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Abstract: In recent years, gene selection for cancer classification based on the expression of a small
number of gene biomarkers has been the subject of much research in genetics and molecular biology.
The successful identification of gene biomarkers will help in the classification of different types of
cancer and improve the prediction accuracy. Recently, regularized logistic regression using the L1

regularization has been successfully applied in high-dimensional cancer classification to tackle both the
estimation of gene coefficients and the simultaneous performance of gene selection. However, the L1 has
a biased gene selection and dose not have the oracle property. To address these problems, we investigate
L1/2 regularized logistic regression for gene selection in cancer classification. Experimental results on
three DNA microarray datasets demonstrate that our proposed method outperforms other commonly
used sparse methods (L1 and LEN) in terms of classification performance.
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1. Introduction

With the development of DNA microarray technology, biological researchers can pay more attention
to simultaneously studying the expression levels of thousands of genes [1,2]. Cancer classification based
on gene expression levels is one of the most active topics in genome research, which is appropriate
for gene expression levels in different situations (e.g., normal and abnormal) [3,4]. However, cancer
classification using DNA microarray data is a challenge because of the data’s high dimension and small
sample size [5]. Generally, the number of genes ranges in the thousands from a hundred or fewer tissue
samples, and so gene selection has recently emerged as important technology for cancer classification [6].
Gene selection is applied because only a small subset of genes is strongly indicative of a targeted disease.
From the biological perspective, effective gene selection methods can be desirable to help to classify
different types of cancer and improve the accuracy of prediction [7–9].

Many gene selection methods have been proposed for selection of the subset of meaningful and
important genes that can achieve high cancer classification performance. Recently, there has been growing
interest in applying regularization techniques in gene selection. Regularization methods are an important
embedded technique [10–13]. From the statistical perspective, regularization methods can prevent
over-fitting. Many statistical methods have been successfully applied to cancer classification. Among
them, logistic regression [14–17] is a powerful discriminative method, and has a direct probabilistic
interpretation that can obtain classification probabilities apart from the class label information. However,
logistic regression is not suitable for solving the high-dimensional and small sample size problem
because the design matrix is singular. Thus, Newton–Raphson’s method cannot work. Regularized
logistic regression has been successfully applied in cancer classification in order to be suitable for
high dimension and small sample size [7,8]. The advantages of regularized logistic regression can
improve the classification accuracy by shrinking the regression coefficients and selecting a small subset of
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genes. Different regularization terms are applied to regularized logistic regression. The widely popular
regularization term is L1 penalty, which is the least absolute shrinkage and selection operator (lasso) [18].
Meanwhile, there are various of versions of L1, such as smoothly clipped absolute deviation (SCAD) [19],
maximum concave penalty (MCP) [20], group lasso [21], and so on. The L1 regularization can assign
some genes’ coefficients to zero for variable selection. Thus, the L1 regularization has been widely
applied to data with high dimension and small sample size.

Although a well-known regularization method is the L1 penalty, it has some limitations [22].
The L1 regularization does not have oracle property [19], which means the aim-listed probability of
selecting the right set of genes (with nonzero coefficients) converges to one, and the estimators of the
nonzero coefficients have asymptotically normal distribution with the same means and covariances
as if the zero coefficients were known in the prior. Besides, there is grouping among genes in DNA
microarray data. Related to this limitation, concerning the grouping property, Zhou and Hastie
proposed the elastic net penalty (LEN) [23], which is a linear combination of L1 and L2 penalties.
In addition, L1 regularization is not sparser. To overcome this limitation, Xu et al. proposed the L1/2
penalty—a method that can be taken as a representative of Lq (0 < q < 1) penalty in both sparsity
and computational efficiency, and has demonstrated many attractive properties, such as unbiasedness
and oracle properties [24–26]. Therefore, we investigated L1/2 regularized logistic regression for gene
selection in cancer classification. The approach is suitable for DNA data with high dimension and
small sample size. To evaluate the effectiveness of the approach, three public datasets were applied to
cancer classification. Additionally, we compared other commonly used sparse methods (L1 and LEN)

to our methods.
Our research can be summarized as follows are given as follows:

• identification of gene biomarkers will help to classify different types of cancer and improve the
prediction accuracy.

• The L1/2 penalized logistic regression is used as a gene selection method for cancer classification
to overcome the over-fitting problem with high-dimensional data and small sample size.

• Experimental results on three GEO lung cancer datasets corroborate our ideas and demonstrate
the correctness and effectiveness of L1/2 penalized logistic regression.

2. Methods

2.1. Regularized Logistic Regression

In this paper, we only consider a general binary classification problem and get a predictor vector
X and a response variable y, which consists of genes and corresponding tissue samples, respectively.
Suppose we have n samples, D = (X1, y1), (X2, y2), ..., (Xn, yn), where Xi = (xi1, xi2, ..., xip) is ith input
pattern with dimensionality p, which means the Xi has p descriptors and xij denotes the value of
gene j for the ith sample. yi is a corresponding variable that takes a value of 0 or 1. Define a classifier
f (x) = ex/(1 + ex), and the logistic regression is shown as follows:

P(yi = 1|Xi) = f (X
′
i β) =

exp(X
′
i β)

1 + exp(X′i β)
. (1)

Additionally, the log-likelihood can be expressed as follows:

l(β) = −
n

∑
i=1
{yilog[ f (X

′
i β)] + (1− yi)log[1− f (X

′
i β)]}. (2)
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We can get the value of vector β from Equation (2). However, solving Equation (2) can result in
over-fitting with data of high dimension and small sample size. Therefore, in order to address the
problem, we add the regularization terms to Equation (2):

β = argmin{l(β) + λ
p

∑
j=1

p(β j)}, (3)

where l(β) and p(β) are loss function and penalty function, respectively, and λ > 0 is a tuning
parameter. Note that p(β) = ∑ |β|q. When q is equal to 1, the L1 has been proposed. Moreover,
there are various of versions of L1, such as SCAD, MCP, group lasso, and so on. We add the L1

regularization to Equation (2). The formula is expressed as follows:

β = argmin{l(β) + λ
p

∑
j=1
|β j|}. (4)

From a biologist’s point of view, there is a grouping property among genes, which is a limitation of
L1 regularization. To overcome this limitation, Zou et al. proposed the elastic net (LEN) regularization
method for gene selection. The LEN regularization tries to combine L1 with L2 in order to search for
highly correlated genes and perform gene selection simultaneously. The regularized logistic regression
using LEN is exhibited as follows:

β = argmin{l(β) + λ1

p

∑
j=1
|β j|+ λ2

p

∑
j=1
|β j|2}. (5)

As we observe from Equation (5), λ1 and λ2 control the sparsity and group effect, respectively.
The coefficient β depends on two non-negative tuning parameters λ1 and λ2. In order to simplify
Equation (5), let λ1 plus λ2 equal to 1. Thus, we can rewrite Equation (5) as:

β = argmin{l(β) + λ1

p

∑
j=1
|β j|+ (1− λ1)

p

∑
j=1
|β j|2}. (6)

2.2. L1/2 Regularized Logistic Regression

Despite the advantages of L1 and LEN , there are some limitations. L1 and LEN have a biased gene
selection, and they do not have an oracle property. Besides, theoretically, the Lq-type regularization
p(β) = ∑ |β|q with the lower value of q would lead to better solutions with more sparsity. However,
difficulties with convergence arise when q is very close to zero. Therefore, Xu et al. proposed L1/2
regularization. When 1

2 < q < 1, comparing with L1, the convergence of L1/2 regularization is not
high, while when 0 < q < 1

2 , comparing with L0, solving the L1/2 regularization is much simpler.
Thus, the L1/2 regularization can be taken as a representative of Lq(0 < q < 1) regularization. The L1/2
regularized logistic regression is as follows:

β = argmin{l(β) + λ
p

∑
j=1
|β j|

1
2 }, (7)

where the value of β can be obtained by calculating Equation (7).
In this paper, we apply the coordinate descent algorithm to solve Equation (7). The algorithm is

a “one-at-a-time” algorithm and solves β j, and other β j 6=k (representing the parameters remaining after
the jth element is removed) are fixed [7,8]. Suppose that we have n samples, D = (X1, y1), (X2, y2), ...,
(Xn, yn), where Xi = (xi1, xi2, ..., xip) is the ith input pattern with dimensionality p, which means the Xi
has p genes and xij denotes the value of genes j for the ith sample. yi is a corresponding variable that
takes a value of 0 or 1. yi = 0 indicates that the ith sample is in Class 1 and yi = 1 indicates that the ith
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sample is in Class 2. Inspired by Friedman et al. [27], Xu et al. [26], and Xia et al. [28], the univariate
half thresholding operator for a L1/2-penalized logistic regression coefficient is as follows:

β j = Hal f (wj, λ) =

 2
3 wj(1 + cos

2(π−φλ(wj))
3 ) if |wj| > 3

4 (λ)
2
3 ,

0 if otherwise.
(8)

Besides, the univariate thresholding operator of the coordinate descent algorithm for the LEN
regularization can be defined as:

β j = fLEN (wj, λ, a) =
S(wj, λa)

1 + λ(1− a)
, (9)

where S(wj, λa) is a soft thresholding operator for the L1 if a is equal to 1, as follows:

β j = So f t(wj, λ) =


wj + λ if wj < −λ ,

wj − λ if wj > λ ,

0 if −λ ≤ wj ≤ λ.

(10)

Inspired by Reference [7], Equation (7) is linearized by one-term Taylor series expansion:

L(β, λ) ≈ 1
2n

n

∑
i=1

(Zi − Xiβ)
′
Wi(Zi − Xiβ) + λ

n

∑
j=1
|β|

1
2 , (11)

where Zi = Xi β̃ + Yi− f (Xi β̃)

f (Xi β̃)(1− f (Xi β̃))
, Wi = f (Xi β̃)(1− f (Xi β̃)), and f (Xi β̃) =

exp(Xi β̃)

(1+exp(Xi β̃))
. Redefine the

partial residual for fitting β̃ j as Z̃(j)
i = ∑n

i=1 Wi(Z̃i −∑k 6=j xik β̃k) and ∑n
i=1 xij(Zi − Z̃(j)

i ). A pseudocode
of coordinate descent algorithm for L1/2 penalized logistic regression is described in Algorithm 1 [7].

Algorithm 1: A coordinate descent algorithm for L1/2 penalized logistic regression.
Input: X, y, and λ are chosen by 5-fold cross-validation
Output: β
while β(m) does not change do

Initialize all β j(m) = 0(j = 1, 2, 3, ..., p), set m = 0
Calculate Z(m) and W(m) and the loss function Equation (11) based on β(m)
Update each β j(m) and cycle j = 1, 2, 3, ..., p

z̃(j)
i (m)← ∑k 6=j xikβk(m)

and wj(m)← wj(m)xij(Zi(m)− Z̃(j)
i (m))

Update β j(m) by Equation (8)
Let m← (m + 1), β(m + 1)← β(m)

end

2.3. Classification Evaluation Criteria

In order to evaluate the cancer classification performance of the proposed method, accuracy,
sensitivity, and specificity were applied to three public DNA microarray data. The formulas of accuracy,
sensitivity, and specificity are shown as follows [29]:

Sensitivity =
TP

TP + FN
, Speci f icity =

TN
TN + FP

, Accuracy =
TP + TN

TP + TN + FP + FN
,

where TP refers to true positives, TN refers to true negatives, FP refers to false positives, and FN
refers to false negatives.
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3. Datasets

In this section, three public QSAR datasets were obtained online, including GSE10072 [30],
GSE19804 [31], and GSE4115 [32]. A brief description of these datasets is given in Table 1.

Table 1. Three publicly available cancer datasets used in the experiments

Datasets No. of Samples No. of Genes Class

GSE10072 107 22283 Normal/Tumor
GSE19804 120 54675 Normal/Tumor
GSE4115 187 22215 Normal/Tumor

3.1. GSE10072

The dataset is provided by the National Cancer Institute (NIH). There are 107 samples, of which
58 are lung tumor, and the other 49 are normal lung. Each sample contained 22,283 genes.

3.2. GSE19804

We obtained this dataset online. For data preprocessing, we utilized 120 samples, which consisted
of 60 lung cancer and 60 lung normal samples, with 54,675 genes for the model as input.

3.3. GSE4115

This cancer dataset is from the Boston University Medical Center. After preprocessing, the number
of lung cancer and normal lung samples was 97 and 90, respectively. Each sample contained
22,215 descriptors.

4. Results

In this section, two methods are compared to our proposed method, including LEN and L1.
To evaluate the prediction accuracy of the three logistic regression models, we first used random
partition to divide the samples. That is to say, the samples were divided into training samples (70%)
and testing samples (30%). The detailed information of the three publicly available datasets used in
the experiments are shown in Table 2. Secondly, in order to obtain the tuning parameter λ, we applied
5-fold cross validation to the training set. Thirdly, the classification evaluation criteria were the
corresponding average number at 50 runs.

Table 2. Detailed information of the three publicly available datasets used in the experiments.

Datasets No. of Training (Class 1/Class 2) No. of Testing (Class 1/Class 2)

GSE10072 75 (35 Normal/40 Tumor) 32 (14 Normal/18 Tumor)
GSE19804 84 (46 Normal/38 Tumor) 36 (14 Normal/22 Tumor)
GSE4115 131 (67 Normal/64 Tumor) 56 (31 Normal/25 Tumor)

Table 3 shows that the results of the training set and testing set were obtained by L1, LEN , and
L1/2. The results obtained by L1/2 were better those of L1 and LEN . For example, for the training set in
the dataset GSE10072, the values of sensitivity, specificity, and accuracy of L1/2 were the same as for
L1. Besides, the values of sensitivity and accuracy of LEN were 0.98, and 0.99 lower than those of L1/2.
For the testing set in dataset GSE4115, L1/2 and LEN ranked first and second, respectively. L1 was
the last. For instance, the value of accuracy of L1/2 was 0.80, higher than the 0.77 and 0.78 of L1 and
LEN , respectively. Moreover, L1/2 was more sparse than L1 and LEN . As shown in Figure 1, In dataset
GSE17084, the number of selected genes of L1/2 was 8, lower than the respective 33 and 82 of L1 and
LEN . In a word, L1/2 was superior to L1 and LEN .
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Table 3. Mean results of empirical datasets. The results of our proposed method are given in bold.

Methods Datasets
Training Set (5-CV) Testing Set

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

GSE10072 1.00 1.00 1.00 0.92 0.98 0.95
L1 GSE19084 1.00 0.98 0.99 0.87 0.72 0.81

GSE4115 0.83 0.97 0.91 0.77 0.74 0.73

Mean 0.94 0.98 0.97 0.85 0.81 0.83

GSE10072 0.98 1.00 0.99 0.93 0.94 0.94
LEN GSE19084 1.00 0.98 0.99 0.90 0.68 0.81

GSE4115 0.94 0.98 0.96 0.78 0.85 0.78

Mean 0.97 0.99 0.98 0.87 0.82 0.84

GSE10072 1.00 1.00 1.00 0.94 1.00 0.97
L1/2 GSE19084 1.00 1.00 1.00 0.92 0.75 0.87

GSE4115 0.98 0.99 0.98 0.78 0.93 0.83

Mean 0.99 1.00 0.99 0.88 0.89 0.89
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Figure 1. The number of genes selected by L1, LEN , and L1/2.

In order to search the common gene signatures selected by the different methods, we used VENNY
software (2.1.0 Centro Nacional de Biotecnología, Madrid, Spain, 2015) [33] to generate Venn diagrams.
As shown in Figure 2, we considered the common gene signatures selected by the logistic regression
model with L1, LEN , and L1/2 regularization methods, which are the most relevant signatures of lung
cancer. Hence, 2, 3, and 2 common genes were found in these methods for different datasets.
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(a) Dataset: GSE10072 (b) Dataset: GSE19804

(c) Dataset: GSE4115

Figure 2. Venn diagram analysis of the results of L1, LEN , and L1/2.

Table 4 shows that the genes were selected by L1/2. At the beginning of the experiments, the attribute
of genes was prob set ID. Thus, we could transform prob set ID to gene symbol by using the software
DAVID 6.8 [34]. The data distribution for the selected genes is displayed in Figures 3–5. From inspecting
the figures, we can find that some genes facilitated the classification of lung tumor and normal lung,
such as FAM107A, KDELR2, AASS, and SFRP1 for dataset GSE10072; and SOCS2 and EHD2 for dataset
GSE19804. In addition, we found that a common gene in the three different datasets using L1/2 was
EGFR [35,36]. However, due to the distribution of the data of different datasets, we cannot use gene EFGR
to classify different types of cancer and improve the prediction accuracy. Furthermore, the literature
indicates that never-smokers with adenocarcinoma have the highest incidence of EGFR, HER2, ALK,
RET, and ROS1 mutations [37]. Therefore, our proposed L1/2 is an effective technique in gene selection
and classification.
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Table 4. The genes selected by L1/2 for different datasets.

Dataset: GSE10072

Prob_ID Gene Symbol Gene Name

209074_s_at FAM107A family with sequence similarity 107 member A (FAM107A)
200700_s_at KDELR2 KDEL endoplasmic reticulum protein retention receptor 2 (KDELR2)
201983_s_at EGFR epidermal growth factor receptor (EGFR)
210852_s_at AASS aminoadipate-semialdehyde synthase (AASS)
202037_s_at SFRP1 secreted frizzled related protein 1 (SFRP1)
203295_s_at ATP1A2 ATPase Na+/K+ transporting subunit alpha 2 (ATP1A2)

Dataset: GSE19804

Prob_ID Gene Symbol Gene Name

1555636_at CD300LG CD300 molecule like family member g (CD300LG)
206938_at SRD5A2 steroid 5 alpha-reductase 2 (SRD5A2)
44654_at G6PC3 glucose-6-phosphatase catalytic subunit 3 (G6PC3)
45297_at EHD2 EH domain containing 2 (EHD2)
1552696_at NIPA1 non-imprinted in Prader–Willi/Angelman syndrome 1 (NIPA1)
45687_at prr14 proline-rich 14 (PRR14)
203373_at SOCS2 suppressor of cytokine signaling 2 (SOCS2)
210984_x_at EGFR epidermal growth factor receptor (EGFR)

Dataset: GSE4115

Prob_ID Gene Symbol Gene Name

205560_at PCSK5 pro-protein convertase subtilisin/kexin type 5 (PCSK5)
200003_s_at MIR680 microRNA 6805 (MIR6805)
201983_s_at EGFR epidermal growth factor receptor (EGFR)
210187_at FKBP1A FK506 binding protein 1A (FKBP1A)
205364_at ACOX2 acyl-CoA oxidase 2 (ACOX2)
206628_at SLC5A1 solute carrier family 5 member 1 (SLC5A1)
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Figure 3. The box plots of selected genes by L1/2 for dataset GSE10072.
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Figure 4. The box plots of selected genes by L1/2 for dataset GSE19804.
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Appl. Sci. 2018, 8, 1569 10 of 12

5. Conclusions

In cancer classification with data of high dimension and small sample size, only a small number
of genes strongly suggest specific diseases. Therefore, gene selection is widely popular in cancer
classification. Especially, regularization methods have the capacity to select a small subset of
meaningful and important genes. In this study, we applied L1/2 to a logistic regression model to
perform gene selection. Additionally, during the updating of the estimated coefficients, the proposed
method utilizes a novel univariate half thresholding.

Experimental results on three cancer datasets demonstrated that our proposed method
outperformed the other commonly used sparse methods (L1 and LEN) in terms of classification
performance, while fewer but informative genes were selected—especially the gene EFGR. Therefore,
L1/2 regularization is a promising tool for feature selection in classification problems.
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