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Featured Application: The dynamic scheduling research of carrier aircraft support operations
in different missions involves multiple support resources (renewable resources include support
operational crews and support equipment, non-renewable resources include oil, oxygen,
nitrogen, hydraulic, power), complex scheduling process such as the operational activities
that should satisfy serial and parallel constraint relationships, multiple constraints (renewable
resources constraints, non-renewable resources constraints, operational space constraints).
The efficient coordination of these resources can be described as a multi-resource constrained
multi-project scheduling problem (MRCMPSP) under an uncertain environment. In this
work, an integer programming mathematical model is established for carrier aircraft dynamic
support scheduling to solve the non-deterministic polynomial-time hard (NP-hard) problem.
A periodic and event-driven rolling horizon (RH) scheduling strategy that was inspired by the
RH optimization method from predictive control technology is presented for the uncertain and
dynamic environment. The RH strategy not only reduces the problem size, it also effectively
adjusts the baseline scheduling in a reasonable computational time and avoids the unnecessary
scheduling with effective resource allocation in the dynamic flight deck environment. The dual
population genetic algorithm (DPGA) is designed to solve the large-scale scheduling problem.
The computational results show that our approach can provide convenient guidance to carrier
aircraft support and scheduling applications in the dynamic flight deck environment, and make
better decisions regarding disruption on a real-time basis.

Abstract: The efficient scheduling of carrier aircraft support operations in the flight deck is important
for battle performances. The supporting operations and maintenance processes involve multiple
support resources, complex scheduling process, and multiple constraints; the efficient coordination
of these processes can be considered a multi-resource constrained multi-project scheduling problem
(MRCMPSP), which is a complex non-deterministic polynomial-time hard (NP-hard) problem.
The renewable resources include the operational crews, resource stations, and operational spaces, and
the non-renewable resources include oil, gas, weapons, and electric power. An integer programming
mathematical model is established to solve this problem. A periodic and event-driven rolling horizon
(RH) scheduling strategy inspired by the RH optimization method from predictive control technology
is presented for the dynamic scheduling environment. The periodic horizon scheduling strategy
can track the changes of the carrier aircraft supporting system, and the improved event-driven
mechanism can avoid unnecessary scheduling with effective resource allocation under uncertain
conditions. The dual population genetic algorithm (DPGA) is designed to solve the large-scale
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scheduling problem. The activity list encoding method is proposed, and a new adaptive crossover
and mutation strategy is designed to improve the global exploration ability. The double schedule for
leftward and rightward populations is integrated into the genetic process of alternating iterations to
improve the convergence speed and decrease the computation amount. The computational results
show that our approach is effective at solving the scheduling problem in the dynamic environment,
as well as making better decisions regarding disruption on a real-time basis.

Keywords: carrier aircraft; dynamic scheduling; support operation; rolling horizon strategy;
dual population genetic algorithm

1. Introduction

The carrier aircraft is the main weapon used in large aircraft carriers. Before taking off, each
carrier aircraft requires a series of certain supporting operations, such as inspection, oiling, gas supply,
weapon mount, inertial alignment, etc.; several types of carrier aircrafts have to take off synergistically.
The support operations involve multiple support resources (renewable resources include support
operational crews and support equipment, non-renewable resources include oiling, oxygen, nitrogen,
hydraulic, power), complex scheduling processes, as the operational activities should satisfy with serial
and parallel constraint relationships—for instance, no oxygenation operation can be done at the time
of refueling operation due to security considerations, and multiple constraints (renewable resources
constraints, non-renewable resources constraints, operational space constraints, etc.). The main purpose
of the synthetically complicated scheduling problem (it has been non-deterministic polynomial-time
hard (NP-hard)) is about allocating the limited resources through optimization methods, and the
research contents include multiple objects, multiple resource allocation, mission order management,
an uncertain dynamic environment, etc. The research regarding aircraft carrier deck scheduling
has considered resource-constrained project scheduling problems (RCPSP). Some uncertainties and
dynamic disruptions exist in carrier aircraft scheduling, such as resource disruptions (resource station
breakdown, the operators reduce) and time disruptions (the operational time for the equipment
maintenance, which may become longer). The keys to achieving the carrier aircrafts’ scheduling include
different facilities, operational crews, and positions with set limitations in time, space, and resources.

RCPSP (which is from 1963) was firstly introduced by Kelley [1]. The objective of RCPSP is to
minimize the makespan while satisfying the resource constraints and precedence relationships among
the activities [2]. Blazewicz [3] showed that RCPSP is an NP-hard problem in 1983. The majority
of the early research (Zhu. 2006 [4], Herroelen. 2005 [5]) aimed at developing better methods to
minimize the makespan of the project and simultaneously set the starting times of the multi-project
scheduling problem, in order to make all of the resource constraints meet the project scheduling [6].
Kyriakidis [7] went further by enlarging the search capacity for multi-resources and multi-projects. In
recent years, RCPSP has gained widespread attention due to its practical importance and computational
challenges [8]. Moreover, RCPSPs have current applications in some aspects regarding their time-based,
cost-based, and resource-based objectives [9,10]. Less research has been done about carrier aircraft
support scheduling, which is considered a RCPSP after incorporating some practical restrictions,
especially regarding the dynamic scheduling.

A series of previous research studies about carrier aircraft scheduling problems were conducted,
and some research papers have been published. In the early years, Ouija Board [11], an aircraft carrier
deck simulation platform, was employed by the US Navy to monitor the arrangement and dispatch of
the carrier aircraft; it sought an optimized scheduling strategy by artificial expertise. Johnston [12]
provided a brief introduction of flight-deck operations for the carrier aircraft. Ryan [13,14] developed
a deck operations course of action planner (DCAP) that was based on a human—computer interaction
concept and utilized a conventional integer linear program-based planning algorithm. An agent-based
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model [15] for an aircraft carrier flight deck was also developed, which was compared with that
of the expert user heuristics over a set of experimental scenarios. Michini [16] applied the reverse
reinforcement learning method and Dastidar [17] presented the queuing network optimizing strategy
for aircraft scheduling problems. Zhi Zhang [18] designed a human-computer cooperation decision
planning system (aircraft carrier deck operation planner (ACDOP) system). Feng Qiang [19] proposed
a multi-agent based fleet maintenance personnel configuration method to solve the mission-oriented
aircraft fleet maintenance personnel configuration problem. Lianfei Yu [20] viewed the flight deck
scheduling problem as an extension of the flexible job shop scheduling problem (FJSP), and designed an
improved differential evolution algorithm (IDE) to improve the computational efficiency. Our research
team has also published some relevant papers for the carrier aircraft scheduling problem including the
constraints in the scheduling [21], the multi-objective integrated supporting scheduling model, and the
intelligence algorithm to solve this problem [22,23]. Compared with other land-based aircraft [24,25],
the flight deck in an aircraft carrier presents a complex and uncertain environment in which time-critical
scheduling and planning must be done to fulfill mission requirements and ensure the safety of
operational crews and equipment [26]. However, most previous research has been aimed at developing
better solution methods or scheduling strategies based on a static scheduling environment, and most
research is oversimplified. The related literatures regarding managing and guiding the carrier aircraft
operations and scheduling are very limited. The strong constraints in the operations usually result in a
lot of dynamic scheduling disruptions. The research about the dynamic scheduling method of carrier
aircraft support and operation is more important and complicated, but there has not been enough.

The carrier aircraft dynamic scheduling, which is a special RCPSP and considered as multi-resource
constrained multi-project scheduling problem (MRCMPSP) under uncertain environments, may face a
lot of significant disruptions due to resource unavailability, duration deviation, machine breakdowns,
operator variation, and uncertain tasks. The traditional deterministic scheduling strategy must be
revised and resolved in order to increase the resource utilization and respond to the changing flight
deck environment. In order to find optimal solutions under uncertainty, some primary types of
existing rescheduling strategies have been researched, such as the reactive scheduling strategy [27],
the proactive scheduling strategy [28], and robust execution strategies [29]. In flight deck carrier
aircraft scheduling research, Chao Qi [30] has researched aircraft carrier flight deck dynamic planning
based on a dynamic hierarchical task network (HTN) planning process for a set of activities with
resource constraints. However, the twofold network structure is simple, and still has some limitations.
Giirkan [31] integrated the robust schedule design with fleet assignment and aircraft routing problems
in a dynamic environment. This made it possible to improve the solution, since a routing decision
could eliminate the necessity of inserting idle time or compressing cruise time, but it could not make
a real-time decision when unpredictable disruptions occurred and the robust schedule needed to
be rescheduled. Jiirgen Kuster [32] described how the RCPSP can be used as a basis for real-time
decision support in the disruption management of the aircraft turnaround, and argued that the RCPSP
dynamic scheduling research for carrier aircraft is significant; however, it is only partial research
that did not sufficiently deal with the uncertain random interferences. In other dynamic scheduling
research, copious algorithms and methods can be found in the literature such as the branch and
bound algorithm [33], the linear programming-based algorithm [34], and other exact algorithms [35],
and many heuristic algorithms and metaheuristic algorithms have been also presented in the literature
such as the genetic algorithm [36] (GA), hybrid GA [37], and differential evolution (DE) [38].

A review of the relevant literature has shown that although the existing literature has obtained
some results and provided theoretical support to improve the dynamic scheduling strategy for carrier
aircraft support operations, there are still some limitations. Most carrier aircraft scheduling methods
are based on a static flight deck environment, and need to have a number of parameters defined
before a scheduling plan is started. The impact of each activity’s scheduling time on the available
equipment and operational crews were not considered, including the operating time of all of the
activities, the allocation of operation resources (renewable resources and non-renewable resources),
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and the number of aircraft that need to be supported. The time urgency may affect the selection
of scheduling strategies, and the resource limitations can lead to dispatching conflict. The current
research cannot meet the demand of real-time dynamic scheduling well for the carrier aircraft support
operation. The proactive scheduling strategy can create a schedule that is robust with respect to
dynamic disruptions, and make a plan regarding a temporal schedule and resource allocation, but it
cannot generate rescheduling simultaneously when the dynamic disruption occurs. Some disruptions
may cause a robust scheduling failure, which calls for a new schedule. The reactive strategy can
repair a schedule that has been disrupted in terms of reducing disturbance from uncertainties, but it is
difficult for these proposed algorithms to generate rescheduling in a short time, and they make little
changes to the rescheduling sequence compared with the baseline scheduling. The relevant research
studies have also shown that it is difficult to make static scheduling meet the needs of a dynamic
deck scheduling environment, and these methods do not meet the requirements of real-life situations.
In this paper, we consider actual dynamic deck environment factors, establish an integer programming
mathematical model, and propose a dynamic rolling horizon (RH) scheduling strategy for carrier
aircraft support operations under uncertain conditions. It is a very interesting work.

The structure of the paper is as follows. In the next section, the dynamic scheduling problem
of carrier aircraft support operations is described in detail. Some definitions are proposed; then,
the new integer programming model for the carrier aircraft support is established. In Section 3, the
periodic and event-driven RH scheduling strategies are proposed to deal with the dynamic deck
environment factors and different disruptions, and the associative recovery strategies are discussed in
the creation of new support schedules. In Section 4, the improved genetic algorithm for the dynamic
deck environment is illustrated in detail. The computational results and analysis are provided in
Section 5. Finally, we provide the overall conclusions in Section 6.

2. Problem Description and Modeling

2.1. Problem Description

The scheduling problem of carrier aircraft support operations is about allocating the supporting
resource (renewable resources and non-renewable resources) to complete the operations for preparing
the aircraft well as soon as possible. It can be consider a MRCMPSP. Three kinds of constrained resource
(renewable resources constraint, non-renewable resources constraint, operational space constraint)
exist in the scheduling project. The renewable resources include support equipment resources (oiling
station, oxygen and nitrogen station, hydraulic station, power station), the support resources of
operational crews (machinery major, ordnance major, avionics major, and special equipment major),
and the support space resources (cockpit and landing gear station). The resource station cannot support
all of the aircraft in the deck because of the distribution position; a single station only can cover some
of the settled carrier aircraft in the flight deck, but the different major operational crews can support
all of the aircraft in the flight deck. The non-renewable resources, which are also called consuming
resources, include oil, gas, weapons, etc. The support space resources such as the aircraft cockpit make
up the support activity existing space constraints, so that the cockpit inspection of each major cannot
proceed simultaneously.

There are some rules restricting the operational activities with serial and parallel constraint
relationships. (i) No oxygenation operation can be done at the time of refueling operation due to
security considerations; (ii) The operational crews for a single major operation can finish different
activities with different priorities; for example, the carrier aircraft inspection of ordnance appearance is
preferable to the inspection of ordnance cockpit; (iii) The sequence of some activities can be processed
simultaneously; for example, the operations of different majors can be exchanged with parallel
constraint relationships; (iv) A stationary resource station can only support some settled carrier aircraft;
(v) The alignment operation of inertial navigation is generally carried out after all of the activities.
In the scheduling problem, the supporting activities of each carrier aircraft include about 14 activities.
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Besides, a virtual start activity and a virtual finish activity are set to combine the operational activities
of each carrier aircraft to a multi-aircraft network flow. Figure 1 shows the support activities flow
chart of a single-aircraft. The solid arrow indicates the serial and parallel constraint relationships of
the operational activities. The dotted line indicates that the cockpit space constraint, which cannot
proceed simultaneously in the four aircraft cockpit activities. The single-aircraft support process can
be considered as a single project in the RCPSP.

Kpi Kp1 Kry
Mechanical appearance N Mechanical cockpit
inspection (2) inspection (3)
Kp2 Kpo Krlg
Avionics appearance N Avionics cockpit
inspection (4) inspection (5)
Kp3 Kp3 Kry : Kpy
Special equipment L 5 Special equipment Weapon mount
appearance inspection @ cockpit inspection@
Kpy Kpy Kri: Kp2
Ordnance appearance L 5 Ordnance cockpit Inertial End
inspection inspection (9) alignment (5
Kp3 Kro
Oiling Kp1 Krs
Oxygen
Kps Kr3
Hydraulic

oiling (D)
Kp1 Kr4
Nitrogen

Figure 1. The support activity flow chart of each single carrier aircraft.

In the flight deck environment, some uncertainties and dynamic disruptions exist in the carrier
aircraft scheduling, such as resource disruptions (resource station breakdown, the operators reduce),
time disruptions (the operational time for the support equipment maintenance, which may become
longer), and support tasks that are added, changed, or removed. Therefore, a proposal of a scheduling
strategy for a dynamic port environment is required. The objective is to find a dynamic scheduling
strategy that minimizes the makespan, improves the resource utilization, and reduces the influence of
disruption. The mixed integer linear programming models are discussed next in this section.

2.2. Notation

e Sets

I set of carrier aircrafts,i=1,...,1

Ji set of activities for the ith carrier aircrafts, j=0,1,...,J;

Ji* set of the incomplete activities, including the affected activities in the same time window and
activities that start after a disruption ends

Kp set of different kinds of supporting major

Ks set of different kinds of supporting space

Kr set of different types of resource station

Kw set of non-renewable resources upper limit

Lry set of kth(k € Kr) supporting resource station

Lpy set of kth(k € Kp) supporting operational crew

Pjj set of pre-constraint activities for the ith carrier aircraft jth activity

Ry set of the carrier aircraft support range by the kth(k € Kp) major Ith(l € Lpy) operational crew
Rekl set of the carrier aircraft support range by the kth(k € Kr) type Ith(l € Lry) station

e Parameters
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d;j duration of activity j for the ith carrier aircraft

5X; start time for supporting the ith carrier aircraft

Sjj start time of activity j for the ith carrier aircraft

T total planning horizon/upper bound of the project duration

rpijx demand number of kth operational crew for the ith carrier aircraft jth activity

rsijx demand number of kth space for the ith carrier aircraft jth activity

rejjx demand number of kth equipment for the ith carrier aircraft jth activity

rw;jx demand number of non-renewable resources for the ith carrier aircraft jth activity

e Decision variables

Cmax the maximum completion time of the activities

Xpiji 1 if the kth station Ith equipment is allocated to activity j for the ith carrier aircraft; 0 otherwise
Xejjy 1 if the kth station /th equipment is allocated to activity j for the ith carrier aircraft; 0 otherwise
xjjk 1if the activity j for the ith carrier aircraft has been finished at the  moment; 0 otherwise

2.3. Basic Formulations about Objective Functions and Constraints

The objective is to minimize the completion time of the last support activity.

e  Objective function.

Min F = min (Cpyay) )
e  Constraints.
Sin > SX;,Viel ()
Eij = S,‘j +d,‘j,Vi e LVje ] 3)
Sij = Sip+din, V(i,h) € Py, Vi€ L,Vj € ]; 4)
T
in]'t:]-/ViEI/]’e]i (5)
t=0
Y. rsig <1,VielVje J;,VkeKs (6)
Ojj €l;t
n
Y. Y. rpij < |Lpkl, VK € Kp,t € [0, T] (7)
i=1 jeJ(t)
n
Y. Y rej < |Lrg|,Vk € Kr,t € [0, T] (8)
i=1 jeJ(t)
n
Y. Y rw < ‘Lwi Vk € Kw,t € [0,T] )
=1 jej(t)
Y. Xejjy = rejj, Vi € 1,Vj € J;,Vk € Kr (10)
ZGL?’k
Y. Xpiju = rpix Vi € LYj € J;,Vk € Kp (11)
leLpy
Y Y Xeuwt L X Xpiju=0
i€l—rey jE€J; icl=rp,,, j€li (12)

Vj € J;,Vk € Kr,VI € Lri, Vk' € Kp,VI' € Lpy

Constraint (2) ensures that the first support activity must start before the carrier aircraft is
transported up to the flight deck and parked in a permanent position. Constraint (3) defines the
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relationship between the finish time of each activity with the start time. Constraints (4) ensures the
precedence relationship, which means that any activity cannot be started before the completion of its
preceding activity. Constraint (5) ensures that each activity is executed only once from one exact period,
t. Constraints (6), (7) and (8) represent the capacity constraints for renewable resources (operational
space, operational crews, resource stations), respectively. Constraint (9) represents the capacity
constraints for the non-renewable resources in each time period. Constraints (10) and (11) represent
the allocation of the operational crews and resource stations, which need to be equal to the demand.
Constraint (12) represents the support coverage of the operational crews and resource stations.

2.4. Dynamic Disruption Rescheduling Model

Some disruptions may occur in the uncertain scheduling environment after some activities have
been completed as planned, which may cause a scheduling delay or prescheduling failure. Then,
the dynamic rescheduling model is established. The objective function of Equation (13) is to minimize
the sum of the earliness and tardiness values of all of the activities’ completion time cost, comparing
the recovery schedule with the baseline schedule.

s=min} ¥ (‘D}}Dﬁ’) (13)
iel jeJi

D:j represents the start time of the incomplete activity j of carrier aircraft i after disruption, and
Djj represents the start time of the incomplete activity j of carrier aircraft i before disruption.

This rescheduling model with disruptions differs from static scheduling. The dynamic scheduling
problem is incorporated into the formulation in Equation (13) through optimizing the makespan
objective function firstly, and then minimizing the sum of the earliness and tardiness values of all of
the activities” completion time cost. The additional objective function is added to optimize the stability
of the rescheduling activities, and obtain a more optimal new scheduling for the disruptions.

3. Rolling Horizon Dynamic Scheduling Strategy

The rolling horizon (RH) dynamic scheduling strategy is a specific manifestation principle of RH
optimization in predictive control. Unlike the traditional optimization methods (proactive scheduling
strategy [28], robust execution strategy [29]), the basic method of RH dynamic strategy involves
dividing the support activities into multiple scheduling windows based on the arrival baseline
scheduling sequence. The RH window can be continuously updated along with the scheduling
time. A number of activities are selected and scheduled from activities waiting for processing
in an activities window. The relevant operational information for carrier aircraft rescheduling is
updated. Then, the other activities in the next RH window are selected. Then, activities in the RH
window are scheduled again, and a new decision is made. The procedure is repeated until all of the
support operations have been finished. In the RH dynamic scheduling strategy, the global scheduling
optimization requirement is relaxed, and the local optimal scheduling can be implemented. The RH
dynamic scheduling strategy has been researched in some problems, including a job shop scheduling
problem [39], an Earth observing satellites scheduling problem [40], and a yard crane scheduling
problem [41,42]. By comparing the results with the traditional method, these papers verified that the
dynamic rolling horizon (RH) strategy can provide a positive contribution to improve the efficiency of
dynamic scheduling and effectively adjust to the baseline schedule. However, there has not yet been
any research on RCPSP, especially the carrier aircraft dynamic scheduling problem by the RH dynamic
scheduling strategy.

The key to the RH dynamic scheduling strategy is selecting an appropriate rolling strategy. In the
carrier aircraft dynamic scheduling problem, the periodic and event-driven RH scheduling strategies
are designed to reschedule the update supporting activities window in a fixed period or whenever
the activity that is about to occur gets disrupted. Machine breakdown, operators downsizing in
operational crews, and support tasks that are added, changed, or removed are considered disruption
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events. The time deviation of each incomplete activity after disruptions occur is checked, and whether
to perform a rolling rescheduling is decided. The traditional event-driven dynamic scheduling strategy
makes it easy to ignore the condition that the schedule can buffer partial disturbance and produce
unnecessary rescheduling. The event-driven strategy is improved by building a profit and loss model
as seen in Equation (13) to get the optimum rescheduling.

The optimization procedure of the RH dynamic scheduling modeling is described as follows.

Step 1. The proactive scheduling strategy is used to create a static schedule using the heuristic
algorithm without considering the dynamic scheduling environment. The starting time and ending
time can be predetermined in the proactive schedule.

Step 2. The time window is set to choose the activities. The RH strategy is applied. Multiple
simple static schedules are generated by periodic RH scheduling strategy. The detail of the dynamic
periodic RH scheduling strategy is shown in Figure 2a. In this step, if all of the activities in the current
planning horizon are completed, it should be rolled to the next planning horizon. If several existing
or new activities are generated simultaneously by different resource stations and operational crews,
they should only be rolled into one period.

Step 3. The event-driven RH scheduling strategy is applied from the disruption start time.
The new RH window will be set if the disruption occurs (e.g., machine breakdown) and rescheduling
should be performed. In contrast, the latest plan completion time of all of the incomplete activities is
set as the ending time. The details of the event-driven RH scheduling strategy are shown in Figure 2b.

Step 4. The rolling stoppage rule is set. If the latest completion time in the rescheduling of all of
the activities occurs, the rolling process needs to be terminated.

1 RH window 2 RH window -+  »n™ RH window
A A A

- nm >

(a) Periodic RH scheduling

2" RH, window 2" RH, window
¥ RH,window 2" disruption 1" disfuption
ESERREAERENEEE
1 disruption 3" RH'window
- nm »

(b) Event-driven RH scheduling

Figure 2. Illustration of the dynamic rolling horizon (RH) strategy.

In an RH window, the scheduling procedure will go through four states based on the current
scheduling time: (i) a new task; (ii) waiting tasks; (iii) running tasks; and (iv) finished tasks. In detail,
a new task will be generated in the current RH window from the waiting tasks; it should be run and
become the finished tasks. Then, another new task is scheduled again through the same procedure.
The detail of the dynamic RH scheduling strategy is shown in Figure 3.

In the periodic RH scheduling strategy, the number of RH scheduling and the system adaptability
to dynamic factors are determined by the size of time window AT. If the AT is too small, the amount
of computation is reduced, but it considers less global information, and can lead to a decline in global
performance. If AT is too large, the computation time may increase by the heuristic algorithm, but the
final performance may enhance the global solution. No fixed standard for the setting of AT existed.
In this paper, the AT is specified according to the general characteristics of the scheduling problem
and the scheduling algorithm efficiency. We will make an intensive discussion in the Section 5 to get
an appropriate value in the RH scheduling strategy.
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Figure 3. The flow chart of the dynamic rolling horizon scheduling strategy.

The pseudo-code of the RH dynamic scheduling strategy algorithm is described in Algorithm 1

Algorithm 1. Pseudo-code of rolling horizon dynamic scheduling strategy algorithm for carrier aircraft
dynamic support scheduling under uncertain conditions.

Input: The object network data, priority of support operations, resource restraint, time window T, and
disruption type.

Output: A dynamic scheduling project.

01: Generate a baseline static schedule by optimization algorithm. /*The pseudo-code of the optimization
algorithm is given in the following Algorithm 2*/

02: For each activity of carrier aircraft I waiting for operation in set J;

03: RH«-NULL; Finished Sn<+-NULL;/*Initialization*/

04: For time window Tn =1 to n, do

05: Select the timing of activities (An) in time window T#; /*Tn is the nth time window*/

06: For Ai € An. Each activity that arrives before Tn does

07: If no disruption occurs

08: Add Ai to set RH; /*RH is the rolling horizon*/

09: Sort all of the activities in set RH, and schedule each activity by optimization algorithm; /Algorithm 2*/
10: Else if dynamic disruption occurs

11: Select the timing of activities (An) in a new time window for the set of the incomplete activities J;*;

12: Add Ai to set RH;

13: Sort all of the unprocessed activities in set RH, and reschedule each activity by optimization algorithm;
/*The pseudo-code of the optimization algorithm is given in the following Algorithm 2*/

14: End if

15: Add activity Ai to set of finished Sn;

16: End for

17: Call Algorithm 2 in order to reschedule in RH;

18: End for

19: Update the scheduling decisions;

20: End for




Appl. Sci. 2018, 8, 1546 10 of 23

4. Algorithm for Carrier Aircraft Dynamic Scheduling

In the RCPSP, when the resource constraints and number of projects are small, some exact
algorithms (e.g., branch and bound algorithm, linear programming-based algorithm) can be employed
to get the scheduling. However, the carrier aircraft support operation problem, which is considered
a multi-resource constraint multi-project scheduling problem, involves plenty of carrier aircraft
and activities. For this case, a heuristic algorithm has been developed. In this paper, we use the
dual population genetic algorithm (DPGA), which has been used for adaptive diversity control [43],
and combine the heuristic algorithm with the RH strategy to solve the carrier aircraft dynamic
scheduling problem.

The DPGA is a parallel genetic algorithm that is designed to improve the quality and diversity
of the population. Firstly, encoding and decoding processes are set to get population and matching
scheduling. The left and right populations proceed simultaneously with crossover, mutation, and
local search processes. For the left population, right scheduling is made in the encoding and decoding
processes. For the right population, left scheduling is made in the encoding and decoding processes.
The original coding is corrected by decoding the end time of the scheduling solution, and the elite
population is reserved. The pseudo-code of the DPGA with a local search strategy is described in
Algorithm 2 The details are clearly expressed in the next section.

Algorithm 2. The pseudo-code of the dual population genetic algorithm for carrier aircraft dynamic support
scheduling under uncertain conditions.

Input: The object network data

Output: A project scheduling

01: Initialize [pop_left, pop_right];

02: Decoding_left(chromosome[pop_left]), schedule_left([pop_left]);
03: Fitness[pop_left], evaluate(schedule_left[pop_left]);

04: For generation = 1 to GEN do

05: Select_parents(chromosome[pop_left], parents[pop_left]);

06: Crossover(parents[pop_left], children[pop_left]);

07: Mutation (children[pop_left]);

08: Decoding_left(chromosome[pop_left]), schedule_left([pop_left]);
09: Fitness[pop_left], evaluate(schedule_left[pop_left]);

10: Select local optimal individual[pop_left];

11: Local search for the left schedule;

12: Update chromosome[pop_right]. Save elite[pop_left]

13: Select_parents(chromosome[pop_right], parents[pop_right]);

14: Crossover(parents[pop_right],children[pop_right]);

15: Mutation (children[pop_right]);

16: Decoding_right(chromosome[pop_right]), schedule_right([pop_right]);
17: Fitness[pop_right], evaluate(schedule_right[pop_right]);

18: Select local optimal individual[pop_right];

19: Local search for the right schedule;

20: Update chromosome[pop_left] Save elite[pop_right];

21: End for

22: Decoding_left(chromosome[pop_left]), schedule_left([pop_left]);
23: Return a best schedule;

4.1. Encoding and Decoding

In the RCPSP research, the task list encoding method is more efficient to get the scheduling results,
and the chromosome with a two-dimensional matrix is designed. X = [x1, x2, x3, ..., X¢]; here, x; is (i, j),
i represents the number of different carrier aircrafts (1), j represents the activities (1) satisfied to the
procedure constraints, and m X n represents the total activities (see Figure 4).
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Figure 4. An illustration example of the chromosome encoding.

The chromosome coding example in Figure 4 shows the process of carrier aircraft scheduling.
The decoding can make the chromosome into a corresponding scheduling solution in the algorithm.
The start time, finish time, and resource allocation of different activities can be achieved through
the decoding process. Two kinds of schedule generation schemes—the serial schedule generation
scheme (SSGS) and the parallel schedule generation scheme (PSGS)—are used in the decoding process.
Two allocation rules are set in this paper regarding the minimum accumulated processing time first
(MAPTF) for the operational crews, and the minimum total processing time remaining (MTPTR) for
the covering resource stations. In the first step, we use the SSGS method to allocate the resource;
two allocation rules (MAPTF and MTPTR) are used for the operational crews and resource stations.
The start time and finish time of each activity can be scheduled by the designed strategies. In the
second step, the PSGS is used to minimize ¢ after the disruption occurs by considering the start time
and finish time of each activity. In each RH window, the parallel process can modify the reschedule
close to the baseline schedule without disruption. Finally, the new schedule is generated for the
resource allocation after the disruption occurs.

4.2. Fitness Evaluation and Parent Selection

The fitness evaluation strategy is adopted to get smaller values of the objective functions corresponding
to smaller values of the fitness function. The robustness of the solution is reduced by avoiding the
improper selection of the fitness function. The fitness function in the optimization procedure is defined

as follows:
2(si —1)(Ap—1)

N-1
Here, N represents the population size, s; represents the location of chromosomes i in the
population, and AP represents the selective pressure which is linear ranking from one to two.
The parent selection strategy is aimed at creating the offspring for the next generation population
to ensure the population diversity. A roulette approach is used in this paper through choosing different

f(si)=2—-Ap+ (14)

chromosomes among the current population.

n

P(xj) = f(x)/ ) f(xi), (j=1,23...... n) (15)
i=1
Here, P(x;) represents the selection probability of each individual, and f(x;) represents the fitness of
each individual. A series of random numbers (e.g., i) between 0 and 1 are generated. If the number i is
located in the cumulative probabilities between two individuals, the individual with a larger fitness
will be selected in the new population with higher cumulative probability.

4.3. Crossover and Mutation

In order to avoid illegal results with procedure constraint, the one-point crossover strategy with a
modification strategy is adopted. The crossover steps are described as follows.

Step 1. Generate the crossover position (1) and select the parent chromosomes x} and le» through
the crossover probability.
: 1 1
Step 2. Interchange the supporting sequence of the parent chromosomes x; and x j before the

position (a), and obtain the new xlz and sz chromosomes.
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Step 3. Choose the sequence gen of the x]l chromosomes after position (1), and rearrange them
according to the x} order to get the new chromosome x?. The x;’ chromosome can be also obtained
through the same method. The process of crossover is shown in Figure 5.

a aj

x‘/1<1,1>\<z,1>\<4,1) eylasnlenlay-| x'/l(1,1)‘(2,1)‘(4,1)‘(2,3)‘(1‘4)‘(3‘1)‘(1,3)‘ ~~~~~~ |
f i i nm d [—t } } nm |

Interchange Rearrange
x}\ anlas]enlanlenladn ey dlanlasn]enlan]enad @]
| nm " m

Figure 5. An illustrated example of crossover operation.

The mutation strategy is used to maintain the diversity of the population; the traditional strategies
based on the insertion or interchange mutation strategy can only generate a smaller neighborhood
mutation range. In this paper, a new neighborhood structure is designed to get a new adaptive
mutation strategy, which is adapted for the mutation probability (P;).

(P" — PI")G;
GmaX

(16)

N 2
2 (C;nax - Cmax) (17)
=1

Here, P/" and P} represent the maximum and minimum value of P;, while G; represents the
diversity of population, Gmax = max{Gy, Gy, ..., Gy}.
The mutation steps are described as follows.

Step 1. Select the carrier aircraft i through the selective probability P in the chromosomes (X), and
then get the activity sequence (A) of the selected carrier aircraft in the chromosomes.

Step 2. Select a series support sequence (S) in A and record the mutation location.

Step 3. Reschedule the selected support activities by the serial and parallel constraint, and get the
new activity sequence (S).

Step 4. Insert the rescheduling sequence (S’) into the original chromosome (X). The inserted
location is randomly in the mutation location.

4.4. Local Search Strategy and Dual Population Genetic Algorithm

In order to enhance the global optimization speed of d, a local search strategy is introduced to
improve the search efficiency and avoid premature optimization results. The local search strategy is
added to get the local search results and select the local optimal individual by a simulated annealing
strategy in the population after a global search for the crossover and mutation. The pseudo-code of the
local search algorithm is described in Algorithm 3.
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Algorithm 3. The pseudo code of local search algorithm in the dual population genetic algorithm (DPGA).

Input: The object network data,

Output: Project scheduling

01: s<—Generate initialized solution [pop];

02: T«TO;

03: While termination conditions not met do;
04:s"«Pick random(pop(s))

05: if f(s") < f(s) then

06: 5¢—s’;/*s" replace s*/

07: else

08: Accept s” as a new solution with probability p;
09: end if

10: Update (T);
11: end while

5. Experimental Results and Analysis

In this section, experiments of the RH scheduling strategy using the DPGA (Dwyer Instruments,
Inc., Michigan, IN, USA) with a local search strategy for the aircraft carrier operations are described
in detail. The experiments were performed using a PC with two Intel(R) Core(TM) i5-4258U CPU @
2.4 GHz processors and 4 GB RAM (Intel cooperation, Santa Clara, CA, USA). The algorithm has been
coded in MATLAB 2017(a) software (The MathWorks, Inc., Natick, MA, USA). All of the instances were
solved by the general genetic algorithm (GA), improved genetic algorithm with local search named
Memetic algorithm [22], different evaluation algorithm (DE) [23], and DPGA. The computational
results were compared and analyzed to test the algorithms” performance. Finally, a comparison was
conducted between the proposed approach RH scheduling strategy in this paper and the static reactive
rescheduling strategy after distributions occurred in the support operations.

5.1. Problem Classification and Initial Data Set

During the daily operations, an aircraft has a fixed order of tasks. We take the experimental
case study of the first wave attack of the typical mission for the carrier aircraft operation scheduling
on the flight deck with a series of supporting activities. Five types of carrier aircraft, including the
warning aircraft, antisubmarine aircraft, attack aircraft, electronic warfare aircraft, and refueling
aircraft, are researched to be supported before takeoff in the flight deck. In order to describe the
problems from the current carrier aircraft support operations, and define the scope of the study as
well as clearly define the scheduling problem, the support operations were considered as MRCMPSP,
and some assumptions were made in this section as follows: (i) All of the support operational crews
and resource stations can be available at the beginning of all of the activities; (ii) The non-renewable
resources (e.g., oil, gas, weapon, etc.) supplied by the resource station are sustainable supplies;
(iii) The support activities of each carrier aircraft cannot be changed in the static scheduling; (iv) When
disruptions occur in the operational process, the support time of the disruption activities becomes
longer for the maintained process or operator; (v) The setup time of each activity and transferring time
between adjacent activities are negligible.

Three kinds of resource constraint (space constraint, operational crews constraint, resource stations
constraint) exist in the project. For the space constraint, we only consider the cockpit space constraints
Ks1 in the four kinds of cockpit inspection activities in this experiment. There are four kinds of
operational crews, including the mechanical major (Kp1), avionics major (Kp,), special equipment major
(Kp3), and ordnance major (Kpy), for the maintenance and service support operations of the carrier
aircraft. The numbers of each professional operational crew are respectively |Kp;| =8, | Kpy | =6,

IKps| =8, and |Kpy| = 6. Five kinds of resource stations are laid out on the deck, including the
power station (Krq), oiling station (Kr;), hydraulic station (Kr3), nitrogen station (Kr4), and oxygen



Appl. Sci. 2018, 8, 1546 14 0f 23

station (Krs) for the service support operations of non-renewable resources. The numbers of each
resource station in the experiment are respectively | Kri| =8, |Krp| =6, |Krs| =5, | Kryl =5, and
| Krs | =5. The renewable resources (operational crews and resource stations) are allocated according
to the support activities in the different projects; that is, any kind of operational crew that has no
support scope constraint can support all of the carrier aircraft, but the different resource stations can
only provide service support for some of carrier aircraft in the fixed parking position. Table 1 shows
the station set of each kind of resource station that covers the waiting support carrier aircraft in the
fixed parking position. The supplied non-renewable resources (power, oil, hydraulic, nitrogen, oxygen,
etc.) have unlimited total usage, but the ability of the crew to simultaneously provide the support
service is limited. Kw represents the upper limit of non-renewable resources for the simultaneous
support operation. Kw is set [6, 5, 2, 4, 2].

Table 1. Coverage relationship between resource station and carrier aircraft.

Resource Station Coverage Category

Carrier Aircraft

Kr1 Krz K1"3 K1‘4 K1‘5
1 (1] (1] (1] (1] (1]
2 [1,2] (1] (1] (1] (1]
3 [1,2] [1,2] [1,2] [1,2] [1,2]
4 (2, 3] (2] (1,2] (1,2] (1,2]
5 3, 4] (2] 2] (2] (2]
6 3, 4] [3] (2, 3] (23] [2,3]
7 [4, 5] 3, 4] (3] 3] 3]
8 [5, 6] [3,4,5] [3, 4] [3, 4] [3, 4]
9 [5,6,7] [4, 5] [3, 4] [3, 4] [3, 4]
10 [6,7] [5, 6] [4, 5] [4, 5] [4, 5]
11 [7,8] [6] [4, 5] [4, 5] [4, 5]
12 (8] [6] (5] 5] 5]
13 (8] [6] [5] 5] 5]

Four kinds of support operational crews and five types of resource stations make up the flexible
and sustained carrier aircraft support activities in the flight deck. The support time (in minutes) of
each activity in a single carrier aircraft are shown in the Table 2.

Table 2. Support time of each activity in a single carrier aircraft.

Support Activities
Carrier Aircraft

@ ® & ® ® ®® © L 0D © B B G
1 12 3 5 7 6 9 0 0 18 4 5 5 0 10
2 13 4 3 6 4 7 9 4 13 5 3 3 12 7
3 13 4 3 6 4 7 9 4 13 5 3 3 12 7
4 13 4 3 6 4 7 9 4 13 5 3 3 12 7
5 13 4 3 6 4 7 9 4 10 5 3 3 12 7
6 13 4 3 6 4 7 9 4 10 5 3 3 12 7
7 14 5 4 5 3 6 10 5 12 5 3 3 11 6
8 14 5 4 5 3 6 10 5 12 5 3 3 11 6
9 14 5 4 5 3 6 10 5 10 5 3 3 11 6
10 14 5 4 5 3 6 10 5 10 5 3 3 11 6
11 14 5 4 5 3 6 10 5 10 5 3 3 11 6
12 12 3 5 7 5 10 7 3 12 4 4 5 9 6
13 12 5 3 5 4 7 0 0 18 5 5 5 0 6
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5.2. Comparison with Other Heuristics Algorithms’ Performance

5.2.1. Parameter Setting for the Heuristics Algorithm

A series of parameters for the heuristics algorithms were determined experimentally through
several tests. The population size and iterations had been tested in the previous literature [18]. In this
paper, the population size was set as 50. The maximum evolution and mutation generation was set
as 100 generations. Based on the computation results of several tests, the crossover probability of the
population was set as 0.8. The mutation probability of the population was set as 0.2. The local search
mutation probability was 0.1. The general GA and DE algorithms were designed based on the above
algorithm without a local search strategy and double schedule strategy. The Memetic algorithm is
designed by improved genetic algorithm with a local search strategy.

5.2.2. Experimental Results Analysis for the Heuristics Algorithms

Due to the randomness of the results, each heuristics algorithm proposed in the experimental is
run 30 times. Three instances are proposed in the research. Instance 1: Five carrier aircrafts (Nos. 2,
3,9,10, 12), n = 5. Instance 2: Nine carrier aircrafts (Nos. 2, 3,4, 5, 8,9, 10, 11, 12), n = 9. Instance
3: 13 carrier aircrafts (Nos. 1-13), n = 13. The objects are the makespan (M), average results (A), and
variance, which are calculated with different wave carrier aircrafts. The final convergence gen (CG) can
be also obtained. The results of the three instances are shown in Table 3.

Table 3. Comparison of the algorithm performance. DE: different evaluation algorithm; GA:
genetic algorithm.

n Algorithm M (min) A (min) Variance CcG
GA 43 44.74 2.3739 6
5 DE 43 44.68 2.4215 7
Memetic 43 44.22 2.1045 6
DPGA 43 43.74 1.3673 5

GA 56 61.60 4.3494 61

9 DE 56 61.35 4.2587 66
Memetic 55 60.44 4.1078 35

DPGA 54 59.33 3.825 21

GA 69 73.44 5.182 67

13 DE 69 73.56 5.0236 72
Memetic 68 72.98 4.9045 52

DPGA 64 68.28 4.0213 40

In the case of the smaller scale for the aircraft first wave attack (Instance 1), the four algorithms can
achieve the same optimal results. When the scale increases, the difference among the four algorithms’
performance increases. The advantages of DPGA are highlighted. The evolutionary convergence
curves of the four algorithms for 13 carrier aircrafts and nine carrier aircrafts can be achieved in
Figure 6.

From a comparative analysis of the results from Table 2 and Figure 6, it can be seen that the
proposed DPGA algorithm not only has strong global searching ability, it also has a more stable and
faster convergence speed to global optimal solutions. The local search strategies integrated in the
Memetic algorithm can improve the diversity of the population and increase the search performance of
the optimal results. When the number of carrier aircrafts increases, the results showed that the global
optimal scheduling can be obtained faster and better by adopting the bidirectional schedule strategy
in the DPGA algorithm by adaptively adjusting the crossover and mutation parameters.
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Figure 6. The convergence curves of the four algorithms.

5.2.3. Scheduling and Resource Allocation without RH Strategy

In the flight deck, the commanders most concerned with the operability and optimality of the
schedule. The static schedules are calculated by the DPGA algorithm to obtain the support resource
allocation without an RH strategy. The static scheduling Gantt charts of the operational crews and
resource stations in Instance 3 are shown in Figures 7 and 8. The vertical axis represents the number of

the supporting operational crew and resource station. Lpf{ represents the /th operational crew of the

kth major, er( represents the /th support equipment of the kth resource station, and I; — j represents

the ith carrier aircraft number for the jth activity.
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Figure 7. Gantt chart of optimal support personnel allocation in the static scheduling.
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Figure 8. Gantt chart of optimal support equipment allocation in the static scheduling.

5.3. Dynamic Scheduling Parameters Analysis of Periodic RH Strategy

In Section 3, the size of the RH window was discussed, which was closely related to the carrier
aircraft scheduling problems, and had a great influence on the RH scheduling results. It was necessary
to select the appropriate size of the RH window before the rolling mechanism was triggered. In order
to get a better window size, we selected a different size of the time window for Instance 3. Each size of
the time window in the periodic RH scheduling strategy was calculated 10 times in each experiment.
We then recorded the window size (WS), roll times (R), makespan (M), each window’s computational
time (WT), the total computational time (TT), the average computational time (AT), and finally, each
window’s convergence gen (CG). Table 4 shows the optimum computational results.

Table 4. Results of window size analysis. WT: each window’s computational time; TT: the total
computational time; AT: the average computational time; CG: each window’s convergence gen.

WS (min) R M (min) WT (s) TT (s) AT (s) CG
15 5 77 12.92, 25.69, 20.98, 31.95, 2.37 93.91 18.78 1,1,1,1,1
20 4 72 24.19, 36.22,41.65, 2.25 104.31 26.08 2,5,7,10
25 3 66 29.78,49.56, 22.10 101.44 33.81 26, 35,23
30 3 67 46.08, 60.94,2.14 109.16 36.39 19, 30,3
35 2 66 54.97,51.92 106.89 53.45 42,62

Table 4 shows the relationships between the window size and the computational results. When
the time of the WS is too little, R increases. In each RH window, only a small portion of the activities
are considered to get the local optimal scheduling. When the WS was set as 15 min, the convergence
results can be obtained in the first gen because of its small computation scales. The final results
considered less global optimal scheduling. When the WS increases, the number of activities involved
in the waiting scheduling window increases, and the computational scale and time increased. A large
rolling WS can reduce the number of rolling windows. An excessive number of activities in a window
could increase the computation time of a single window schedule, and the final convergence gen
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also appeared later, but there was not an obvious variation in the total computational time. In order
to achieve a more efficient dynamic schedule, the WS as 25 min was selected to balance the rolling
times (R) and each window’s computational time (WT). Figure 9 shows the convergence curves in the
different RH windows.

---- Ist RH window
204 --==-2nd RH window
3rd RH window

Makespans(min)
Ny
f=
Hi 4

0 20 40 60 80 100
Iteration

Figure 9. The convergence curves of the dual population genetic algorithm (DPGA) in different
RH windows.

Figure 9 shows that the periodic RH strategy can make the calculation easier to converge, because
the number of waiting scheduling activities in a single RH window is reduced, which is less than the
static scheduling. Different numbers of carrier aircraft were set to make a comparison and obtain the
support operational results under the same conditions by the DPGA algorithm. Table 5 shows the
comparison results with and without periodic RH scheduling for different waves of carrier aircraft.

Table 5. Comparison with and without RH scheduling for different waves of carrier aircraft.

” No Rolling Rolling
M (min) TT (s) CG M (min) TT (s) WT (s) AT (s) CG
5 43 57.12 18 48 36.42 18.25,18.17 18.21 14,5
9 54 106.75 21 55 71.45 26.30, 42.85, 2.30 23.82 31,65,1
13 65 171.55 40 66 101.44 29.78,49.56, 22.10 33.81 26, 35,23

The experimental results in Table 5 show that the total computational time (TT) of the periodic RH
dynamic scheduling is a little shorter than the static scheduling results. However, the computational
time of each RH window (WT) decreased greatly. The reduced computational time makes the
scheduling easier and more able to cope with the dynamic environment. It was found that the
total computational time (TT), each window’s computational time (WT), and finally the convergence
gen (CG) of the three experiments obtained from the proposed approach were better than those
obtained from the static rolling horizon approach. The global optimal scheduling may be lost by the
RH dynamic scheduling strategy. Moreover, the makespan and computational time of the proposed
approach was acceptable. The results show that the periodic RH dynamic scheduling strategy is
superior for solving large-scale carrier aircraft support scheduling problems, and the RH dynamic
scheduling strategy, which closely approached an actual situation, was proven to be suitable for carrier
aircraft scheduling.

5.4. Results for the Disruptions by Event-Driven RH Scheduling Strategy

In this section, the event-driven RH scheduling strategy was selected to generate a recovery
scheduling for the disruptions. The size of the recovery time window was also set as 25 min. The DPGA
algorithm was used to reoptimize the recovery schedule in each RH window. Every time a disruption
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occurred, the RH window was selected again, and generated a recovery scheduling by the DPGA
algorithm with the same computer configuration and similar parameters. If another disruption
occurred in the recovery time window, the recovery scheduling should be revised again.

For a single disruption of the second carrier aircraft, the eighth activity was chosen randomly
to analyze the possible impacts of the disruption. The disruption made the resource unavailable
due to resource breakdown or the operators reducing in one operational crew, and prolonged the
support time of the disruption activity to 19 min. The event-driven RH scheduling strategy was
triggered. The DPGA algorithm was used to calculate the recovery makespan and obtain the new
resource allocation. The Gantt chart of the operational crews by periodic RH scheduling strategy
without disruption was shown in Figure 10. The recovery scheduling of the operational crews for the
disruption by event-driven RH scheduling strategy is shown in Figure 11.
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Figure 10. Gantt chart of optimal support personnel allocation by periodic RH scheduling strategy.

A comparison between Figures 10 and 11 show that the priorities of all of the activities are satisfied.
The event-driven RH scheduling strategy can generate a recovery scheduling by the DPGA algorithm.
When a disruption occurred, another method can be selected to obtain a complete rescheduling result
by the reactive rescheduling strategy. In order to analyze the performance of the event-driven RH
scheduling strategy, a comparison between the event-driven RH scheduling strategy and the reactive
rescheduling strategy was made. Three kinds of disruptions instances were set. Instance 1: A single
disruption (the support time of the eighth activity of the second carrier aircraft is prolonged to 19 min).
Instance 2: Two disruptions (the support time of the eighth activity of the second carrier aircraft is
prolonged to 19 min, and the support time of the 14th activity of the ninth carrier aircraft is prolonged
to 15 min with the increase of weapon number). Instance 3: A series of disruptions make the inertial
alignment support time of all of the aircraft increase 3 min because of the flight deck environment.
Table 6 shows the comparison of makespan (M), total computation time (TT), and completion time
cost (6) calculated by different scheduling strategies.

In Table 6, the reactive rescheduling strategy can also get rescheduled. It considered more regarding
the global optimization, but also increased the computation time and obtained more complexity in
the activity variation. The event-driven RH rescheduling result could obtain a smaller rescheduling
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makespan, and the new strategy gave more consideration to the earliness and lateness penalty of the
supporting activities. Comparative analysis proved that the event-driven RH rescheduling strategy
could obtain a better balance between the computation and the scheduling objectives. It could also
obtain a better response to different disruption conditions (e.g., machine breakdown, operator change,
dynamic deck environment) and reduce the computation time for recovering the schedules in the
event of disruptions illustrated by numerical experiments. The Gantt chart of the scheduling activities
by RH recovery scheduling strategy can provide a convenient guidance to the carrier aircraft support
operations, and make the rescheduling more suitable for the dynamic operational environment of the

carrier flight deck.
Lp; 8 [1,9 [ 18 14
Lp; T8 | 12 [ 1,8 [ 1% ] 174
Lp: | IEB | | .9 | | IEQ | | I‘ -14 | |I 9 | I3 14 |
Lp: 158 [ | g2 ] [ 14 ] [ 114 ]
Lpi ly8 [ 1,8 ] [ [ 14 ] [ ]
Lp: El [P J [T® [19 [ 14 Ig14 ]
Lry
w [f 08 ] [L7 [ 1,10 [ k10 ]
6
Lpy [17 [To® 28 [L7 ] L7 J
Lp; 110 A0 ] 7 ] [ Iy 10
LP; T [ 16 ] M8 [ .7 ] (L
Lpi '74i I4'10 I Ia'm | I:a's ] l Im.r I I I1:\'7 I
Lp§ 156 [ 11 ] 7 ] 10 ] [T ]
Lp; 1.6 1,-6 1-6 I I§-1D I | I8 T | I I5-1D I
Lpz -4 1.5 -5 [T-18 [ 115 ]
v 2] [TLF ] ] (s ] ™1 [ ]
Lp: _1.2_|_1—|| 4 4 [ ] [T;15 ] [1718 ]
wy [* [h* ] [G5 J 4TS5 1] 115 [ 115 [ 18 |
L, [LF ] ] AL ] O™ ]
Le, [G# S| OS] IS L I
Lpi I,-11 -1 | Ig-Zl | Ig-13 | IH-Z | I”-12 | I‘-1Z | | I|-1Z |
L] [ 1,72 ] 03 ] [ T &2 ] (3 ] [™8 ] 7]
Lpf WA l . I | 13 I 132 | | [ I I [Pl |
Lp; 12 [ISEN| [111 [1,12 112 111 ] m [12 113 111
Lp:l I5-2 ] I Is-ﬂ I I7-2 l I.,-3 | I' -13 IS-13 I‘-13 I
Lp:: I9-2 | @ |11-13 |I4-13 l I| 2 | i!-3 Im-13 I5-13 l I1._‘-12 l
2
Lp‘ Iz-11 I IS-J | IﬂJ I I‘-Z I|°-3 | 112 |l7-13 Iw-11 I I Iﬂ-3 I
LP: 12 I ] (™, T T2 | [Pl [11 ] 212 ] 1
0 10 20 30 40 50 60 70
Time/min

Figure 11. Gantt chart of optimal support personnel allocation by event-driven RH scheduling strategy.

Table 6. Comparison results of different scheduling strategies.

Disruption . RH Scheduling Reactive Rescheduling
Instance M (min)  TT (s) ) M (min)  TT (s) )
A sinele 5 48 37.33 79 43 46.81 525

disru %ion 9 55 42.16 229 55 73.10 1057

P 13 68 77.07 504 68 127.28 2419

Two 5 48 20.19 34 45 40.44 566
disruptions 9 56 42.06 221 56 70.825 1186
P 13 69 79.53 512 68 128.67 2405

A series of 5 51 19.28 42 48 32.84 526
disruptions 9 60 45.17 256 60 71.52 1001
P 13 70 30.09 310 71 129.91 2402

6. Conclusions

The purpose of this paper was to get a real-time disruption recovery solution to deal with the
dynamic scheduling problem for carrier aircraft in the dynamic and complex flight deck environment.
The support operation for carrier aircraft is considered as MRCMPSP. An integer programming model
was constructed by considering the independent operational time and resource constraint of each
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activity. A periodic and event-driven RH scheduling strategy combined with multiple heuristic
algorithms (GA, DE, Memetic, DPGA) was presented to solve the MRCMPSP. The approach developed
in this paper can enable better decisions for real-time disruption recovery scheduling.

The RH scheduling strategy inspired by RH predictive control technology for a continuous
manufacture system was presented to adapt the dynamic flight deck environment. The appropriate
size of the RH window could balance the rolling times and computational time. The RH dynamic
scheduling method, which was better than the reactive rescheduling, not only reduced the problem
size, it could also effectively adjust the baseline scheduling in a reasonable computational time and
avoid the unnecessary scheduling with effective resource allocation.

A DPGA algorithm was proposed. The activity list encoding method was set in the chromosome
with a two-dimensional matrix. A new adaptive crossover and mutation strategy based on the
subtopology structure was designed to improve the global search ability. A double schedule for
the leftward and rightward populations was integrated with alternating iterations to improve the
convergence speed and obtain a more efficient solution in the search space. The computational results
have shown that our approach was effective in solving the scheduling problem. The method in
this paper can also be extended to other RCPSP such as aircraft, ship, and job shops. In the future,
we can make an important extension regarding more developed dynamic scheduling methods for large
projects and multimodal research. Studies may further consider more multi-objective optimization
methods when different disruptions occur within carrier aircraft scheduling problems.
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