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Abstract: This study analyzes bioelectrical signals to achieve automatic epileptic seizure detection.
Electroencephalographic (EEG) signals were recorded with electrodes on healthy, epileptic
seizure-free, and epileptic seizure patients. The challenges in this field are generally regarded
to be the impacts of non-stationarity and nonlinearity in EEG signals. To address these challenges,
this study attempts to recognize different brain statuses. The idea originated from a novel hypothesis
that considers EEG signals as convolution signals and regards itself as the generation mechanism
of EEG signals, to some extent. Based on this hypothesis, the nonlinear problem can be viewed as
a deconvolution procedure. As such, the method can be simplified into three parts: eliminating
non-stationary is used to catch high-frequency to low-frequency signals, which is followed by a local
mean decomposition (LMD) algorithm; these signals are deconvoluted to form ultra-high-dimensional
feature sets, which is completely terminated by the mel-frequency cepstrum coefficients (MFCC)
algorithm; and several classifiers are combined to achieve highly accurate recognition results and
to verify the superiority and reasonableness of this method. The publicly available EEG database
from the University of Bonn, Germany is employed to demonstrate the effectiveness and outstanding
performance of this method. According to the results, the method has the ability to attain a higher
average classification accuracy than other methods in all of the four following cases: healthy (datasets
A and B) versus epileptic seizure (dataset E), epileptic seizure-free (datasets C and D) versus epileptic
seizure (dataset E), healthy (datasets A and B) versus epileptic seizure-free (datasets C and D) versus
epileptic seizure (dataset E), and healthy (dataset A) versus healthy (dataset B) versus epileptic
seizure-free (dataset C) versus epileptic seizure-free (dataset D) versus epileptic seizure (dataset E).

Keywords: epileptic seizure detection; bioelectrical signals; local mean decomposition (LMD);
mel-frequency cepstrum coefficients (MFCC)

1. Introduction

The demand has been increasing for implementing fast automatic epileptic seizure detection,
shortening healing time, raising the success rate of cure, protecting patients from accidents, and saving
their lives. As such, automatic epileptic seizure detection has become a hot research topic [1–5].
Recently, an incident report of epilepsy, one of the most common neurological disorders, stated that
the prevalence is about 1 to 2% among the global population, and is rapidly increasing in the elderly
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population [1,4–6]. In the past several decades, although new anti-epileptic drugs had been invented, a
third of epileptic patients are still suffering from epileptic seizures. Additionally, even though seizures
are treated and controlled, self-reported life quality is significantly reduced by the unpredictability
and consequences of epilepsy, as the disease causes many anomalies in terms of behavior, awareness,
movement, and sensation [3,7,8].

The significant differences between epileptic seizure and healthy states are generally highlighted
as the frequency and patterns of neurons, meaning the spatial-temporal patterns of neurons gradually
increase from the normal state to epileptic seizure-free state and then to the epileptic seizure
state [7,9]. The World Health Organization (WHO) stipulates that epilepsy is caused by a group
of brain cells with unexpected, uncontrolled electrical discharges, termed ’epileptic seizures’ [6,9,10].
In 1929, Berger first measured the spontaneous electrical activity in the brain using electrodes,
with electroencephalographic (EEG) signals being produced. His method is still considered a commonly
used technology to monitor activity in the human brain. Afterwards, it was further used to detect
epileptic seizure [9–14].

In the past and at present, well-trained and experienced neurophysiologists are employed
universally to detect epileptic seizures through conventional methods by inspecting EEG signals
over a long period [6,9,10,13–16]. Practically, to ensure high accuracy, detailed evaluations are essential,
such as brain imaging tests like magnetic resonance imaging (MRI), computed tomography (CT),
long-term EEG tests, blood tests, and medical history examination [15,17–24]. All of these evaluations
are costly, which places a heavy financial burden on patients, especially those living in areas with
frequent epileptic seizure breakout and poverty. Unfortunately, these methods have many limitations:
for example, they are time-consuming, tedious, subjective, [9,10,13–16,25], and face many challenges
in terms of inevitable factors on reducing misjudgments [13]. Computer-aided detection with EEG
signals can therefore be considered a promising technology. It can be used to realize the goal of
minimizing epileptic seizure activity to help control the disease [16,26].

Recently, the signal-processing-based method has been applied to extract features to analyze,
recognize, and detect epileptic seizures [1–5]. Between 2014 and 2017, many different methods
were being used to extract and recognize features to achieve the automatic detection of epileptic
seizures, such as transform techniques (e.g., discrete short-time Fourier transform, wavelet transform,
generalized S-transform, shearlet and contourlet transforms), nonlinear dynamic analyses (e.g., various
entropies and the Lyapunov exponent), and data-dependent time-frequency decomposition approaches
(e.g., empirical mode decomposition and local mean decomposition) [5,7,15,17–24,26–32].

However, although numerous methods have been effectively used to achieve the automatic
detection of epileptic seizures, there are still some problems affecting improved recognition accuracy.
This fact illustrates the nonlinear and non-stationary problem in EEG signals, which causes many
challenges in analyzing the signals with conventional methods [30,31,33]. Due to these reasons, in this
study, a novel hypothesis is proposed and applied to the publicly available EEG database of the
University of Bonn, Germany (UoB). The results demonstrate the reasonableness and accuracy of our
proposed method for detecting epileptic seizures.

The remainder of this paper is structured as follows: Section 2 outlines the materials and problem
statement, and also highlights the main contributions. In Section 3, the methodology is described
in detail, including the novel hypothesis, the Mel-Frequency Cepstrum Coefficients (MFCC) for
well-solved nonlinear problems, local mean decomposition (LMD) for well-solved non-stationary
problems, and a performance evaluation. The reasonableness and availability of our novel method is
illustrated by figures in Section 4, which also outlines the promising results and some comparisons
between this method and other methods. Finally, Section 5 draws a conclusion and lists probable
future research directions.
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2. Materials and Problem Statement

We used the publicly available EEG database of the UoB to verify the effectiveness and the
correctness of our method. This database is the benchmark that is always used to develop epileptic
seizure detection systems [1–16,25–31,33–43].

2.1. EEG Data Materials

This database contains five datasets (A, B, C, D, and E), each of which has 100 single-channel EEG
segments of 23.6 s duration for 4097 samples with sampling rates of 173.610 Hz. Five healthy volunteers
were invited to record their EEG signals using gold-plated surface electrodes placed according to the
principles of the 10–20 international electrode placement standard. Healthy EEG signals in dataset A
and dataset B were then produced. Similarly, the EEG signals of five epileptic seizure-free patients
were also recorded during epileptic seizure-free trials using electrodes, which were placed opposite
to the epileptogenic zone (dataset C) and within the epileptogenic zone (dataset D). The epileptic
seizure-free EEG signals in datasets C and D were also produced, accordingly. Dataset E describes
the epileptic seizure signals, which were collected by placing the electrodes in the epileptogenic zone,
as shown in Table 1 [1–16,25–31,33–43].

Table 1. The definitions and descriptions for the electroencephalographic (EEG) signals from the
University of Bonn, Germany.

Individual Five Healthy Individuals Five Epilepsy Patients

Information Dataset A Dataset B Dataset C Dataset D Dataset E

State
Awake with
eyes open
(Healthy)

Awake with
eyes closed
(Healthy)

Seizure-free Seizure-free Seizure
activity

Electrode type Surface Surface Intracranial Intracranial Intracranial

Electrode place
10–20
international
system

10–20
international
system

10–20
opposite to
epileptogenic
zone

Within
epileptogenic
zone

Within
epileptogenic
zone

No. of channels 100 100 100 100 100

Epoch duration 23.6 23.6 23.6 23.6 23.6

The sample segment of each dataset is shown in Figure 1. The five healthy volunteers were
awake and relaxed with their eyes open (dataset A) or closed (dataset B). Therefore, the difference
between sample segments A and B was minimal in terms of subjective understanding. Datasets C,
D, and E were recorded to diagnose epileptic seizure using intracranial electrodes. There were some
differences between the sample segments from datasets C and D. The sample segment from dataset
E was a typical epileptic seizure EEG segment, which was initially confirmed by well-trained and
experienced neurophysiologists. From a subjective perspective, the sample segment from dataset E
was quite different from those of datasets A, B, C, and D, as shown in Figure 1.

It should be noted that each EEG segment can be considered as the minimum signal-processing
unit, which replaces its tail of 1.84 s (about 16 sample points) to rebuild itself. In this article, the number
of EEG segments was sufficiently large (about 1592 segments in each dataset, and 7960 segments in
total) to verify the effectiveness and correctness of this method. The results reflect the EEG signal
segment level instead of single sample-point factors.
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Figure 1. Typical electroencephalographic (EEG) segments from each of the five datasets (A–E).

2.2. Problem Statement

Four cases from the available database were considered. These cases were employed to
investigate the difference between healthy, epileptic seizure-free, and epileptic seizure states in varying
perspectives. These cases can be described as follows:

• Case I (Datasets A and, B versus dataset E): the recognition problem between healthy and
epileptic seizure states. In this dataset, EEG segments from datasets A, B, and dataset E were
employed, and they were divided into two categories: EEG segments belonging to datasets A and,
B, and EEG segments belonging to dataset E.

• Case II (Datasets C and, D versus dataset E): the recognition problem between epileptic
seizure-free and epileptic seizure states. In this dataset, EEG segments from datasets C, D, and
dataset E were employed, and they were divided into two categories: EEG segments belonging to
datasets C and, D, and EEG segments belonging to dataset E.

• Case III (Datasets A and B versus datasets C and D versus dataset E: used to determine the
difference between the healthy, epileptic seizure-free, and epileptic seizure brain states. In this
dataset, EEG segments from datasets A and B, EEG segments from datasets C and D, and EEG
segments from dataset E were employed. These were divided into three categories: EEG segments
belonging to datasets A and B, EEG segments belonging to datasets C and D, and EEG segments
belonging to dataset E.

• Case IV (Dataset A versus dataset B versus dataset C versus dataset D versus dataset E):
focused on an attempt to determine any slight changes in the EEG signals. In this dataset, EEG
segments from datasets A, B, C, D, and E were employed, and were divided into five categories:
EEG segments belonging to dataset A, EEG segments belonging to dataset B, EEG segments
belonging to dataset C, EEG segments belonging to dataset D, and EEG segments belonging to
dataset E.

Almost all studies automatically classify EEG signals into either two classes: healthy (datasets A
and B) and epileptic seizure-free (datasets C and D), or two classes: healthy (datasets A and B) and
epileptic seizure (dataset E), or three classes: healthy (datasets A and B), epileptic seizure-free (datasets
C and D), and epileptic seizure (dataset E). Few studies have used five classes: healthy (two classes,
datasets A and B), epileptic seizure-free (two classes, datasets C and D) and epileptic seizure (one
class, dataset E). Simultaneously considering all of the above five situations is almost non-existent.



Appl. Sci. 2018, 8, 1528 5 of 25

Epilepsy, which involves sudden and often unforeseen occurrences, is a neurological condition in
which sufferers experience spontaneous seizures that are caused by disturbances in the electrical
activity of the brain [1–5,44]. In order to deal with these problems, a new theoretical perspective based
on a hypothesis is proposed in this paper. The main contributions can be described as follows:

• The physical meanings of extracted features are very clear. To the best of our knowledge,
this method is designed to explain the principle of EEG generation.

• The nonlinear and non-stationary problems are no longer an issue. The original intention of the
hypothesis was to solve the nonlinear problem, which was proven by the later experiment results.
Additionally, the important part, the LMD, was proven to be a good approach to deal with the
non-stationary problem.

• Taking into account all of the recognition tasks. The above five situations were simultaneously
considered to verify the correctness and effectiveness of this method, also reflect the generalization
ability of EEG signal analysis.

3. Methodology

Generally, epileptic seizure detection can be formulated into a pattern recognition problem using
the signal processing technique. Detection can be dismantled into three parts: feature extraction,
selection, and feature recognition, as shown in Figure 2 [1–5,44]. The idea for this method originated
from a novel hypothesis which considers EEG signals as convolution signals and regards itself as the
generation mechanism of EEG signals. According to the two problems mentioned before, the LMD
algorithm is often used to solve non-stationary problems, while MFCC is employed to solve nonlinear
problems in EEG signals.

Figure 2. The architecture of the automated epileptic seizure detection approach.

The information provided in Figure 2 illustrates the architecture of the method used in this
study. Bioelectrical signals were considered the interactions among a great number of “atomic modes”,
and the interactions were so complicated that they could not be described by existing mathematical
language. Due to these extremely complicated spatial-temporal patterns of neurons, the bioelectrical
signals often manifest with non-stationary and nonlinear characteristics, which were handled by LMD
and MFCC in this article, respectively.

3.1. Local Mean Decomposition (LMD) for Accurately-Solved Non-Stationary Problems in EEG Signals

LMD is considered a data-dependent time-frequency decomposition approach with superior
self-adaptive ability [5,26,29,35,45]. Our team previously completed a preliminary study on feature
extraction based on LMD [5]. Following that study, LMD can be regarded as the most effective method
based on time-frequency analysis from the highest frequency oscillation to the lowest frequency
oscillation for non-stationary and nonlinear signals. Furthermore, the LMD method can be used
to decompose EEG signals into a series of product functions (PFs). Then, the stationary statistical
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features of PFs can be obtained [26,45]. Figure 2 illustrates the first step of epileptic seizure detection,
by decomposing the original EEG signals into several subcomponent signals to solve the non-stationary
problem [5,26].

Generally, EEG signals can be demodulated into PFs, and each PF can be considered as the product
of the multiplication of an envelope signal by a frequency modulated (FM) signal. The LMD procedure
involves iteratively extracting subcomponents from the highest to the lowest frequency oscillations,
with low computational complexity and high processing speed [5,26].

For an arbitrary signal x(t), the iterative decomposition can be briefly described as follows [5,26]:

• Step 1. All the local extreme points n being determined, then the i-th local mean value mi of two
adjacent extreme data points (ni and ni+1) can be calculated as follows.

mi =
(ni + ni+1)

2
. (1)

From Equation (1), all the local means are straight lines extending between successive extremes.
Then, an averaging operation can be carried out to smooth the block straight-lines. A smoothed
local mean function m11(t) is therefore generated.

• Step 2. According to the above mentioned scenario, the local magnitude ai of two adjacent
extremes (ni and ni+1) can be calculated as follows:

ai =
|ni − ni+1|

2
. (2)

Then, all local magnitudes can be plotted as straight lines extending as stated in Step 1, and an
estimated envelope a11(t) can be derived.

• Step 3. The local mean function m11(t) is subtracted from the original signal x(t), and can be
described as follows, mathematically:

h11(t) = x(t)−m11(t). (3)

h11(t) is then divided by the estimated envelope a11(t) and the demodulated component s11(t),
which can be calculated as follows:

s11(t) =
x(t)−m11(t)

a11(t)
=

h11(t)
a11(t)

. (4)

• Step 4. Steps 1–3 are performed on the demodulated component for n times until a purely FM
element s1n(t) is acquired. Under these circumstances, a series of recursive equations can be
obtained as follows: 

h11(t) = x(t)−m11(t),
h12(t) = s11(t)−m12(t),
...
h1n(t) = s1(n−1)(t)−m1n(t),

(5)

where 
s11(t) = h11(t)/a11(t),
s12(t) = h12(t)/a12(t),
...
s1n(t) = h1n(t)/a1n(t).

(6)

• Step 5. The estimated sub-envelopes a11(t), a12(t), ..., a1n(t) are multiplied, and their integrated
envelopes can be calculated as follows:
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a1(t) = a11(t)a12(t)...a1n(t) =
n

∏
q=1

a1q(t), (7)

where the ultimate objective can be described as follows:

lim
n→∞

a1n(t) = 1. (8)

Generally, the first PF, named PF1, can be subsequently defined as the product of the multiplication
of s1n(t) by a1(t):

PF1(t) = a1(t)s1n(t). (9)

• Step 6. PF1 is subtracted from the original signal x(t), which turns into a new signal u1(t).
Then, u1(t) can be considered as a new original signal and the whole procedure (Steps 1–5) can be
repeated k times until the k-th function uk(t) becomes a constant or contains no more oscillations:

u1(t) = x(t)− PF1(t),
u2(t) = u1(t)− PF2(t),
...
uK(t) = uk−1(t)− PFk(t).

(10)

Finally, the original signal x(t) can be decomposed into numerous PFs and a residual component
uk(t). Furthermore, the original signal x(t) can be reconstructed as follows:

x(t) =
k

∑
i=1

PFi(t) + uk(t). (11)

3.2. Novel and Reasonableness Hypothesis for the Accurately-Solved Nonlinear Problem in EEG Signals

In order to accurately solve the nonlinear problem in EEG signals, it is important to understand
the work and generation mechanism of EEG signals. Currently, there are no definitive theories or
mathematical models to describe the process of EEG production. However, some basic facts have been
discovered, which are simplified and described in Figure 3. EEG signals are first produced by the nerve
cells in the brain, as shown in Figure 3a. Usually, the characteristics of electrical signals are decided by
two elements: the structure of brain cells, and motivation signals, as shown in Figure 3b. Neurons,
connected by synapses, can be considered a type of cell that has a specific function of discharging
electricity. The purpose of this electricity is to store and transmit information among different neurons.
Neurons are often considered as the basic signal-processing unit of the human brain, whose main
function is to receive information and transmit it to other cells, as shown in Figure 3a.

Figure 3. Hypothesis on the work mechanism of brain activity, (a) the nerve cells in the brain, (b) the
structure of brain cells and motivation signals, and (c) collected electroencephalographic (EEG) signals.
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Figure 3b demonstrates the hypothesis on the work and generation mechanism of EEG signals,
which can be divided into three parts: motivation signals denoted by xj,m, the working principle of
neurons denoted by g(·), and the functional electrical signal output denoted by yj,m. Clearly, the
most important part is the working principle of neurons g(·), and, generally, each neuron is not
isolated; they all connect with each other. Moreover, the connections are denoted by ωj,i, and the
discharge function can be considered as two types of neurons: summation neuron ∑ and multiplication
neuron ∏.

Usually, summation neuron ∑ refers to emphasizing signals according to linear functions, whereas
multiplication neuron ∏ generates the new signals or enhances signal energy in accordance with some
nonlinear pattern, which results in the EEG signals being nonlinear. Generally, the neuron design
is a simple but extremely efficient architecture, which makes it extremely responsive to any minor
electrical signals, and microscopically, it is non-stationary.

From the hypothesis on the construction of neurons, as shown in Figure 3b, functional electrical
signal output can be expressed as follows:

yj,m = ∏g(w1·x1,n)⊕∏g(w2·x2,n)⊕...⊕∏g(wL·xj,n)

=
L

∑
l=1

(∏g(wl ·xj,n)),
(12)

where xj,n, yj,m denote the motivation signals and function electrical signal output, respectively, and g(·)
is the working principle of neurons. It should be noted that the summation neuron ∑ was not
considered because EEG signals are often non-stationary and nonlinear signals, which are generally
caused by multiplication neurons ∏. Therefore, it was reasonable and suitable for the following
research work to analyze EEG signals for automated epileptic seizure detection. From the hypothesis,
the following were assumed to be true: EEG signals are quite different in different individuals due to
differences in the construction of brain cells and the characteristics of EEG signals recorded in different
brain activities, which can be discriminated by the features denoted by the coefficient ωj,i.

The frequency spectra of EEG signals are always aliasing, and generally cannot be obtained by a
series of simple filters. Deconvolution may be an efficient method to separate EEG signals into various
components. One frequency segment, extracted from the original EEG signals, can be considered as
the input signal of the brain neuron system, and can be calculated as follows:

PF(n) = g1(n)×g2(n), (13)

where g1, g2∈R are the integration functions, which mean that the EEG signals from high frequency
to low frequency can be regarded as the result of the convolution of two different functions, via the
EEG signals being generated by the common effect of the neuronal structures and motivation signals.
Therefore, the next step was to convert the convoluted signal into a time-domain linear signal.

We wish to illustrate is our hypothesis, which is the basis of this method. When solving different
problems, LMD and MFCC were employed. All the methods used in this paper were built on this
hypothesis instead of simply listing several methods, which is also the innovative contribution of
this work. Accordingly, we refer to “this method” instead of “this proposed method” to avoid
misunderstanding. To the best of our knowledge, this hypothesis can be regarded as a theoretical
perspective that merits study.

MFCC was originally designed to study real speech registered by human ears. Since the frequency
of speech signals is not linear, it requires the study of a new frequency unit that effectively represents
the relationship between the size and the frequency. It must also satisfy the following three conditions:
the general physical linear description, a low level of discrimination in the high frequency range, and a
high level of discrimination in the low frequency range [41,43,46–51].
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• Step 1. The PFs are segmented into N frames. The EEG signals can be set with a 23.6 s duration to
guarantee short-time stationarity inside a frame. Generally, there is an overlap with a duration
of one-half of a frame between two adjacent frames [46–48,50,51]. The hamming window was
applied to each frame to obtain windowed frames, and can be calculated as follows:

H(k) = a− b cos
2πk

N − 1
, k = 0, 1, 2, ..., N − 1, (14)

where N is the number of points in a frame, and a, b denotes the parameters of the hamming
window (a = 0.54, b = 0.46).

• Step 2. The frequency spectrum F(ω) of the i-th frame xi(n) can be calculated using the Fast
Fourier Transform. The short-time power spectrum |F(ω)|2 can be calculated and filtered by
a Mel-filter bank BMel , which consists of M triangular band-pass filters and is located in the
Mel-frequency domain in a uniformly spaced manner. The mapping relation from a linear
frequency f to Mel-frequency fMel can be calculated by the following equation:

fMel = δ ln(1 + f /ν), (15)

where f , fMel denote the linear frequency and Mel-frequency, respectively, and δ, ν are the
parameters (δ = 2595, andν = 700).

• Step 3. Then, the output of the short-time power spectrum |F(ω)|2 can be calculated via this
Mel-filter bank:

θ(Mk) = ln[
N

∑
k=1
|X(k)|2Hm(k)], m = 1, 2, ..., M. (16)

• Step 4. Finally, the output power θ(Mk) of m-th can be calculated, and the Mel-Frequency
Cepstrum c(k) can be calculated by applying the updated Inverse Discrete Cosine
Transform (IDCT) in the Mel-frequency coordinate spectrum, which can be described as
follows, mathematically:

ck =
M

∑
k=1

θMk cos(
n(l − 0.5)π

M
), n = 1, 2, ..., p, (17)

where p is the dimension of MFCC, c(k) denotes the k-th MFCC, and p is less than the number M
of Mel-filters.

3.3. Identification Mechanism-Categorical Classifications

Practical experience has demonstrated that the performance of epileptic seizure detection depends
not only on feature extraction but also on the quality of features selected from EEG data. This procedure
is often hidden in the categorical classification. The correlation among features is a good break
point to achieve the reduction of feature dimension [8,15,16,32,41,43,52–54]. Recognition, also called
classification, can be considered an important research field, whose common and traditional methods
mainly include support vector machine (SVM), K-nearest neighbor (KNN), neural network (NN)
classifiers, forest classifiers, and decision trees (DTs) [8–10,14,25–60].

In the present work, a series of coefficient features, calculated using the MFCC algorithm,
were gathered for classification using a wide range of classifiers. The recognition of EEG signals
was perfectly achieved. In order to test and verify the effectiveness and correctness of our
proposed hypothesis, multiple classification categories were employed in the current study, such as
back-propagation neural network (BPNN), SVM, and KNN.

• Back-Propagation Neural Network (BPNN) is a feed-forward neural network that can be
considered a category of artificial neural networks (ANNs). Generally, the structure of BPNN
contains three layers: an input layer, a hidden layer, and an output layer. The steepest descent
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algorithm is often employed in the learning rule, and the weights and thresholds can be gradually
adjusted, so the minimum summation of squared errors can be reached [5,26,32].

• Support Vector Machine (SVM) is a potential methodology used for solving the classification
problem. It is not only regarded as a linear classifier, but also as a nonlinear classifier. Usually,
SVM can be employed to minimize the operational error and maximize the margin hyperplane to
maximize the classification performance [5,7,9,10,14,25,27,35].

• Linear Discriminant Analysis (LDA) has been successfully used in multidimensional reduction
and pattern recognition [26,41]. LDA can be defined as classifying the dependence by
separating the m-dimensional descriptor space into two areas that are separated by a hyperplane.
Concerning classification issues, LDA can be used to minimize the distances among vectors of the
same class and maximize the distance of inconsistent class centers [26,41].

• K-nearest neighbour (KNN) is often used to identify different EEG signals, and can be considered
as a supervised and non-parametric machine learning technique, which is relatively simple,
has low computational burden, and is easy to implement [5,11,26,40].

• Decision Tree (DT) has been verified to have a high interpretability, and the rules, obtained by
splitting the training dataset into subsets by testing attributes, are also readily compressible [39].

In this paper, the recognition accuracy is calculated and simplified first as a summation and then
as the average value, which can be described as follows:

Aver. =
1
N

N

∑
i=1

yi, (18)

where yi represents the classification result of the i-th classifier, and N denotes the number of classifiers,
and Aver. denotes the recognition accuracy.

The goal of simultaneously using different types of classifiers involves two points: to attempt to
mix several classifiers to obtain a stable result, and to verify the super generalization ability of EEG
signal analysis. Once all recognition results were calculated for each testing dataset, and the average
value for all was calculated, the result was more credible with universal significance.

3.4. Performance Evaluation-Confusion Matrix Metrics

Confusion matrix metrics are often used to quantitatively evaluate recognition performance.
A confusion matrix generally involves the following parameters:

• a is the number of healthy EEG records identified correctly,
• b is the number of healthy EEG records mistakenly detected as epilepsy,
• c is the number of epileptic EEG data mistakenly identified as healthy,
• d is the number of epileptic EEG data detected correctly.

The following aggregate metrics can then be calculated based on the above parameters.

• Accuracy (AC), the proportion of total number of correct predictions, is (a + d)/(a + b + c + d).
• True positive rate (TP), the proportions of positive cases correctly identified, is d/(c + d).
• False positive rate (FP), the proportion of negatives cases classified incorrectly, is a/(a + b).
• True negative rate (TN), the proportion of negatives cases classified correctly, is a/(a + b).
• False negative rate (FN), the proportion of positives cases classified incorrectly, is c/(c + d).
• Precision (P), the proportion of the correctly predicted positive cases, is d/(b + d).
• Sensitivity (SEN) is TP/(TP + FN) × 100%, specificity(SPE) is TN/(TN + FP) × 100%.

The criteria for performance evaluation are usually employed in biomedical studies, which include
three parts: sensitivity (the proportion of the total number of labeled ictal EEGs that are correctly
classified), specificity (the proportion of the total number of labeled inter-ictal EEGs that are correctly
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classified), and classification accuracy (the proportion of the total number of EEG signals that are
correctly classified) [2,6–10,13–16,25–32,34,35,38–41,49,53,59].

4. Results and Discussion

This section describes the results of the publicly available UoB EEG database to show the
effectiveness and correctness of the method.

4.1. Experimental Setup

The majority of experiments used the train-to-test ratio (TTTR) of 7:3 in each EEG channel,
meaning that 70% of the dataset was used for training, and the remaining 30% was used for testing.
Many researchers have achieved the estimated performance using a 9:1 ratio, which makes the
performance predictably high with such a high percentage of datasets for training. To the best of
our knowledge, varying the TTTR merits investigation to test the robustness of the computational
performance [6]. Therefore, this experiment set the TTTRs as 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 1:9.

This study implemented the algorithm using the MATLAB (R2017a) software (MathWorks, Natick,
Massachusetts, USA) and its toolboxes, on a computer with a 3.20 GHz Intel-Core-i5-3470 CPU (Beijing,
China), with 12 GB of RAM and running 64-bit Windows7.

In order to eliminate the influence of different time-space dimensions, the data had to be processed
by normalization methods. After that, the features were of the same order of magnitude and the data
were then suitable for comprehensive comparison and evaluation. This experiment was carried out on
EEG signals using the following equation, which is usually called the Z-core normalization method:

x∗i (t) =
xi(t)− µ

σ
, (19)

where µ, σ are the mean and standard deviation of sample EEG segment xi(t), respectively, and x∗i (t)
is the normalized xi(t).

4.2. Signal Subcomponents (Product Functions (PFs)) Solving the Non-Stationary Problem

The iterative decomposition algorithm LMD has shown great potential for handling various kinds
of signals. However, the number of obtained PFs is not completely consistent when applied to EEG
signals. This phenomenon may be caused by the endpoint effect during the decomposition procedure.
Therefore, an approach known as the mirror extending technique was applied to address this problem.
This technique involves the boundaries of signals at both ends being counted as two symmetrical axes,
so that the original segment can be stretched into a triple-length sequence. Finally, the LMD can be
subsequently executed on this extended sequence.

Sample EEG signals of these five EEG datasets (datasets A, B, C, D, and E) and their corresponding
PFs (PF1 to PF5) are shown in Figure 4. The subcomponents from top to down are denoted by PF1 to
PF5, and PF1 generally contains more high-frequency elements than the others. Considerably more
noise is always contained in the highest frequency component, and similarly the lowest component
always contains large amounts of useless information. The decomposed PFs of each EEG segment were
considered as the high frequency component (PF1) to the low frequency component (PF5). Therefore,
the subcomponents from PF1 to PF5, meaning from high-frequency to low-frequency components,
were employed to represent the functional information generated by one or several neurons.
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Figure 4. Sample Electroencephalographic (EEG) segments of five datasets (datasets A–E) and their
corresponding product functions (PFs) (PF1 to PF5).

4.3. Mel-Frequency Cepstrum Coefficients (MFCC) Solving the Nonlinear Problem

The EEG signals can be deconvoluted into a time-domain signal using the MFCC algorithm;
its first series of typical coefficient results are provided in Figures 5 and 6. The MFCCs in PF1 from top
to down are clearly very different. It is foreseeable that the MFCCs can be fed into some classifiers,
and then the classifiers, containing hundreds of dimensional features, will be built up and can be used
to achieve a super recognition result.

Generally, as mentioned before, the first subcomponent PF1 contains more information than
the others, and this opinion was verified by the results of five datasets (datasets A, B, C, D, and E),
as shown in Figure 5, and the differences among these five datasets (datasets A, B, C, D, and E) are
obvious in MFCC (PF1). The MFCCs of the extracted features are not just these exhibitions, but were
numerous (about 144 features from PF1 to PF4). Furthermore, when the datasets were fed into some
classifiers, the recognition results (provided in the next subsection in details) were obtained quickly
with impressive results. To explaining the causes of this phenomenon, we need to return to our
hypothesis. The construction of brain cells is often unique and the motivation signals are large in
number. This is consistent with the result obtained from the current biomedical research.

Although there are some cluttered features that cannot be distinguished, the results of these five
different types of classifiers demonstrate the efficiency of these features. One possible explanation is
that the dimensions of these 144 features can be employed to form ultra-dimensional spatial-temporal
space, which is very hard to describe. Figures 5 and 6 best describe what we know so far.
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Figure 5. The first series of Mel-frequency cepstrum coefficients (MFCCs) in product function1 (PF1) of
five sets (sets A, B, C, D, and E), for Case 1 to Case 4 from top-down.

Figure 6. The first series of Mel-frequency cepstrum coefficients (MFCCs) of five sets (sets A, B, C, D,
and E) in Case 4, for product function1 (PF1) to product function4 (PF4) from top-down.

4.4. Recognition Result

In this study, a total of 6368 EEG segments were considered, and can be considered as the
most difficult recognition problem. Systematic analysis seems highly necessary, and accordingly
the experiment was conducted by considering all the classification problems, using the four cases,
which completely contained all the possible situations.

In order to evaluate the performance of this method with the four cases, Table 2 illustrates the
classification results with the five classifiers. Based on the results, the highest in Case 1 was 100%,
which means that the combination, created with the characteristics as the key features in all the
experiments, can be employed to obtain a perfect recognition result.
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The results in Table 2 suggest that Case 1 (healthy versus epileptic seizure) yielded a high accuracy
by this method. In order to assess the performance of this proposed method, other cases were also
used and classified, as shown in Tables 3–6. The results can be used to provide enough evidence to
show the efficiency of this method on extracting the useful features.

The results in Table 3 demonstrate the detection ability for healthy EEG groups versus epileptic
seizure groups, whereas Table 4 illustrates the results of the epileptic seizure-free versus epileptic
seizure groups. Table 5 describes the three classification problem for healthy, epileptic seizure-free,
and epileptic seizure EEG segments. Table 7 tries to explain all the differences between the five EEG
datasets. It should be noted that all of the classification problems were solved perfectly.

Table 2. Classification results of four cases on all data-sets (Back-Propagation Neural Network (BPNN),
Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), K-nearest neighbour (KNN),
Decision Tree (DT), average value (Aver.)).

Cases BPNN SVM LDA KNN DT Aver.

I 100 100 100 99.89 99.91 99.96
II 100 100 99.93 100.0 97.56 99.50
III 100 99.71 98.83 97.80 94.66 98.18
IV 98.35 95.27 93.05 88.94 90.95 93.31

Table 3. Classification results of the five classifiers on all five data-sets of Case 1 (Back-Propagation
Neural Network (BPNN), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA),
K-nearest neighbour (KNN), Decision Tree (DT), average value (Aver.)).

Sets Class BPNN SVM LDA KNN DT Aver.

A Healthy 99.97 100.0 100.0 99.94 100.0 99.98
Epileptic 0.03 0.00 0.00 0.06 0.00 0.045

B Healthy 99.97 100.0 100.0 99.75 99.94 99.93
Epileptic 0.03 0.00 0.00 0.25 0.06 0.170

C Healthy 98.87 99.31 99.62 98.68 98.81 99.06
Epileptic 1.17 0.69 0.38 1.32 1.19 0.950

D Healthy 98.90 99.69 99.75 97.74 97.80 98.78
Epileptic 1.10 0.31 0.25 2.26 2.20 1.224

E Healthy 0.19 0.00 0.06 0.00 0.44 0.138
Epileptic 99.81 100.0 99.94 100.0 99.56 99.86

Table 4. Classification results of the five classifiers on all five data-sets of Case 2 (Back-Propagation
Neural Network (BPNN), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA),
K-nearest neighbour (KNN), Decision Tree (DT), average value (Aver.)).

Sets Class BPNN SVM LDA KNN DT Aver.

A Inter-ictal 98.46 99.31 98.74 90.70 94.41 96.32
Epileptic 1.54 0.69 1.26 9.30 5.59 3.676

B Inter-ictal 90.23 93.53 88.63 77.95 76.76 85.42
Epileptic 9.77 6.47 11.37 22.05 23.24 14.58

C Inter-ictal 100.0 100.0 100.0 100.0 100.0 100.0
Epileptic 0.00 0.00 0.00 0.00 0.00 0.00

D Inter-ictal 100.0 100.0 100.0 100.0 100.0 100.0
Epileptic 0.00 0.00 0.00 0.00 0.00 0.00

E Inter-ictal 0.19 0.13 0.13 0.06 0.25 0.152
Epileptic 99.81 99.87 99.87 99.94 99.75 99.85
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Table 5. Classification results of the five classifiers on all five data-sets of Case 3 (Back-Propagation
Neural Network (BPNN), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA),
K-nearest neighbour (KNN), Decision Tree (DT), average value (Aver.)).

Sets Class BPNN SVM LDA KNN DT Aver.

A
Healthy 99.28 99.75 96.48 91.71 99.62 97.37

Inter-ictal 0.69 0.25 3.52 6.41 0.38 2.250
Epileptic 0.03 0.00 0.00 1.88 0.00 0.382

B
Healthy 99.59 100.0 98.81 95.67 99.94 98.80

Inter-ictal 0.35 0.00 1.19 2.51 0.06 0.822
Epileptic 0.06 0.00 0.00 1.82 0.00 0.376

C
Healthy 1.16 0.13 0.50 0.13 1.88 0.760

Inter-ictal 98.81 99.87 99.50 99.69 98.12 99.22
Epileptic 0.03 0.00 0.00 0.19 0.00 0.044

D
Healthy 0.81 0.25 0.63 0.44 1.63 0.752

Inter-ictal 99.15 99.75 99.37 99.56 98.37 99.24
Epileptic 0.04 0.00 0.00 0.00 0.00 0.008

E
Healthy 0.16 0.00 0.06 0.06 1.01 0.258

Inter-ictal 0.06 0.00 0.06 0.06 0.06 0.048
Epileptic 99.78 100 99.88 99.88 98.93 99.69

Table 6. Classification results of the five classifiers on all five data-sets of Case 4 (Back-Propagation
Neural Network (BPNN), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA),
K-nearest neighbour (KNN), Decision Tree (DT), average value (Aver.)).

Sets Class BPNN SVM LDA KNN DT Aver.

A

Healthy-A 89.38 97.05 82.98 92.09 93.28 90.06
Healthy-B 9.36 2.95 15.64 4.21 6.22 7.680

Inter-ictal-C 0.19 0.00 0.44 2.45 0.19 0.636
Inter-ictal-D 0.94 0.00 0.94 0.82 0.31 0.602
Epileptic-E 0.13 0.00 0.00 0.44 0.00 0.114

B

Healthy-A 11.68 3.45 12.63 4.15 5.53 7.488
Healthy-B 87.25 96.55 87.00 94.91 94.28 92.00

Inter-ictal-C 0.38 0.00 0.06 0.44 0.13 0.202
Inter-ictal-D 0.57 0.00 0.31 0.19 0.06 0.226
Epileptic-E 0.13 0.00 0.00 0.31 0.00 0.088

C

Healthy-A 0.63 0.06 0.38 0.00 0.19 0.252
Healthy-B 0.32 0.06 0.00 0.00 0.31 0.138

Inter-ictal-C 98.43 99.81 99.37 100.0 99.43 99.41
Inter-ictal-D 0.57 0.06 0.25 0.00 0.06 0.188
Epileptic-E 0.06 0.00 0.00 0.00 0.00 0.012

D

Healthy-A 0.50 0.31 0.63 0.06 0.88 0.476
Healthy-B 0.19 0.00 0.00 0.00 0.38 0.114

Inter-ictal-C 0.06 0.00 0.00 0.06 0.06 0.036
Inter-ictal-D 99.18 99.69 99.37 99.87 98.68 99.36
Epileptic-E 0.06 0.00 0.00 0.00 0.00 0.012

E

Healthy-A 0.06 0.06 0.06 0.00 0.06 0.048
Healthy-B 0.25 0.00 0.00 0.00 0.25 0.100

Inter-ictal-C 0.06 0.00 0.00 0.00 0.00 0.012
Inter-ictal-D 0.06 0.00 0.00 0.00 0.00 0.012

Epileptic 99.56 99.94 99.94 100.0 99.69 99.83
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Table 7. Average results obtained by the five classifiers after classification on variety train-to-test ratios (TTTRs) and variety numbers of Mel-frequency cepstrum
coefficient (MFCC) features.

Cases Set Class Train-to-Test Ratios (TTTRs) MFCC Features (PF1–PF4)

9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9 PF4 PF3–4 PF2–4 PF1–4

I

A Healthy 100.0 100.0 99.97 99.96 99.91 99.94 99.91 99.84 99.34 96.14 98.46 99.37 99.97
Epileptic 0.00 0.00 0.03 0.04 0.09 0.06 0.09 0.16 0.66 3.86 1.54 0.63 0.03

B Healthy 100.0 100.0 99.97 99.91 99.87 99.78 99.87 99.84 99.47 93.66 97.11 98.90 99.97
Epileptic 0.00 0.00 0.03 0.09 0.13 0.22 0.13 0.16 0.53 6.34 2.89 1.10 0.03

C Healthy 100.0 100.0 99.97 99.91 99.87 99.78 99.87 99.84 99.47 93.66 97.11 98.90 99.97
Epileptic 0.00 0.00 0.03 0.09 0.13 0.22 0.13 0.16 0.53 6.34 2.89 1.10 0.03

D Healthy 100.0 100.0 99.97 99.91 99.87 99.78 99.87 99.84 99.47 93.66 97.11 98.90 99.97
Epileptic 0.00 0.00 0.03 0.09 0.13 0.22 0.13 0.16 0.53 6.34 2.89 1.10 0.03

E Healthy 100.0 100.0 99.97 99.91 99.87 99.78 99.87 99.84 99.47 93.66 97.11 98.90 99.97
Epileptic 0.00 0.00 0.03 0.09 0.13 0.22 0.13 0.16 0.53 6.34 2.89 1.10 0.03

II

A Inter-ictal 98.15 98.96 98.46 98.56 97.58 96.48 98.05 95.51 93.88 59.96 68.50 90.33 98.46
Epileptic 1.85 1.04 1.54 1.44 2.42 3.52 1.95 4.49 6.12 40.04 31.44 9.67 1.54

B Inter-ictal 90.38 91.77 90.23 91.02 88.51 90.48 88.41 84.27 82.38 46.48 60.36 82.47 90.23
Epileptic 9.62 8.23 9.77 8.98 11.49 9.52 11.59 15.73 17.62 53.52 39.64 17.53 9.77

C Inter-ictal 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.94 99.47 99.69 99.78 100.0
Epileptic 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.53 0.31 0.22 0.00

D Inter-ictal 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.94 99.81 99.84 99.87 100.0
Epileptic 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.19 0.16 0.13 0.00

E Inter-ictal 0.12 0.19 0.19 0.31 0.19 0.82 0.44 0.57 1.00 1.57 0.72 0.50 0.19
Epileptic 99.88 99.81 99.81 99.69 99.81 99.18 99.56 99.43 99.00 98.43 99.28 99.50 99.81

III

A
Healthy 98.62 99.03 99.28 98.59 97.99 97.49 96.33 96.04 90.20 89.89 95.79 97.90 99.28

Inter-ictal 1.35 0.94 0.69 1.32 2.01 2.42 3.58 3.61 7.19 4.46 2.544 1.288 0.69
Epileptic 0.03 0.03 0.03 0.09 0.06 0.09 0.47 0.41 0.19 3.08 1.947 0.691 0.03

B
Healthy 99.59 99.69 99.59 99.31 99.03 99.00 98.46 97.24 96.04 88.25 95.23 98.27 99.59

Inter-ictal 0.38 0.25 0.35 0.53 0.88 0.94 1.41 2.07 2.98 2.95 2.136 1.099 0.35
Epileptic 0.03 0.06 0.06 0.13 0.19 0.06 0.09 0.60 0.38 6.66 3.109 0.754 0.06

C
Healthy 0.88 0.44 1.16 1.01 1.32 1.48 1.10 1.76 2.39 5.28 2.481 1.413 1.16

Inter-ictal 99.12 99.53 98.81 99.00 98.68 98.46 98.90 98.12 96.86 90.58 97.39 98.62 98.81
Epileptic 0.00 0.03 0.03 0.09 0.06 0.06 0.06 0.13 0.25 0.31 0.188 0.188 0.03

D
Healthy 0.50 0.57 0.81 0.85 1.60 1.32 1.88 3.20 1.98 2.01 1.539 1.382 0.81

Inter-ictal 99.50 99.37 99.15 99.15 98.40 98.71 98.08 98.02 97.14 96.98 98.27 98.62 99.15
Epileptic 0.00 0.06 0.04 0.09 0.03 0.06 0.09 0.29 0.25 0.44 0.126 0.063 0.04

E
Healthy 0.22 0.19 0.16 0.69 0.44 0.69 0.57 1.01 1.35 11.81 5.810 0.817 0.16

Inter-ictal 0.25 0.13 0.06 0.38 0.16 0.41 0.47 0.63 1.44 0.38 0.157 0.157 0.06
Epileptic 99.53 99.64 99.78 99.84 99.56 99.65 99.50 98.59 98.93 81.47 93.97 97.74 99.78



Appl. Sci. 2018, 8, 1528 17 of 25

Table 7. Cont.

Cases Set Class Train-to-Test Ratios (TTTRs) MFCC Features (PF1–PF4)

9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9 PF4 PF3–4 PF2–4 PF1–4

IV

A

Healthy-A 90.57 89.64 89.38 85.11 80.31 78.71 76.27 72.33 50.69 41.24 53.64 70.32 89.38
Healthy-B 9.08 7.16 9.36 11.78 13.38 17.43 19.50 15.42 17.18 16.11 18.28 19.54 9.36

Inter-ictal-C 0.13 0.38 0.19 0.41 0.31 0.82 1.04 1.41 2.98 4.08 1.51 0.60 0.19
Inter-ictal-D 0.22 0.28 0.94 0.47 0.44 1.44 1.04 1.44 2.98 1.88 0.50 0.38 0.94
Epileptic-E 0.00 0.06 0.13 0.13 0.35 0.13 0.44 0.13 0.97 3.89 1.76 0.47 0.13

B

Healthy-A 9.48 9.86 11.68 16.08 15.36 14.07 17.05 26.85 21.86 17.90 20.41 25.50 11.68
Healthy-B 90.42 86.65 87.25 84.01 83.20 82.88 82.00 66.61 52.42 28.02 50.06 60.33 87.25

Inter-ictal-C 0.03 0.13 0.38 0.13 0.16 0.44 0.44 0.94 2.70 2.73 0.75 0.41 0.38
Inter-ictal-D 0.04 0.09 0.57 0.38 0.28 0.79 0.66 0.94 1.38 1.51 0.19 0.28 0.57
Epileptic-E 0.03 0.13 0.13 0.09 0.31 0.19 0.41 0.19 0.91 7.44 2.70 1.88 0.13

C

Healthy-A 0.60 0.22 0.63 7.82 0.50 2.04 1.73 2.10 4.52 0.88 0.25 0.38 0.63
Healthy-B 0.06 0.16 0.32 0.82 0.35 0.88 1.44 1.73 2.98 0.38 0.06 0.41 0.32

Inter-ictal-C 98.12 99.47 98.43 97.58 99.18 98.24 98.74 94.44 58.76 90.64 97.68 98.74 98.43
Inter-ictal-D 0.09 0.13 0.57 0.22 0.09 1.44 0.82 0.35 0.66 0.06 0.00 0.03 0.57
Epileptic-E 0.03 0.06 0.06 0.06 0.09 0.03 0.06 0.03 2.64 0.41 0.06 0.03 0.06

D

Healthy-A 1.13 0.69 0.50 0.72 1.04 7.67 2.10 3.08 4.52 0.69 0.31 0.75 0.50
Healthy-B 0.13 0.16 0.19 0.35 0.38 0.66 0.94 1.57 4.02 0.25 0.44 0.38 0.19

Inter-ictal-C 0.03 0.06 0.06 0.18 0.09 0.22 0.09 0.25 1.48 0.22 0.00 0.03 0.06
Inter-ictal-D 98.74 97.93 99.18 98.96 99.21 97.80 98.27 90.70 67.71 96.36 97.86 98.68 99.18
Epileptic-E 0.00 0.03 0.06 0.06 0.03 0.03 0.47 0.63 0.44 0.25 0.00 0.03 0.06

E

Healthy-A 0.09 0.19 0.06 0.25 0.35 0.75 0.91 1.95 6.06 1.01 0.57 1.16 0.06
Healthy-B 0.06 0.09 0.25 0.62 0.35 0.38 0.85 1.48 6.88 2.54 1.76 1.35 0.25

Inter-ictal-C 0.00 0.09 0.06 0.03 0.03 0.09 0.09 0.16 1.48 0.60 0.00 0.03 0.06
Inter-ictal-D 0.00 0.03 0.06 0.03 0.03 0.79 0.16 0.35 0.63 0.13 0.00 0.03 0.06
Epileptic-E 99.85 99.78 99.56 99.81 99.69 99.75 94.72 99.37 61.90 78.14 91.52 96.77 99.56
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From the results in Tables 3–6, an interesting phenomenon revealed that datasets C and D
always contained some healthy EEG components, which lowered the classification accuracy in
Tables 3, 5 and 6, and increased the classification accuracy in Table 4. One possible explanation is
that the structures of brain cells have a few common features, which imparts the EEG segment with
some commonalities with healthy EEG segments when the motivation signals through these neurons.
Similarly, the epileptic EEG segments also have some common features to those of healthy EEG
segments, as shown in Tables 3, 5 and 6.

In order to eliminate the influence of the number of training samples on the recognition result,
the majority of the results in Tables 2–6 were obtained using 7:3 as the TTTR. In order to test the
robustness of the computational performance with varying TTTRs, Table 7 provides the recognition
results obtained with the BPNN classifier. As can be seen in Table 7, the results obtained by this
proposed method do not significantly rely on a high TTTR.

4.5. Performance Analysis

As presented in Tables 2–8, regardless of the case, all the classifiers could be used to provide high
classification accuracy. On one hand, the proposed method can be employed to realize a maximal
classification accuracy at 100% in Cases 1 and 2. On the other hand, it still provides a high classification
accuracy of 99.98% in Case 3, as well as a maximum accuracy of 98.35% in Case 4, as shown in Table 2.
Furthermore, combining all the features from PF1 to PF4 resulted in better performance than the others
in all cases, as shown in Table 7. One plausible explanation is that the information transmission must
be distributed to prevent the effects of noise, transmission channel blocking, etc. Another possible
explanation is that PF1 contains more significant features than the others, such as healthy versus
seizure, seizure-free versus seizure, healthy versus seizure-free versus seizure, etc. Table 8 presents the
confusion matrix corresponding to the four cases.

Generally, the performance of this automated seizure detection method can be analyzed using
three criteria:

• Detection sensitivity (SEN). This method successfully detected 1562, 1549, 1583, and 1406 of 1592
healthy events, which amount to detection sensitivities of 98.12%, 97.30%, 99.43%, and 88.32%,
respectively. The detection sensitivity can be as high as 100% and as low as 99.94%.

• False positives (specificity; SPE). This method successfully detected 1589, 1589, 1588, and 1585 of
1592 seizure events, which amount to detection sensitivities of 99.81%, 99.81%, 99.75%, and 99.56%,
respectively. A good seizure detector must achieve maximum seizure detection sensitivity while
minimizing false detections. Even with high sensitivity, a large amount of false detections can
be problematic for the patient and medical staff in real-life applications. In this study, the false
positives were as low as 0.00% and as high as 9.36%.

• Classification accuracy (CA) is considered as a statistical measure by which the performance of
a classification algorithm can be evaluated. It is computed by dividing the number of correctly
classified samples by the total number of samples. This method was successfully used to obtain
accuracies as high as 99.91% and as low as 93.41%.

Therefore, strong universality has been proven and can be considered as the greatest aspect of
this method. Furthermore, the results of these four cases illustrate the robustness of this method,
which accordingly has the potential to be applied to clinical cases with a high classification accuracy.
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Table 8. The confusion matrix corresponding to the four cases for performance analysis (Back-Propagation Neural Network (BPNN)).

Cases Set Class a b c d AC TP FP TN FN P SEN SPE CA

I

A Healthy 1592 0 3 1589 99.91 99.81 0.00 100.0 0.19 100.0 99.81 100.0 99.91
Epileptic 3 1589 0 1592 50.09 100.0 99.81 0.19 0.00 50.05 100.0 0.19 50.10

B Healthy 1592 0 3 1589 99.91 99.81 0.00 100.0 0.19 100.0 99.81 100.0 99.91
Epileptic 3 1589 0 1592 50.09 100.0 99.81 0.19 0.00 50.05 100.0 0.19 50.10

C Healthy 1487 105 3 1589 96.61 99.81 6.60 93.40 0.19 96.07 99.81 93.40 96.61
Epileptic 3 1589 0 1592 50.09 100.0 99.81 0.19 0.00 50.05 100.0 0.19 50.10

D Healthy 1575 17 3 1589 99.37 99.81 1.07 98.93 0.19 98.94 99.81 98.93 99.37
Epileptic 3 1589 0 1592 50.09 100.0 99.81 0.19 0.00 50.05 100.0 0.19 50.10

E Healthy 0 1592 3 1589 49.91 99.81 100.0 0.00 0.19 50.05 99.81 0.00 49.91
Epileptic 1589 3 0 1592 99.91 100.0 0.19 99.81 0.00 99.81 100.0 99.81 99.91

II

A Inter-ictal 1578 14 3 1589 99.12 99.81 0.88 99.12 0.19 99.13 99.81 99.12 99.47
Epileptic 3 1589 91 1501 47.24 94.28 99.81 0.19 5.72 48.58 94.28 0.19 47.24

B Inter-ictal 1435 157 3 1589 94.97 99.81 9.86 90.14 0.19 91.01 99.81 90.14 94.98
Epileptic 3 1589 91 1501 47.24 94.28 99.81 0.19 5.72 48.58 94.28 0.19 47.24

C Inter-ictal 1592 0 3 1589 99.91 99.81 0.00 100.0 0.19 100.0 99.81 100.0 99.91
Epileptic 3 1589 91 1501 47.24 94.28 99.81 0.19 5.78 48.58 94.28 0.19 47.24

D Inter-ictal 1592 0 3 1589 99.91 99.81 0.00 100.0 0.19 100.0 99.81 100.0 99.91
Epileptic 3 1589 91 1501 47.24 94.28 99.81 0.19 5.72 48.58 94.28 0.19 47.24

E Inter-ictal 3 1589 3 1589 50.00 99.81 99.81 0.19 0.19 50.00 99.81 0.19 50.00
Epileptic 1589 3 91 1501 97.05 94.28 0.19 99.81 7.52 99.80 94.28 99.81 99.78

III

A
Healthy 1579 13 4 1588 99.37 99.75 0.82 99.18 0.25 99.19 99.75 99.18 99.47

Inter-ictal 11 1581 16 1576 49.84 98.99 99.31 0.69 1.01 49.92 98.99 0.69 49.84
Epileptic 2 1590 2 1590 50.00 99.87 99.87 0.13 0.13 50.00 99.87 0.13 50.00

B
Healthy 1587 5 4 1588 99.72 99.75 0.31 99.69 0.25 99.69 99.75 99.69 99.72

Inter-ictal 4 1588 16 1576 49.62 98.99 99.72 0.28 1.01 49.81 98.99 0.28 49.64
Epileptic 1 1591 2 1590 49.97 99.87 99.94 0.06 0.13 49.94 99.87 0.06 49.97

C
Healthy 19 1573 16 1576 50.09 98.99 98.81 1.19 1.01 50.05 98.99 1.19 50.09

Inter-ictal 1572 20 4 1588 99.06 99.75 1.26 98.74 0.25 98.69 99.75 98.74 99.25
Epileptic 1 1591 2 1590 49.97 99.87 99.94 0.06 0.13 49.94 99.87 0.06 49.97

D
Healthy 12 1580 16 1576 49.87 98.99 99.25 0.75 1.01 49.94 98.99 0.75 49.87

Inter-ictal 1579 13 2 1590 99.37 99.87 0.82 99.18 0.13 99.19 99.87 99.18 99.53
Epileptic 1 1591 2 1590 49.97 99.87 99.94 0.06 0.13 49.94 99.87 0.06 49.97

E
Healthy 2 1590 9 1583 49.78 99.43 99.87 0.13 0.57 49.89 99.43 0.13 49.78

Inter-ictal 2 1590 1 1591 50.03 99.94 99.87 0.13 0.06 50.06 99.94 0.13 50.04
Epileptic 1588 4 2 1590 99.81 99.87 0.25 99.75 0.13 99.75 99.87 99.75 99.81
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Table 8. Cont.

Cases Set Class a b c d AC TP FP TN FN P SEN SPE CA

IV

A

Healthy-A 1423 169 7 1585 94.47 99.56 0.11 99.89 0.44 90.36 99.56 99.89 99.73
Healthy-B 149 1443 2 1590 54.62 99.87 90.64 9.36 0.13 52.42 99.87 9.36 54.62

Inter-ictal-C 3 1589 10 1582 49.78 99.37 99.81 0.19 0.63 49.89 99.37 0.19 49.78
Inter-ictal-D 15 1577 8 1584 50.22 99.50 99.06 0.94 0.50 50.11 99.50 0.94 50.22
Epileptic-E 2 1590 1 1591 50.03 99.94 99.87 0.13 0.06 50.06 99.94 0.13 50.04

B

Healthy-A 186 1406 149 1443 51.16 90.64 88.32 11.68 9.36 50.65 90.64 11.68 51.16
Healthy-B 1389 203 7 1585 93.41 99.56 12.75 87.25 0.44 88.65 99.56 87.25 93.41

Inter-ictal-C 6 1586 5 1587 50.03 99.69 99.62 0.38 0.31 50.02 99.69 0.38 50.04
Inter-ictal-D 9 1583 3 1589 50.19 99.81 99.43 0.57 0.19 50.09 99.81 0.57 50.19
Epileptic-E 2 1590 4 1588 49.94 99.75 99.87 0.13 0.25 49.97 99.75 0.13 49.94

C

Healthy-A 10 1582 3 1589 50.22 99.81 99.37 0.63 0.19 50.11 99.81 0.63 50.22
Healthy-B 5 1587 6 1586 49.97 99.62 99.69 0.31 0.38 49.98 99.62 0.31 49.97

Inter-ictal-C 1567 25 7 1585 98.99 99.56 1.57 98.43 0.44 98.45 99.56 98.43 99.03
Inter-ictal-D 9 1583 1 1591 50.25 99.94 99.43 0.57 0.06 50.13 99.94 0.57 50.26
Epileptic-E 1 1591 1 1591 50.00 99.94 99.94 0.06 0.06 50.00 99.94 0.06 50.00

D

Healthy-A 8 1584 15 1577 49.78 99.06 99.50 0.50 0.94 49.89 99.06 0.50 49.78
Healthy-B 3 1589 9 1583 49.81 99.43 99.81 0.19 0.57 49.91 99.43 0.19 49.81

Inter-ictal-C 1 1591 9 1583 49.75 99.43 99.94 0.06 0.57 49.87 99.43 0.06 49.75
Inter-ictal-D 1579 13 7 1585 99.37 99.56 0.82 99.18 0.44 99.19 99.56 99.18 99.37
Epileptic-E 1 1591 1 1591 50.00 99.94 99.94 0.06 0.06 50.00 99.94 0.06 50.00

E

Healthy-A 1 1591 2 1590 49.97 99.87 99.94 0.06 0.13 49.98 99.87 0.06 49.97
Healthy-B 4 1588 2 1590 50.06 99.87 99.75 0.25 0.13 50.03 99.87 0.25 50.06

Inter-ictal-C 1 1591 1 1591 50.00 99.94 99.94 0.06 0.06 50.00 99.94 0.06 50.00
Inter-ictal-D 1 1591 1 1591 50.00 99.94 99.94 0.06 0.06 50.00 99.94 0.06 50.00
Epileptic-E 1585 7 1 1591 99.75 99.94 0.44 99.56 0.06 99.56 99.94 99.56 99.75
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4.6. Comparison with Related State-of-the-Art Work

A comparison between this automatic epileptic seizure detection method and the existing
state-of-the-art works from 2014 to 2017 is provided in Table 9. The previously reported
methods [8,9,11,16,26] were tested with the identified EEG segment, thus making the comparison
more feasible and providing additional perspective. All the recognition results for these
methods [8,9,11,16,26] were copied from their reports. The recognition results of this method include
the averages of the five classifiers by setting the TTTR to 7:3.

Table 9. The comparison between this method and other methods using the same database.

Year Authors Methods Tasks Aver.

2014 Y. Kumar et al. [14]
Discrete wavelet transform (DWT) A-E, B-E, C-E, 100.0, 100.0, 99.60,

Fuzzy approximate entropy (fApEn) D-E, ACD-E, 95.85, 98.15,
Support vector machines (SVMs) BCD-E, ABCD-E 98.22, 97.38

2015 K. Samiee et al. [7] rational functions (RFs) A-E, B-E, C-E, 99.80, 99.30, 98.50,
D-E, A, B, C, D-E 94.90, 98.10

2016 D. Li et al. [11]
Discrete Wavelet Transforms (DWT) A-E, B-E, C-E, 99.97, 99.92, 99.82,
Phase Space Reconstruction (PSR) D-E, ABCD-E, 99.76, 99.38,

Singular values of covariance matrix AB-CDE, CD-E 99.53, 98.89

2017

T. Zhang et al. [22] local mean decomposition (LMD) A-E, D-E, ABCD-E, 100.0, 98.10, 98.87,
BPNN, KNN, LDA, SVM, etc. A-D-E, AB-CD-E 98.47, 98.40

M. Mursalin et al. [26]

Discrete Wavelet transformation (DWT) A-E, B-E, C-E, 100.0, 98.00, 99.00,
Correlation-based Feature Selection (CFS) D-E, ACD-E, 98.50, 98.50,

Improved Correlation-based Feature BCD-E, CD-E, 97.50, 98.67,
Random Forest (RF) ABCD-E 97.40

2018 This paper

The novel hypothesis A-E, B-E, C-E, 100.0, 100.0, 99.86,
LMD, MFCC D-E, ABCD-E, 99.78, 99.46,

BPNN, KNN, LDA AB-CD-E, CD-E, 97.85, 99.83,
SVM, DT A-B-C-D-E 97.43

Taking dataset A versus dataset E and dataset B versus dataset E as two examples, the maximum
recognition accuracy of the presented method was as high as 100%, whereas some others also produced
results as high as 100%. From Table 9, the recognition accuracy obtained in classifying healthy and
seizure classes (dataset A versus dataset E and dataset B versus dataset E) was as high as 100%.
The seizure-free and seizure classes (dataset C versus dataset E and dataset D versus dataset E)
obtained by this proposed method was at least as high as 99.83%, but the existing methods could only
reach a maximum accuracy of 99.82%.

When considering all five of the EEG datasets, the classification task problems were datasets
A, B, C, and D, versus dataset E; datasets A and B versus dataset C and dataset D versus dataset
E; and dataset A versus dataset B versus dataset C versus dataset D versus dataset E. Fortunately,
this proposed method can be utilized to achieve high accuracies, of 99.46%, 97.85%, and 97.43%,
respectively, and the other methods were not as accurate.

5. Conclusions and Future Works

The goal of this paper was to attempt to solve the nonlinear and non-stationary problems of
analyzing EEG signals to achieve recognition of healthy, epileptic seizure-free, and epileptic seizure
patients. For this reason, an automated epileptic seizure detection method was constructed. The idea
was sourced from a novel and reasonable hypothesis that mimics the generation mechanism of EEG
signals to some sense.

From the novel hypothesis, the characteristics of EEG signals depended on the construction of
the brain cells and these EEG signals involved the macroscopic performance of a large number of
neurons. This means that the EEG signals should be first decomposed into several subcomponents that
describe the different states of brain, from low frequency to high frequency, which can be employed to
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demonstrate the active or non-active areas of neurons. A local mean decomposition algorithm was
able to attain this goal, and can be considered as the solution to the non-stationary problem.

The problem then becomes how to separate these subcomponents from active or non-active
areas of neurons into the feature vectors, which can be used to achieve EEG segment recognition.
The Mel-frequency cepstrum coefficient (MFCC) was used to achieve the deconvolution calculation to
separate these various subcomponents, and can be considered as the solution to the nonlinear problem.

In future works, the suitable length of the window overlap to build a new EEG segment should
be studied by determining the impacts of the length of the signal acquisition changes on the amount
of information. Secondly, we hope to evaluate our proposed method for automatically analyzing
long recording EEG signals. Thirdly, we will apply this method to solving the problem of classifying
multichannel sleep EEG signals and the recognition of different individual behaviors using EEG signals.

Furthermore, ultrasound and optoacoustics, applied in epileptic seizure detection, can be
considered as the recent advances in this field, which have been reported in mainstream
journals [17–24]. Therefore, these two methods will be the research areas that require most of our
attention and practical action.
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