Method

We calculated the band structure and magnetic properties of ScFeRhP by the plane-wave
pseudopotential method [10,11], using the Cambridge Serial Total-Energy Package (CASTEP) software.
We studied the interaction between the valence electrons and nuclei by the method of ultra-soft
pseudopotentials [12]. The generalized gradient approximation (GGA) was used to calculate the
exchange and correlation between electrons [13] using the scheme of Perdew-Burke-Ernzerhof
(PBE) [14]. In all calculations, a k-point mesh of 12 × 12 × 12 and plane-wave basis-set cut-off
of 450 eV were used. The above parameter settings ensure accuracy of the calculation results.

3. Results and Discussion

3.1. Structural Stability and Total Energy

In general, the EQH compounds have LiMgPdSn-type structures [15]. Three types of crystal
structures and their distinct atomic positions of the ScFeRhP EQH compound are shown in Figure 2
and Table 1, respectively. Following the atom-occupation rule, Rh tends to occupy the site D (3/4, 3/4,
3/4), P and Sc tend to occupy the A (0, 0, 0) and C (1/2, 1/2, 1/2) sites, respectively, and Fe tends to
occupy the B (1/4, 1/4, 1/4) site. Therefore, for the ScFeRhP compound, type I (see Figure 2) is the
most probable configuration owing to its lowest energy.
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Figure 2. Three possible crystal structures (a) type 1, (b) type 2, (c) type 3 for ScFeRhP compound.

Table 1. Three crystal-structure atomic positions of the ScFeRhP equiatomic quaternary Heusler
(EQH) compound.

Type P Fe Sc Rh

Type 1 A (0, 0, 0) B (1/4, 1/4, 1/4) C (1/2, 1/2, 1/2) D (3/4, 3/4, 3/4)
Type 2 A (0, 0, 0) C (1/2, 1/2, 1/2) B (1/4, 1/4, 1/4) D (3/4, 3/4, 3/4)
Type 3 B (1/4, 1/4, 1/4) A (0, 0, 0) C (1/2, 1/2, 1/2) D (3/4, 3/4, 3/4)

For geometric optimization of the ScFeRhP EQH compound, the crystal cell energy is minimized
as a function of the lattice constant. The three possible crystal structures are shown in Figure 2.
Each of them has ferromagnetic (FM) and non-magnetic (NM) states. We calculated the energies by
the CASTEP software. Figure 3a shows total energies in FM states for the type 1, 2, and 3 structures,
respectively, and Figure 3b shows the energies of both FM state and NM state for type 1 structure.
Among the considered cases the calculated result that the type 1 structure at the FM state exhibits the
minimum energy. More details about the equilibrium lattice constants and the total energies of these
three type structures can be seen in Table 2. This indicates that the most stable of these structures is the
type 1 structure at the FM state. According to the calculations, the equilibrium lattice constant of the
ScFeRhP EQH compound is 5.97 Å.
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Table 2. The equilibrium lattice constant and minimum total energy of each type for both FM and NM
magnetic states.

States Calculated Value Type 1 Type 2 Type 3

FM
Equilibrium lattice constant 5.97 Å 6.14 Å 6.18 Å

Total energy −2931.40 eV −2930.75 eV −2930.72 eV

NM
Equilibrium lattice constant 5.96 Å 6.08 Å 6.10 Å

Total energy −2931.23 eV −2929.80 eV −2930.06 eV

3.2. Electronic Structure and Slater–Pauling Rule

The partial and total (Mt) element magnetic moments, and total number of valence electrons (Zt)
of this compound at the most stable configuration are shown in Table 3. The Mt of the ScFeRhP EQH
compound is 1 µB, while its total number of valence electrons is 25. This EQH compound obeys the
Slater-Pauling rule: Mt = Zt − 24 [16].

Table 3. Partial and total magnetic moments (µB), calculated equilibrium lattice constant, Zt,
and Slater-Pauling (S-P) rule for the ScFeRhP compound.

Compound Total P Fe Sc Rh a (Å) Zt S-P Rule

ScFeRhP 1.00 0.04 0.98 −0.24 0.22 5.97 25 Mt = Zt − 24

Figure 4 shows the calculated band structures for the ScFeRhP compound. The band structure
reveals the half-metallicity of this compound near the Fermi level. The spin-up channel exhibits a metallic
character, while the spin-down channel exhibits a semiconducting character. Therefore, based on the
obtained band structures and magnetism, we can conclude that the ScFeRhP EQH compound is a HM.
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We analyze the origin of the band gap at the spin-down channel in Figure 5. According to the
study of Galanakis et al., P has completely occupied 1s and 3p states. We need to consider only the
hybridization character of the 3d and 4d states of the ScFeRhP EQH compound, as shown in Figure 5.
For this alloy, the d4 and d5 orbits of the Fe and Sc atoms couple forming antibonding eu and bonding
eg states. The d1, d2, and d3 orbits of the Fe and Sc atoms couple forming antibonding t1u and bonding
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t2g states. The same states of the Rh atom hybridize with the above orbits, yielding 15 orbits (3 t2g, 2 eg,
2 eu, 3 t1u, 3 t2g, and 2 eg). There are 8 occupied orbits under the Fermi level (Figure 5). Combined with
the 3p and 1s orbitals generated by P, there are a total of 12 orbits below the Fermi level; therefore,
this compound follows the Slater-Pauling rule: Mt = Zt − 24.
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In order to explain the origin of the band gap [17], we analyzed the partial densities of states
(PDOS) and total density of states (TDOS) of ScFeRhP; the results are shown in Figure 6. The PDOS
indicate that the TDOS at the Fermi level are mostly attributed to the Fe 3d and Rh 4d states. The PDOS
of the P atoms and rare-earth element Sc are significantly lower near the Fermi level compared with
those of the Fe and Rh atoms. Figure 6 reveals that the Fe element exhibits a stronger spin splitting
at −1.4 eV in the majority channel and −0.8 eV in the other channel for the bonding state. For the
Rh element, the bonding state was observed mostly in the range of −3.5 eV to −4 eV in the majority
channel and in the range of −3 eV to −3.5 eV in the other channel.
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3.3. Magnetic Properties

The magnetic behavior of the ScFeRhP alloy at strained lattice constants is discussed in detail in
this section. The Mt of the ScFeRhP EQH compound is 1 µB at its equilibrium lattice constant, and it
remains almost unchanged when the lattice constant changed in a large range. The main contribution
to the magnetic moment originates from the Fe atoms, as shown in Table 3. The Mt and partial magnetic
moments at strained lattice constants of the ScFeRhP compound are presented in Figure 7. According
to the actual conditions, we focus on compressive and expanded lattice constants in the range of 5.30 Å
to 6.10 Å. As shown above, the total magnetic moment of the ScFeRhP EQH compound is 1 µB at its
equilibrium lattice constant. The magnetic moment decreases with the increase of the lattice constant
for both P and Sc atoms; the magnetic moment of the Fe atom continuously increases, while that of the
Rh atom is almost constant.
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3.4. Transitions of the Physical State under Uniform Strain

In this section, we discuss the change of the physical state of the compound under uniform strain.
A novel distinct transition can be observed in the obtained band structure of the ScFeRhP compound
at its strained lattice constants. The conversion of non-MS-(NMS)-to-MS-to-SGS-to-HM-to-M for this
compound is shown in Figure 8.
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Figure 8. (a–f) are band structures under strained lattice constants of 4.95 Å, 5.35 Å, 5.50 Å, 5.70 Å,
5.97 Å, and 6.10 Å, respectively, for ScFeRhP compound.

The detailed band structures are plotted in Figure 8. With the increase of the lattice constant,
the valence band moves down in the minority channel at the X-point, and moves up in the majority
channel at the G-point, whereas in the conduction band, the opposite behavior is observed. If the
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lattice constant is smaller than 4.95 Å, the compound is NMS. If the parameter is in the range of 4.95 Å
to 5.495 Å, the compound is MS. If the parameter is in the range of 5.495 Å to 5.505 Å, a zero-gap
between the spin-up channel in the valence band and spin-down channel in the conduction band
appears; the compound is SGS. If the parameter is in the range of 5.505 Å to 6.05 Å, the compound is
HM, while for lattice constants larger than 6.05 Å, the compound is metal. These results are illustrated
in Figure 9.
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Figure 9. Physical transitions under uniformly strained lattice constants.

4. Conclusions

Using first-principle calculations, the crystal structure, band structure, magnetic properties,
and origin of the band gap of the ScFeRhP compound were studied. The compound is HM at its
equilibrium lattice constant. Upon introduction of strain, the compound exhibited transitions of its
physic state (NMS → MS → SGS → HM → M), which implies that the magnetic properties and
electronic structure could be widely changed by external tension or compression. A SGS feature
appeared by tuning the lattice constant of the ScFeRhP compound. This study indicates that the
ScFeRhP EQH compound can be used in spintronic applications.
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