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Abstract: Dynamic Mode Decomposition (DMD) is a data-driven method to analyze the dynamics,
first applied to fluid dynamics. It extracts modes and their corresponding eigenvalues, where the
modes are spatial fields that identify coherent structures in the flow and the eigenvalues describe the
temporal growth/decay rates and oscillation frequencies for each mode. The recently introduced
compressed sensing DMD (csDMD) reduces computation times and also has the ability to deal
with sub-sampled datasets. In this paper, we present a similar technique based on discrete cosine
transform to reconstruct the fully-sampled dataset (as opposed to DMD modes as in csDMD) from
sub-sampled noisy and gappy data using l1 minimization. The proposed method was benchmarked
against csDMD in terms of denoising and gap-filling using three datasets. The first was the 2-D
time-resolved plot of a double gyre oscillator which has about nine oscillatory modes. The second
dataset was derived from a Duffing oscillator. This dataset has several modes associated with complex
eigenvalues which makes them oscillatory. The third dataset was taken from the 2-D simulation of
a wake behind a cylinder at Re = 100 and was used for investigating the effect of changing various
parameters on reconstruction error. The Duffing and 2-D wake datasets were tested in presence
of noise and rectangular gaps. While the performance for the double-gyre dataset is comparable
to csDMD, the proposed method performs substantially better (lower reconstruction error) for the
dataset derived from the Duffing equation and also, the 2-D wake dataset according to the defined
reconstruction error metrics.

Keywords: dynamic mode decomposition; gappy data reconstruction; denoising; compressed sensing

1. Introduction

Dynamic Mode Decomposition (DMD) is a concept that was first introduced by Schmid and
Sesterhenn to study the spatial dynamic modes of fluid flow [1,2]. DMD approximates the nonlinear
dynamics underlying a given time-varying dataset in terms of a linear auto-regressive model by
extracting a set of mode shapes and their corresponding eigenvalues, where the mode shapes represent
the spatial spread of dominant features and the eigenvalue associated with each mode shape specifies
how that feature evolves over time in terms of the frequency of oscillation and the rate of growth
or decay. Rowley et al. envisioned DMD as an approximation to the modes of Koopman operator,
which is an infinite-dimensional linear representation of nonlinear finite-dimensional dynamics [3,4].
Even though DMD was initially meant to be used for extracting dynamic information from flow
fields [2], soon it found new applications in other areas of study as a powerful tool for analyzing
the dynamics of nonlinear systems. Kutz et al. [5] expanded the theory of DMD to handle mapping
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between paired datasets. Jovanovic et al. proposed the sparsity-promoting DMD (spDMD) to obtain a
sparse representation of the system dynamics by limiting the number of dynamic modes through an
l1-regularization approach [6]. In 2015, the extended DMD (EDMD) was introduced by Williams et al.
to approximate the leading eigenvalues, eigenfunctions, and modes of the Koopman operator [7].
The EDMD is a computationally intensive algorithm since it requires the choice of a rich dictionary of
basis functions to produce an approximation of the Koopman eigenfunctions. The richer the dictionary
is, the more time it takes to compute the inner products which are a key part of EDMD algorithm. In an
attempt to overcome this issue, Williams et al. proposed the kernel-based DMD (KDMD) in 2015 [8].
In this approach, rather than choosing the dictionary of the basis functions explicitly, they are defined
implicitly by the choice of a kernel function. The kernel function resolves the computational intensity
issue of EDMD by finding the inner products of the basis functions without the need to having them
defined explicitly.

An initial attempt for incorporating compressed sensing in DMD was made by Guéniat et al. [9],
where a subset of an originally-large dataset was taken by non-uniform sampling and was used for
finding the temporal coefficients (eigenvalues) through solving an optimization problem. Further,
the corresponding modes were found by solving a set of linear equations which involved the
fully-sampled dataset. This makes the proposed algorithm (known as NU-DMD) impractical in the
case the fully-sampled dataset is not available. Another approach for incorporating compressed
sensing in DMD (known as csDMD) was developed by Kutz et al. [10]. In csDMD, the DMD
eigenvalues are obtained from a sub-sampled dataset (similar to NU-DMD), which has the advantage
of reducing computation time, and then the full DMD mode shapes are reconstructed through using
an l1-minimization scheme based on a chosen set of basis vectors. In contrast to NU-DMD, csDMD
does not need the fully-sampled dataset in order to recover the mode shapes.

One of the initial attempts to deal with the issues involved in recovering a dataset from gappy data
is presented in [11]. The proposed method relies on the presence of a set of empirical eigenfunctions,
which represent an ensemble of similar datasets, and hence, the fully-sampled dataset is reconstructed
based on these empirical eigenfunctions. In the case there is no such set available, they described
a technique to build one from an ensemble of marred samples. In the case of marred samples, it is
assumed there are several marred samples taken from each face, each one taken with a different mask.
In addition, it is implicitly assumed that for each pixel there is at least one sample available. If there is a
pixel which is not included in any marred sample, this method cannot recover it. Another well-known
method for gappy data reconstruction is the Gappy Proper Orthogonal Decomposition (POD)
method [12,13], which was proposed as an extension to POD considering the incomplete datasets. POD
captures most of the phenomena in a large amount of a high-dimensional dataset while representing it
in a low-dimensional space which causes a significant reduction in required computational power [14].
This technique has been used in various problems such as fluid dynamics [14], active control [15],
and image reconstruction [16,17], to name a few. The original POD uses the fully-sampled dataset
in order to reconstruct the POD basis functions. Even though Gappy POD aims at reconstructing
gappy datasets, it, in fact, relies on the presence of a set of completely-known standard POD basis
vectors which we believe makes the whole method inapplicable when there is no such set available.
Also, a POD-based method for denoising and spatial resolution enhancement of 4D Flow MRI datasets
is proposed by Fathi et al. [18]. This method uses a set of POD basis vectors as the reconstruction
basis where the set of POD basis vectors is derived from the results of a computational fluid dynamics
(CFD) simulation. Even though this method was shown to outperform the competing state-of-the-art
denoising methods, the fact that it is specifically developed for noisy 4D Flow MRI datasets makes it
impractical for the datasets resulting from other types of dynamic systems. None of these methods
take into consideration the dynamics of a given dataset.

In the work presented here, an approach similar to csDMD was taken. With csDMD, the aim is to
reconstruct the DMD mode shapes based on some given set of basis vectors, whereas, in our approach,
called DMDct hereafter, given the DMD eigenvalues obtained from the sub-sampled dataset, the full
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dataset is reconstructed through an l1-minimization scheme. Similar to csDMD, DMDct relies on the
proper choice of the underlying basis functions. In this paper, we specifically focus on 2-D problems
defined over a rectangular grid of equally-spaced nodes. By considering this specific geometry, we can
take the one-dimensional discrete cosine transform (DCT) basis vectors and use them for building the
two-dimensional basis vectors implicitly, hence requiring less memory.

2. Method

The DMDct method is derived for real-valued two-dimensional problems defined over a
rectangular mesh of equally-spaced nodes as depicted in Figure 1. For each snapshot, only a subset
of its elements is observed which is obtained by applying a pre-defined random sampling mask.
The mask is defined as a set of pairs of (i, i′) indices, shown as M, for which the samples are taken.
All observed elements of each snapshot Sk are vectorized and represented as a real-valued data vector
sk of length Ns, where Ns is the number of sampling points. The data vectors sk are taken as the
input to the DMDct algorithm. First, the Ns × m matrix Zs = [s0 . . . sm−1] is constructed and the
exact DMD method is applied to that to obtain DMD eigenvalues λ (Section 2.1). Then, the spatial
component of DMD is reconstructed based on the DCT basis vectors by taking random samples from
the fully-sampled dataset while maintaining the sparsity of reconstruction coefficient matrices through
an l1-regularization scheme (Section 2.2). Finally, each snapshot is reconstructed in full using the
calculated reconstruction coefficient matrices and the DCT basis vectors.

S0

...

s0

S1

...

s1

S2

...

s2

Sm−1

...

sm−1

. . .

. . .

ny

nx

m snapshots

Zs =

Ns ×m

Figure 1. Schematic representation of the designated structure of the input data of DMDct algorithm
where each snapshot Sk is an ny × nx matrix of real values. The randomly-sampled points of each
snapshot (colored in gray) are vectorized and represented as a real-valued data vector sk of length Ns,
where Ns is the number of sampling points. The sampling mask remains the same for all snapshots.

2.1. Exact DMD

The Exact DMD method [5] is briefly introduced here since DMDct relies on that for finding the
eigenvalues and reconstructing the data. Given a sequential set of m data vectors zk shown as an
N ×m matrix Z = [z0 . . . zm−1], the exact DMD method gives us the set of r DMD modes φj and their
corresponding eigenvalues λj (Algorithm 1). The DMD modes and eigenvalues together describe
how each vector zk−1 evolves in time and results in the vector zk. By showing all DMD modes as
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the N × r matrix Φ = [φ1 . . . φr] and the corresponding eigenvalues as the r × r diagonal matrix
Λ = diag(λ1 . . . λr), exact DMD lets us reconstruct the k-th vector as

z̃k = ΦΛΦ†zk−1 (1)

where z̃k is the reconstruction of the vector zk and Φ† is the pseudo-inverse of Φ. When the DMD
modes are independent, the pseudo-inverse of Φ is given as Φ† = (Φ∗Φ)−1 Φ∗ where ∗ denotes the
conjugate transpose. In such case, each vector zk can be reconstructed based on the first vector (z0) as

z̃k = ΦΛkΦ†z0 (2)

By showing all reconstructed vectors as the matrix Z̃ = [z̃0 . . . z̃m], it can be shown that

Z̃ = ΦDV, D , diag(Φ†z0) (3)

where V is the r×m pseudo-Vandermonde matrix of the eigenvalues defined as

V =

 1 λ1 λ2
1 . . . λm−1

1
...

...
...

. . .
...

1 λr λ2
r . . . λm−1

r


r×m

(4)

Algorithm 1. The overall procedure of Exact DMD algorithm.
Data:
• Z = [z0 . . . zm−1]: the N ×m matrix of sequential data vectors
• r: the number of modes to pick
Result:
• Φ: the matrix of DMD modes
• λ: the vector of DMD eigenvalues

1 Find the SVD of X = [z0 . . . zm−2] such that X = UΣV∗;
2 Truncate U to the first r columns;
3 Truncate Σ to the upper-left r× r matrix;
4 Truncate V∗ to the first r rows;
5 Define Ã , U∗YVΣ−1 where Y = [z1 . . . zm−1];
6 Find the eigenvalues λ and eigenvectors W of Ã, i.e., ÃW = W diag(λ);
7 Compute the DMD modes Φ , YVΣ−1W;
8 return Φ, λ

2.2. Formulation of DMDct

In DMD reconstruction, given as Equation (3), we know the matrix product ΦD as the spatial
component while the matrix V represents the temporal evolution of the spatial component. Let us
assume there is a set of basis vectors ul represented as an N × s matrix U = [u1 . . . us] based on which
the matrix product ΦD can be approximated as

ΦD ≈ UC (5)

where C is the s× r matrix of the unknown complex coefficients. In many cases, the N-dimensional data
vectors zk and the basis vectors ul are real-valued. Based on this assumption and the approximation
given above, the reconstructed real-valued data matrix Ẑ is defined as

Ẑ , < (UCV) = U< (CV) (6)
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→ ẑk = U
r

∑
j=1

(
αjkaj − β jkbj

)
(7)

where aj and bj are the respective real and imaginary parts of the j-th column of C and λk
j = αjk + iβ jk.

For the class of two dimensional problems addressed here, each snapshot Sk is an ny × nx matrix of
real values for which Equation (7) may be rewritten as

Ŝk = Uy

(
Ux

r

∑
j=1

(
αjkAT

j − β jkBT
j

))T

(8)

where Ŝk is the real-valued reconstruction of k-th snapshot, Uy is the ny × sy matrix of the basis vectors
along the columns of Sk, Ux is the nx × sx matrix of the basis vectors along the rows of Sk, and Aj
and Bj are the sy × sx matrices of unknown coefficients corresponding to the j-th dynamic mode. The
columns of Ux and Uy are the basis vectors. For the special case of DCT basis vectors, Equation (8)
may be rephrased as

Ŝk = D−1
y

D−1
x

(
r

∑
j=1

(
αjkAT

j − β jkBT
j

))T
 (9)

where the operator Dx and its inverse D−1
x are defined as

Dx (X) , UT
x X, D−1

x (X) , UxX (10)

The forward and inverse operators Dx and D−1
x , respectively, apply the forward and inverse DCT

transforms of length sx to the columns of their arguments. The forward and inverse operators Dy

and D−1
y are defined similarly. Most numerical analysis packages provide forward and inverse DCT

transforms as built-in functions hence eliminating the need to define the matrices Ux and Uy explicitly.
Given the sampling mask M, the reconstruction error of the k-th snapshot is defined as

Ek =
[
e(k)ii′

]
ny×nx

, e(k)ii′ =

{
ŝ(k)ii′ − s(k)ii′ , (i, i′) ∈ M
0 , (i, i′) /∈ M

(11)

Ek , ‖Ek‖2
F = ∑

∀(i,i′)∈M

(
ŝ(k)ii′ − s(k)ii′k

)2
(12)

where ⊗ is the element-wise product of two matrices and ŝ(k)ii′ and s(k)ii′ are the respective (i, i′)
elements of the matrices Ŝk and Sk. The unknown matrices Aj and Bj are found by solving the
l1-regularization problem

argmin
Aj ,Bj

(
E + β

r

∑
j=1

(∥∥Aj
∥∥

1 +
∥∥Bj
∥∥

1

))
, E ,

1
2

m−1

∑
k=0

Ek (13)

Some l1-regularization methods rely on derivatives of E with respect to the unknown matrices Aj
and Bj. The derivatives are given as

∂E
∂Aj

= Dy

(
Dx

(
FT

j

)T
)

, Fj =
[

f (j)
ii′

]
ny×nx

, f (j)
ii′ =

m−1

∑
k=0

e(k)ii′ αjk (14)

∂E
∂Bj

= Dy

(
Dx

(
GT

j

)T
)

, Gj =
[

g(j)
ii′

]
ny×nx

, g(j)
ii′ =

m−1

∑
k=0

e(k)ii′ β jk (15)

The implementation steps of DMDct are listed as Algorithm 2.
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Algorithm 2. The implementation steps of DMDct.
Data:
• sk: the m randomly-sampled real-valued data vectors of length Ns (see Figure 1)
• M: the sampling mask (set of Ns pairs of indices (i, i′) for which the samples are taken)
• r: the number of modes to pick
• sx, sy: the respective lengths of DCT transforms along the rows and columns of each
snapshot
• β: l1-regularization parameter
• Aj, Bj (1 ≤ j ≤ r): initial values of the sy × sx unknown matrices of coefficients (optional,
can be zero)
Result:
• Ŝk (0 ≤ k < m): the m reconstructed snapshots

1 Form the sampled data matrix Zs = [s0 . . . sm−1];
2 Apply Exact DMD to the matrix Zs to get the vector of DMD eigenvalues λ( see Algorithm 1);
3 Initialize the unknown matrices Aj, Bj (1 ≤ j ≤ r);
4 repeat
5 E← 0;
6 for k = 0 to m− 1 do
7 T← 0;
8 for j = 1 to r do

9 αjk ← <
(

λk
j

)
, β jk ← =

(
λk

j

)
;

10 T← T + αjkAj − β jkBj;
11 end

12 Ŝk ← D−1
y

(
D−1

x

(
TT
)T
)

;

13 ŝk ← vectorized sample of Ŝk according to the sampling mask M;
14 sk ← vectorized sample of Sk according to the sampling mask M;
15 E← E + 1

2 ‖ŝk − sk‖2
2;

16 end
17 if convergence not achieved then
18 for j = 1 to r do
19 Update Aj and Bj according to the chosen l1-regularization method (use Equations

(14) and (15) to find the Jacobians ∂E
∂Aj

and ∂E
∂Bj

if needed);

20 end
21 end
22 until convergence achieved;
23 return all Ŝk (0 ≤ k < m)

3. Results

To compare DMDct against csDMD as well as show its effectiveness in dynamic denoising and
reconstruction, three tests were performed. For each case, both csDMD and DMDct were tried with
several levels of sparsity and then, the best results were picked for comparison. The root mean square
error (RMSE) defined below was used as the comparison metric for all noise-free cases

RMSE ,
1√
n

∥∥∥Zrec − Zre f

∥∥∥
F

(16)

where Zrec is the reconstructed dataset, Zre f is the reference dataset, and n is the total number of
elements of the dataset. A lower RMSE value represents a better reconstruction. For the noisy cases,
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the peak value to noise ratio (PVNR), inspired by PVNR defined in [19] and as defined below was
used as the comparison metric

PVNR , 20 log10

max
∣∣∣Zre f

∣∣∣
RMSE

(dB) (17)

A higher PVNR value represents a less-noisy reconstruction.
The original implementation of csDMD was partly based on the method of compressive

sampling matching pursuit (CoSaMP) [20]. We used the Orthant-Wise Limited-memory Quasi-Newton
(OWL-QN) algorithm [21] to solve the l1-regularization problem; thus, to ensure all the differences
between the results of the two methods are due to the methods themselves and not the l1-regularization
algorithms, the csDMD was re-implemented by using OWL-QN rather than CoSaMP.

3.1. DMD Mode-Shapes Reconstruction

As the first test, the vorticity of the double-gyre flow (as represented in [10]) was taken and used.
The vorticity w is given as

w =
∂v
∂x
− ∂u

∂y
=πA cos (π f (x, t)) sin (πy)

∂2 f
∂x2 − π2 A sin (π f (x, t)) sin (πy)

(
∂ f
∂x

)2

− π2 A sin (π f (x, t)) sin (πy)
(18)

where A = 0.1, ω = 2π
10 , ε = 0.25, and

f (x, t) = ε sin (ωt) x2 + x− 2ε sin (ωt) x (19)

The equation was evaluated over the bounded region [0, 2]× [0, 1] for 10 s with time intervals of
0.05 s which resulted in 201 snapshots. The region was discretized as a 512× 256 mesh. The number of
sampling points was 2500 and they were randomly spread over the region. The same sampling mask
was used for both methods. Due to the very few numbers of nonzero Fourier coefficients, only 10 DCT
basis vectors along each spatial direction were used (sx = sy = 10). The csDMD method directly
resulted in the reconstruction of DMD mode shapes whereas DMDct resulted in the reconstruction
of the fully-sampled dataset. After the fully-sampled dataset was reconstructed by DMDct, the exact
DMD method was applied to get the DMD mode shapes which were further used for comparison.

All DMDs were performed with nine modes. Since the complex eigenvalues come in pairs of
conjugate numbers, only those having non-negative imaginary parts are represented here. Note that,
similar to an eigenvector, a mode shape may be multiplied by any non-zero scalar without making a
difference. Thus, to compare the mode shapes, they should be aligned with each other prior to making
any comparison. Given φi and ψi are the vectorized mode shapes corresponding to the i-th eigenvalue
resulted from DMD and csDMD, respectively, the complex scalar ci that results in the best alignment
of the vector ψi with the vector φi is found by solving the following minimization problem

ci = argmin
c
‖φi − cψi‖2

2 =
φT

i ψ̄i

ψT
i ψ̄i

(20)

Similarly, for the vectorized mode shape θi resulted from DMDct, the alignment factor di is
found as

di = argmin
d
‖φi − dθi‖2

2 =
φT

i θ̄i

θT
i θ̄i

(21)

Thus, the comparison was made between the vectors φi and the corresponding aligned vectors
ciψi and diθi.
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Figure 2 shows the real parts of the mode shapes of the first five DMD modes related to
the eigenvalues with non-negative imaginary parts and the reconstruction of their mode shapes.
The top row shows the mode shapes obtained by applying exact DMD on the fully-sampled dataset,
whereas the second and third rows show the aligned csDMD and DMDct reconstructions, respectively.
Each column is titled with the corresponding eigenvalue. Both csDMD and DMDct resulted in the
reconstruction of the mode shapes with correlation coefficients of approximately 1 which means the
reconstructed mode shapes almost identically resembled the references.

Ex
ac
t D

M
D

1.000+0.000j

cs
DM

D

R = 0.999

DM
Dc

t

R = 0.999

1.000+0.031j

R = 0.998

R = 0.998

0.998+0.063j

R = 0.998

R = 0.998

0.996+0.094j

R = 0.999

R = 0.999

0.992+0.125j

-0.005

0

0.005

R = 1.000

-0.005

0

0.005

R = 1.000

-0.005

0

0.005

Figure 2. The real parts of the mode shapes of the first five DMD modes corresponding to the
eigenvalues with non-negative imaginary parts for the double-gyre dataset. The top row shows the
mode shapes obtained by applying exact DMD on the fully-sampled dataset. The second and third rows
show the aligned csDMD and DMDct reconstructions, respectively. The corresponding eigenvalues are
represented above the columns. The Pearson correlation coefficients between the aligned reconstructed
mode shapes and those of exact DMD are shown as well.

Five sample snapshots of the fully-sampled dataset reconstruction are shown in Figure 3.
Both methods resulted in reconstruction RMSE of 0.002. The top row of Figure 3 shows the
reference snapshots. The samples are shown in the second row. The third and fourth rows show the
reconstruction of csDMD and DMDct, respectively.

Re
f.

#0 #50 #100 #150 #200

-2.8

0

2.8

Sa
m
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ed

-2.8

0

2.8

cs
DM

D

-2.8

0

2.8

DM
Dc

t

-2.8

0

2.8

Figure 3. Five sample snapshots of the fully-sampled dataset reconstruction for the double-gyre
dataset. The top row shows the reference snapshots titled with the snapshot numbers. The second
row shows the random samples taken. The third and the fourth rows show csDMD and DMDct
reconstructions, respectively.

3.2. Dynamic Denoising and Reconstruction

As the second test, the unforced Duffing equation taken from [7] was used to generate the test
dataset. The governing differential equation is

ẍ = −δẋ− x(γ + αx2) (22)
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where δ = 0.5, γ = −1, and α = 1. The equation was solved over the region x, ẋ ∈ [−2, 2], which
was discretized as a 41× 41 mesh. For each node of the mesh, the corresponding values of x and ẋ
were taken as the initial conditions and the ODE was solved for 5 s during which the snapshots were
taken every 0.1 s resulting in a total of 51 snapshots. Even though the numerical solution resulted in
both x and ẋ values, only x values were taken and used as the test dataset. Figure 4 shows six sample
snapshots of the reference dataset.

#0 #10 #20

#30 #40 #50 -3.3

0

3.3

-3.3

0

3.3

(a)

0 10 20 30 40 50
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Am
pl
itu

de
(b)

Figure 4. The reference Duffing dataset. (a) Six sample snapshots are shown. All 51 snapshots
were used in calculations. (b) The amplitudes of the dynamic mode shapes are shown. Since the
complex eigenvalues come in pairs of conjugate numbers, only those with non-negative imaginary
parts are presented.

Two cases are presented here for comparison. The first case does not have a gap, whereas the
second case has a rectangular gap. Both cases were evaluated with noise-free and noisy samples. In all
cases, 20% of the available data of each snapshot were taken as the measurement samples and were
used for reconstruction. For each case, twenty different random sampling masks were tested. For each
mask, the sampling locations remained the same over all snapshots.

The noisy cases were to study the effect of measurement noise and to see how well the two
methods could denoise the data. To make the noisy dataset, random Gaussian noise with the
standard deviation of 0.25 was added to the reference dataset. The PVNR metric was calculated
only for the noisy reconstructions. The same set of basis vectors was used by both methods. For the
noise-free samples, the maximum number of basis vectors were used (sx = sy = 41), whereas, for the
noisy samples, a reduced set of basis vectors was incorporated (sx = sy = 20), hence dropping the
high-frequency components from reconstruction. The eigenvalues derived by csDMD were used for
DMDct reconstruction as well. The number of DMD modes to use was found through the method of
singular value hard thresholding (SVHT) [22]. According to SVHT, the number of DMD modes for
the noise-free and noisy samples was taken as 25 and 5, respectively. Figure 4b shows the amplitudes
of the dynamic mode shapes of the reference Duffing dataset. In the figures depicting the snapshots,
the first (#0), the middle (#25), and the last (#50) snapshots of the first sampling mask are presented
for comparison.

The csDMD method aims at reconstructing the mode shapes and not the fully-sampled dataset.
Since no fully-sampled snapshot is available, it is not possible to reconstruct the whole dataset solely
based on Exact DMD framework by simply marching forward/backward in time using Equation (2).
One possible workaround is to find the optimal amplitudes of DMD modes by minimizing the RMS of
reconstruction error as proposed in [6] which leads to

bopt =
(
(Φ∗s Φs)⊗

(
VV∗

))−1
diag(VZ∗Φs) (23)
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where Φs is the matrix of mode shapes as reconstructed by csDMD but only the rows corresponding to
the sampled points are kept. Then, the fully-sampled dataset can be reconstructed in full as

Z̃cs = Φ diag(bopt)V (24)

Equation (24) was used for csDMD reconstruction.

3.3. No-Gap Reconstruction

In this case, the reference dataset without any gap was reconstructed by using the two methods.
Figure 5a,b, respectively, shows the sample snapshots of the noise-free and noisy reconstructions
for the first sampling mask. The noisy dataset had the total PVNR of 19.0 dB and RMSE of 0.250,
as depicted in the top row of Figure 5b. In Figure 5a, the top row shows the reference and the second
row shows the sampling mask. The third row shows the sample noise-free snapshots as reconstructed
by csDMD method resulting in an RMSE value of 0.291. The bottom row shows the same snapshots as
reconstructed by DMDct method. The RMSE value of DMDct reconstruction is 0.130. In Figure 5b,
the third row shows the results obtained from csDMD method by using the noisy samples. This
resulted in an RMSE value of 0.182 and PVNR of 21.8 dB. The bottom row shows the results of DMDct
reconstruction which resulted in an RMSE value of 0.119 and PVNR of 25.5 dB.
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Figure 5. Results of Duffing dataset reconstruction using the first random sampling mask with both
DMDct and csDMD. The snapshot numbers are shown at the top of each column. The error metrics
are listed in Table 1. (a) The noise-free case without gap. (b) The noisy case without gap. (c) The
noise-free case with the rectangular gap (the white hollow). (d) The noisy case with the rectangular
gap (the white hollow).

3.4. Rectangular Gap Reconstruction

For the second case, a rectangular gap was made in the dataset, as shown in the top rows of
Figure 5c,d. The size of the gap was 30× 10 with the bottom-left and top-right corners at (−1.5, 0) and
(1.5, 1), respectively. The gap covers almost 18% of the area of the region. The first row of Figure 5a
shows the reference without the gap, which is what both methods were aimed at recovering by filling
the gap. The second row shows the noise-free and noisy samples taken by using the first random
sampling mask. The third row shows the reconstruction of csDMD method with corresponding RMSE
values of 0.334 for the noise-free samples and 0.181 for the noisy samples. The bottom row shows
the reconstruction of DMDct method, where the RMSE values were found as 0.154 and 0.138 for the
noise-free and noisy samples, respectively. The respective PVNR values of csDMD and DMDct for the
noisy case were 21.8 dB and 24.2 dB. A summary of the error metrics of reconstruction based on the
first random sampling mask is presented in Table 1 for comparison.
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Table 1. The summary of the error metrics for the first random sampling mask. The numbers given
are RMSE values with the PVNR values in dB shown inside parenthesis when applicable. In all cases
studied, DMDct resulted in lower reconstruction error than csDMD.

Type of Gap Region
Noise-Free Noisy

csDMD DMDct Dataset csDMD DMDct

None whole 0.291 0.130 0.250 0.182 0.119
(19.0 dB) (21.8 dB) (25.5 dB)

Rectangular

inside 0.408 0.199 - 0.231 0.185
outside 0.316 0.142 - 0.168 0.126

whole 0.334 0.154 0.250 0.181 0.138
(19.1 dB) (21.8 dB) (24.2 dB)

3.5. Statistical Analysis

Three-factor analysis of variance was conducted to determine whether the reconstruction error
significantly changed with the three factors method, noise, gap, and their interaction. The RMSE was
taken as the error metric and the significance level of 0.05 was used. Tukey post hoc analysis was
used for desired pairwise comparisons of significant factors. In all four cases, the two methods were
found to result in significantly different reconstruction errors (Tukey post hoc test, p < 0.001) with
the DMDct method having lower error. The effect of noise on DMDct was insignificant (p = 0.797),
whereas the error of csDMD for noisy cases was significantly lower than its error for the noise-free
cases (p < 0.001). Both methods resulted in significantly higher errors for the gappy cases (p < 0.001).
Figure 6 shows the mean RMSE values of DMDct and csDMD for the four test cases studied with the
error bars showing the standard deviations.

Figure 6. The mean RMSE values of the two methods for the four test cases of the Duffing dataset.
Each test case consisted of twenty different random sampling masks. The error bars show the standard
deviations. A three-factor analysis of variance was conducted to determine whether the reconstruction
error significantly changed with the three factors method, noise, gap, and their interaction. Tukey post
hoc analysis showed the reconstruction error of DMDct was significantly lower than the error of csDMD
in all cases (all p < 0.001).

3.6. Variation of Parameters

As the third test, a dataset representing the 2-D velocity field for the wake behind a cylinder
at Reynolds number Re = 100 taken from [23] was used. The size of the mesh grid is 449 × 199.
The dataset consists of 151 snapshots with regular time intervals of 0.2 s. Random Gaussian noise
with a known standard deviation was added to both components. Two rectangular gaps were made
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in the dataset. The size of the first gap was 60× 70 with the bottom-left and top-right corners at
(270, 115) and (329, 184), respectively. The size of the second gap was 46× 46 with the bottom-left
corner at (97, 44) and the top-right corner at (142, 89). The aim of this test was to investigate the effect
of changing various parameters on the quality of reconstruction. The parameters are noise standard
deviation, sampling ratio, number of basis vectors, and number of dynamic modes. The nominal values
of the parameters were chosen as noise standard deviation of 0.25, 2% sampling, sx = 67, sy = 30,
and five dynamic modes (according to SVHT). Although both u and v velocity components were used
for analysis, only the results corresponding to the u component are presented here. Figure 7 shows
four sample snapshots of the reference noise-free u velocity components, the reference with noise
added, the random sample, reconstructions of csDMD and DMDct, and reconstruction errors for the
nominal values of the parameters.
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Figure 7. Four sample snapshots of reconstructing the noisy u velocity component of the wake behind
a cylinder at Reynolds number Re = 100. The circular hollow represents the cylinder. The top row
shows the noise-free reference u velocity component. The second row shows the reference with
random Gaussian noise having standard deviation of 0.25 added. The two rectangular gaps are seen
as two white rectangular hollows. The third row shows the random samples taken (2% sampling).
The fourth and fifth rows show csDMD reconstruction and its error. The two bottom rows show DMDct
reconstruction and its error.

Figure 8 shows the effects of the variation of parameters on PVNR values of csDMD and DMDct
reconstructions per snapshot. In all sub-figures, the blue and red curves correspond to DMDct and
csDMD results, respectively. The solid lines represent the results based on the nominal values. Figure 8a
shows the effect of changing noise standard deviation. As the noise standard deviation increases,
the PVNR values drop but in all snapshots, DMDct results in higher PVNR values than csDMD.
The effect of changing the sampling ratio is shown in Figure 8b. As expected, increasing the sampling
ratio results in higher PVNR values. Figure 8c shows the effect of taking different numbers of basis
vectors. As the number of basis vectors increases, the PVNR values drop slightly. Finally, the effect of
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changing the number of dynamic modes is shown in Figure 8d. Picking a fewer number of modes
than SVHT’s result slightly lowers the PVNR values, whereas picking more modes does not make any
improvements. The curves corresponding to 5 and 10 modes are almost always overlapping. In all
cases studied here, DMDct resulted in higher PVNR values than csDMD in all snapshots.
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Figure 8. Investigating the effect of changing various parameters on per-snapshot PVNR values of
DMDct and csDMD reconstructions of u velocity component of the wake behind a cylinder at Reynolds
number Re = 100. Blue and red, respectively, represent DMDct and csDMD. The solid lines correspond
to the nominal values. (a) The effect of variation of noise standard deviation. (b) The effect of variation
of sampling ratio. (c) The effect of changing the number of basis vectors. (d) The effect changing the
number of dynamic modes. The lines corresponding to 10 dynamic modes are overlapped by the lines
corresponding to 5 modes most of the times.

4. Discussion

The three tests performed aimed at comparing DMDct vs csDMD in terms of both dynamic mode
shape reconstruction and fully-sampled dataset reconstruction based on a sparsely-sampled dataset.
While csDMD is developed to reconstruct the mode shapes, DMDct reconstructs the fully-sampled
dataset. To use csDMD for fully-sampled dataset reconstruction, the spDMD method was incorporated
to find the optimal amplitudes of DMD modes.

The first test showed both methods reconstructed the mode shapes almost identical to the ones
resulting from applying exact DMD on the fully-sampled dataset even though a very small set of basis
vectors was used. Both methods resulted in RMSE of 0.002 in reconstructing the fully-sampled dataset.
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These results show neither method outperforms the other in dealing with the test dataset which has a
few dynamic modes.

The second test consisted of four cases. In the first case, where there is no gap in the data and the
samples are noise-free, csDMD reconstruction shows some glitches, especially in the first snapshot,
whereas the DMDct reconstruction has much fewer glitches (Figure 5a). The glitches reduce as the
time goes on which is probably due to the high decay rate of the corresponding modes. As depicted
in Figure 4b, the amplitudes of about half of the modes reduce to 10% or less of their initial values
after 20 snapshots which means the corresponding modes die out quickly. In the third and fourth
cases, where there is a rectangular gap in the data, DMDct has resulted in less reconstruction error than
csDMD in both noisy and noise-free cases. Obviously, the RMSE values are higher compared to those
of the no-gap case. Visually comparing, both methods were able to fill the rectangular gap but DMDct
seems to have resulted in a smoother and more consistent filling than csDMD. This is also confirmed
numerically for the first sampling mask through the RMSE values listed in row “inside” of Table 1.

As the statistical analysis showed, the RMSE values of DMDct reconstruction are significantly
lower than those of csDMD. The post hoc analysis also showed the noise has no significant effect on
the error of DMDct. This means DMDct is robust with respect to the noise. The glitches in the noisy
reconstruction of csDMD seem to be less than the noise-free case, which is probably due to the smaller
number of DMD modes taken (5 vs. 25) and the fewer basis vectors used (20 vs. 41). It is also seen
DMDct has resulted in more reconstruction error for the noisy cases than the noise-free cases which
is as expected, but the reconstruction errors of csDMD for the noisy cases are less than those of the
noise-free cases, which indicates csDMD is more sensitive to the number of mode shapes and basis
vectors than DMDct.

As stated earlier, the noisy reconstructions were performed using a fewer number of DMD modes
and basis functions than the noise-free ones. Comparing the RMSE values in Figure 6 reveals DMDct
resulted in less changes in the RMSE values compared to csDMD. In addition, the standard deviation
of DMDct results is much lower than csDMD’s according to the error bars in Figure 6. Thus, DMDct is
more robust than csDMD.

The third test showed the effect of changing the values of various parameters on the PVNR values
of DMDct and csDMD reconstructions. The first parameter to investigate was the standard deviation
of the random Gaussian noise. As shown in Figure 8a, as the standard deviation increases, the PVNR
values drop which is as expected since higher noise standard deviation means a lower signal-to-noise
ratio. For the case of high noise (SD = 0.50), csDMD resulted in a very low PVNR value (<10 dB) in all
snapshots (not shown in the figure). This was even lower than the PVNR values of the noisy dataset
which means csDMD failed to denoise the data in that case. The second parameter was the sampling
ratio. Figure 8b shows higher sampling ratio results in higher PVNR and so, better reconstruction.
This is expected as well since higher sampling ratio means more information is provided. In contrast
to the first and second cases, the results of changing the number of basis vectors are interesting and
unexpected. As shown in Figure 8c, the highest PVNR values correspond to the case of the fewest
number of basis vectors (45× 20). We initially expected to observe an improvement in the results
as the number of basis vectors increased which did not happen. The reason is that the number of
unknowns is determined by the number of basis vectors, i.e., for the case of 45× 20 basis vectors, there
is a total of 900 unknowns, whereas, for the case of 90× 40 basis vectors, the number of unknowns is
3600. Increasing the number of unknowns affects the performance of the l1-regularization method and
makes it more difficult to find the proper non-zero subset of coefficients. Thus, limiting the number of
basis vectors to a reasonable value is the key. The last parameter to study was the number of dynamic
modes. The SVHT method suggested five dynamic modes to pick. Picking fewer modes than five
resulted in lower PVNR values over the first half of the snapshots, whereas picking more modes did
not make any improvement. This shows the number of modes resulted from SVHT is a good choice.
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In all cases studied, the PVNR values of csDMD over the first few snapshots were too low whereas
DMDct resulted in less deviation of PVNR values than csDMD. In addition, in all cases, DMDct almost
always resulted in higher PVNR values than csDMD.

Even though DMDct was developed for the special case of 2-D problems defined over a rectangular
grid of equally-spaced nodes, the method can be extended to the 3D problems as well. It is also possible
to adapt the method to an arbitrary grid of nodes.

In summary, DMDct outperforms csDMD in terms of reconstructing the whole dataset regarding
the defined metrics. One disadvantage of DMDct compared to csDMD is the more computation time
it needs. This is because there are more data to fit in DMDct than csDMD. Since DMDct aims at
reconstructing the whole dataset, the Exact DMD must be employed at the end if the mode shapes are
desired. The results of both DMDct and csDMD are sensitive to the value of sparseness coefficient β

in Equation (13). Here, we ran each algorithm with various β values and then picked the best ones
for comparison. For a real case, where the actual solution is unknown, this approach is impractical.
The proper choice of sparseness coefficient β remains an open question and will be addressed later.

5. Conclusions

In this paper, a novel approach for dynamic reconstruction of a given dataset based on DMD and
a set of basis vectors and by taking a random sub-sample of the fully-sampled dataset is proposed.
The proposed approach was compared against csDMD in terms of reconstruction error for three test
cases. The results of the tests show that, while the two methods performed similarly on the dataset
with a few number of dynamic modes, the proposed method outperformed csDMD in terms of both
denoising and gap-filling. The third test also showed per-snapshot reconstruction error of DMDct has
less variation than csDMD reconstruction.
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